A Digital Image Method for Calculating the Working Chamber Volume of a Combined Profile Scroll Compressor

Page: [380 - 391] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The efficient and accurate calculation of working chamber volume can greatly contribute to the optimized design efficiency of the combined profile scroll compressor, but current papers and patents lack research on the method of calculating the working chamber volume of a combined profile scroll compressor.

Objective: A method of using digital image processing is proposed to efficiently calculate the working chamber volume of a combined scroll compressor.

Methods: This method discretizes and reconstructs the scroll profile that forms the working chamber into a coordinate sequence with equal involute angle intervals. By calculating the relationship between the coordinate sequence and the rotation angle, a general coordinate sequence that forms the working chamber profile is obtained. The real-time changes in the projection image of the working chamber during all the suction, compression and discharge processes can be accurately depicted. The digital image is processed to obtain the actual projection area of the working chamber, and thus, the volume of the working chamber is accurately calculated.

Results: The digital image method can accurately calculate the volume change of the working chamber of the combined profile scroll compressor by selecting the appropriate involute angle interval and digital image size, with a mean relative error of less than 1%. At the beginning of suction and the end of discharge, the calculated volume has been found to have poor accuracy, with a maximum relative error higher than 10%.

Conclusion: The digital image method has been found to have high accuracy, greatly reduce the difficulty of the analysis of the working chamber volume, and promote the design optimization of the combined profile scroll compressor, thus broadening the idea for the calculation method of the working chamber volume of the scroll compressor.

[1]
Zhao, Y.; Liu, G.; Li, L.; Yang, Q.; Tang, B.; Liu, Y. Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review. Energy Convers. Manage., 2019, 199, 111944.
[http://dx.doi.org/10.1016/j.enconman.2019.111944]
[2]
Song, P.; Wei, M.; Shi, L.; Danish, S.N.; Ma, C. A review of scroll expanders for organic Rankine cycle systems. Appl. Therm. Eng., 2015, 75, 54-64.
[http://dx.doi.org/10.1016/j.applthermaleng.2014.05.094]
[3]
Peng, B.; Zhu, B.G.; Lemort, V. Theoretical and experimental analysis of scroll expanders. 2016. Available From: https://docs.lib.purdue.edu/icec/2450
[4]
Emhardt, S.; Tian, G.; Chew, J. A review of scroll expander geometries and their performance. Appl. Therm. Eng., 2018, 141, 1020-1034.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.06.045]
[5]
Zhang, S.; Wang, C.; Zhong, H. Study on the temperature distribution of motor and inverter in an electric scroll compressor for vehicle air conditioning under refrigeration conditions. Int. J. Refrig., 2023, 154, 111-124.
[http://dx.doi.org/10.1016/j.ijrefrig.2023.05.012]
[6]
Zhang, X.; Zhang, B.; Cao, J.; Su, L.; Li, K. Numerical investigation on the performance and vapor injection process of a scroll compressor with different injection features. Appl. Therm. Eng., 2022, 217(25), 119061.
[http://dx.doi.org/10.1016/j.applthermaleng.2022.119061]
[7]
Chen, Y.; Halm, N.P.; Groll, E.A.; Braun, J.E. Mathematical modeling of scroll compressors—part I: Compression process modeling. Int. J. Refrig., 2002, 25(6), 731-750.
[http://dx.doi.org/10.1016/S0140-7007(01)00071-8]
[8]
Liu, Z. Scroll type fluid machine and scroll compressors; Machinery Industry Press: Beijing, 2009.
[9]
Suchul, K.; Honggyun, J.; Kiwon, P. Scroll compressor. US Patent 10072658, 2018.
[10]
Bin, P.; Legros, A.; Lemort, V.; Xiaozheng, X.; Haifeng, G. Recent advances on the oil-free scroll compressor. Recent Pat. Mech. Eng., 2016, 9(1), 37-47.
[http://dx.doi.org/10.2174/2212797609666151109204948]
[11]
Peng, B.; Zhao, S.X.; Li, Y.H.; Zhu, Y.J.; Zhang, P.C. Review and prospect of the scroll compressor profile. Compressor Technol, 2017, 3, 56-64.
[http://dx.doi.org/10.16051/j.cnki.ysjjs.2017.03.014]
[12]
Chen, J.; Wang, L.; Li, S. Study and profound analysis on general profile theory of scrolls. Jixie Gongcheng Xuebao, 2006, 42(5), 11-15.
[http://dx.doi.org/10.3901/JME.2006.05.011]
[13]
Bell, I.H.; Groll, E.A.; Braun, J.E.; Horton, W.T.; Lemort, V. Comprehensive analytic solutions for the geometry of symmetric constant-wall-thickness scroll machines. Int. J. Refrig., 2014, 45(1), 223-242.
[http://dx.doi.org/10.1016/j.ijrefrig.2014.05.029]
[14]
Mojiri, A.; Mikel, M.; Barber, T. Geometry of wrap profiles in co-rotating scroll compressors. Int. J. Refrig., 2019, 106(5), 327-337.
[http://dx.doi.org/10.1016/j.ijrefrig.2019.06.032]
[15]
Rong, C.; Wen, W. Discussion on leaking characters in meso-scroll compressor. Int. J. Refrig., 2009, 32(6), 1433-1441.
[http://dx.doi.org/10.1016/j.ijrefrig.2009.02.009]
[16]
Chen, Y.; Halm, N.P.; Braun, J.E.; Groll, E.A. Mathematical modeling of scroll compressors — part II: Overall scroll compressor modeling. Int. J. Refrig., 2002, 25(6), 751-764.
[http://dx.doi.org/10.1016/S0140-7007(01)00072-X]
[17]
Li, L.S. Geometry theory of scroll compressor made up of segment involute. Fluid Mach, 1994, 22(12), 22-28.
[18]
Li, L.S. Scroll compressor; Machinery Industry Press: Beijing, 1998.
[19]
Kohsokabe, H.; Takebayashi, M.; Kunugi, Y.; Ohshima, Y.; Hata, H. Study on scroll profile based on algebraic spiral for scroll fluid machines. Trans Jpn Soc Refrig Air Cond Eng, 1994, 11(3), 337-347.
[http://dx.doi.org/10.11322/tjsrae.11.337]
[20]
Kohsokabe, H; Takebayashi, M; Tsubono, I Scroll type fluid machine. JP Patent 07027065A, 1995.
[21]
Ding, J.; Yue, X.; Zhang, Y.; Yang, F.; Cao, H.; Ba, D. Analysis of the transient flow in a scroll-type compressor constructed from an algebraic spiral with pressure relief valves. J. Braz. Soc. Mech. Sci. Eng., 2022, 44(8), 379.
[http://dx.doi.org/10.1007/s40430-022-03691-9]
[22]
Liu, Y.; Hung, C.; Chang, Y. Study on involute of circle with variable radii in a scroll compressor. Mechanism Mach. Theory, 2010, 45(11), 1520-1536.
[http://dx.doi.org/10.1016/j.mechmachtheory.2010.07.001]
[23]
Tojo, K.; Ueda, H. Scroll type fluid machine with an involute spiral based on a circle having a varying radius. US Patent 5425626, 1995.
[24]
Peng, B.; Liu, H.; Tao, Y. Geometrical model and optimization of scroll compressor based on involute of circle with variable radii. J. Shanghai Jiaotong Univ., 2023, 57(8), 1046-1054.
[http://dx.doi.org/10.16183/j.cnki.jsjtu.2022.129]
[25]
Liu, B.; Wang, X.Y.; Li, K.N.; Wang, Y.M.; Jin, G.B.; Xie, Y. Research status and prospect of scroll profile of scroll compressor. Refrig Air-Cond, 2020, 20(03), 77-83.
[http://dx.doi.org/10.3969/j.issn.1009-8402.2020.03.015]
[26]
Bush, J.W.; Beagle, W.P. Derivation of a general relation governing the conjugacy of scroll profiles. 1992. Available From: https://docs.lib.purdue.edu/icec/902
[27]
Wu, Z.X.; Du, W.W.; Liu, T.; Shao, B. Design of Involute-higher Curve Combined Profile for Scroll Compressor and Finite Element Analysis. Compressor Technol, 2011, 2, 5-9.
[http://dx.doi.org/10.16051/j.cnki.ysjjs.2011.02.002]
[28]
Wu, Z.X.; Liu, T.; Sun, H.W.; Hu, C.B. FEM Analysis of Scrolls with Single Profile and Hybrid Profile. Adv. Mat. Res., 2012, 452-453, 269-273.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.452-453.269]
[29]
Liu, T.; Zhi, J.C. Effects of profile curvature on performance of scroll compressor. Compressor Technol, 2016, 4, 1-5.
[http://dx.doi.org/10.16051/j.cnki.ysjjs.2016.04.001]
[30]
Peng, B.; Sun, Y. Investigation of Mathematical Modeling and Experiment for Variable Thickness Scroll Compressor. Jixie Gongcheng Xuebao, 2015, 51(14), 185-191.
[http://dx.doi.org/10.3901/JME.2015.14.185]
[31]
Emhardt, S.; Tian, G.; Song, P.; Chew, J.; Wei, M. CFD modelling of small scale ORC scroll expanders using variable wall thicknesses. Energy, 2020, 199, 117399.
[http://dx.doi.org/10.1016/j.energy.2020.117399]
[32]
Bin, P.; Lemort, V.; Legros, A.; Hongsheng, Z.; Haifeng, G. Variable thickness scroll compressor performance analysis—Part II: Dynamic modeling and model validation. Proceedings of the Institution of Mechanical Engineers, Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2017, 231(4), 641-649.
[http://dx.doi.org/10.1177/0954408916642097]
[33]
Bush, J.W.; Beagle, W.P.; Housman, M.E. Maximizing scroll compressor displacement using generalized wrap geometry. 1994. Available From: https://docs.lib.purdue.edu/icec/981
[34]
Bin, P.; Lemort, V.; Legros, A.; Hongsheng, Z.; Haifeng, G. Variable thickness scroll compressor performance analysis—Part I: Geometric and thermodynamic modeling. Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2017, 231(4), 633-640.
[http://dx.doi.org/10.1177/0954408916640418]
[35]
Liu, T.; Feng, Z.G.; Sun, Y.J. Equivalent tooth thickness model and geometric performance analysis of IHV variable cross-section scroll profile. Fluid Mach, 2021, 49(12), 55-61.
[http://dx.doi.org/10.3969/j.issn.1005-0329.2021.12.009]
[36]
Feng, ZG Mathematical model and performance research of variable cross section scroll combined by IHV profile 2021.
[http://dx.doi.org/10.27206/d.cnki.ggsgu.2021.001305]
[37]
Rak, J.; Pietrowicz, S.; Gnutek, Z. The scroll compressor with internal cooling system in cryogenics applications. 2014. Available from: https://docs.lib.purdue.edu/icec/2365
[38]
Zhang, PC; Peng, B A variable cross-section scroll wrap composed of algebraic spiral and its profile design method. CN Patent 112483405B, 2021.
[39]
Yan, M; Liu, T; Dang, X; Xu, ZW A variable cross-section scroll wrap and its profile design method. CN Patent 117307483A, 2023.
[40]
Zhang, PC; Peng, B; Zhang, YB A variable cross-section scroll wrap composed of a variable radius circle and its profile design method. CN Patent 112483404B, 2021.
[41]
Hou, C.S.; Liu, T. Investigation of scroll profiles for variable cross-section scroll compressor based on Frenet frame. J Huazhong Univ of SciTech, 2019, 47(2), 76-80.
[http://dx.doi.org/10.13245/j.hust.190214]
[42]
Peng, B.; Zhu, B.G. Investigation of the geometrical model for scroll compressor based on circle involute. Fluid Mach, 2016, 44(5), 16-21.
[http://dx.doi.org/10.3969/j.issn.1005-0329.2016.05.004]
[43]
Morishita, E.; Sugihara, M.; Inaba, T.; Nakamura, T. Scroll odel. 1984. Available From: https://docs.lib.purdue.edu/icec/495
[44]
Chen, Y. Mathematical modeling of scroll compressors, 2000.
[45]
Wang, B.; Li, X.; Shi, W. A general geometrical model of scroll compressors based on discretional initial angles of involute. Int. J. Refrig., 2005, 28(6), 958-966.
[http://dx.doi.org/10.1016/j.ijrefrig.2005.01.015]
[46]
Liu, T.; Wu, Z.X.; Liu, Z.Q. Study on generation profile with nomal-equidistant-curve method for scroll compressor. Jixie Gongcheng Xuebao, 2004, 40(6), 55-58.
[http://dx.doi.org/10.3901/JME.2004.06.055]
[47]
Liu, T.; Wu, Z. Modeling of top scroll profile using equidistant-curve approach for a scroll compressor. Math. Probl. Eng., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/403249]
[48]
Liu, T. Investigation on theory and application of scroll profile based on nomal-equidistant curve method, 2007.
[49]
Zhang, P.; Peng, B.; Zhang, Y. Comprehensive analysis of geometric performance of circular involute variable Thickness Scroll Compressor. Jixie Gongcheng Xuebao, 2020, 56(23), 118-128.
[http://dx.doi.org/10.3901/JME.2020.23.118]
[50]
Hou, C.S.; Liu, T. Construction and performance investigation of variable cross-section scroll profiles based on frenet frame. J. Shanghai Jiaotong Univ., 2019, 53(12), 1495-1501.
[http://dx.doi.org/10.16183/j.cnki.jsjtu.2019.12.013]
[51]
Peng, B.; Sun, Y.; Zhang, L. Geometrical and frictional loss model for scroll compressor with variable scroll thickness. J Lanzhou Univ Technol, 2012, 38(3), 34-38.
[http://dx.doi.org/10.3969/j.issn.1673-5196.2012.03.009]
[52]
Peng, B.; Tao, Y.; Liu, H. Parameters optimization of circular involute scroll compressor with variable cross-section profile. J Hefei Univ Technol. Nat. Sci., 2023, 46(8), 1046-1051.
[http://dx.doi.org/10.3969/j.issn.1003-5060.2023.08.006]
[53]
Chen, Y.; Huang, Y.; Zhang, Z. Plant image recognition with deep learning: A review. Comput. Electron. Agric., 2023, 212, 108072.
[http://dx.doi.org/10.1016/j.compag.2023.108072]
[54]
Wali, A.; Naseer, A.; Tamoor, M.; Gilani, S.A.M. Recent progress in digital image restoration techniques: A review. Digit. Signal Process., 2023, 141, 104187.
[http://dx.doi.org/10.1016/j.dsp.2023.104187]
[55]
Xia, D.H.; Song, S.; Tao, L. Review-material degradation assessed by digital image processing: Fundamentals, progresses, and challenges. J. Mater. Sci. Technol., 2020, 53, 146-162.
[http://dx.doi.org/10.1016/j.jmst.2020.04.033]
[56]
Jia, YH Digital image processing; Wuhan university press: Wuhan, 2010.
[57]
Lin, X.; Qiu, T.; Zhang, X.; Wu, J.; Ning, H. Research and implementation of flame relative area estimation method. Electron Des Eng, 2024, 32(3), 190-195.
[http://dx.doi.org/10.14022/j.issn1674-6236.2024.03.041]
[58]
Sabouri, H.; Sajadi, S.J. Image processing and area estimation of chia (Salvia hispanica L.), quinoa (Chenopodium quinoa Willd.), and bitter melon (Momordica charantia L.) leaves based on statistical and intelligent methods. J. Appl. Res. Med. Aromat. Plants, 2022, 30, 100382.
[http://dx.doi.org/10.1016/j.jarmap.2022.100382]
[59]
Lee, Y.R.; Wu, W.F. A study of planar orbiting mechanism and its applications to scroll fluid machinery. Mechanism Mach. Theory, 1996, 31(5), 705-716.
[http://dx.doi.org/10.1016/0094-114X(95)00116-G]