Ionic Liquids Immobilized Synthesis of New Xanthenes Derivatives and their Antiproliferative, Molecular Docking, and Morphological Studies

Page: [990 - 1008] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Xanthenes and benzoxanthenesare are highly valuable compounds in organic chemistry and medicinal chemistry. Xanthene derivatives were found to have many applications in medicinal chemistry.

Objective: This work aims to explore the synthesis of xanthene derivatives with various substituents and find the possibility of their uses as anticancer agents.

Methods: The basic starting compound through this work was the 2,3-dihydro-1H-xanthen-1-one (3), which was synthesized from the reaction of cyclohexan-1,3-dione and 2-hydroxybenzaldehyde. Compound 3 was used to synthesize new thiophene, pyrimidine, isoxazole, and thiazole derivatives based on the xanthenes nucleus. Fused xanthene derivatives were obtained through further heterocyclization reactions. Multicomponent reactions expressed in this work were carried out in the presence of solvent catalyzed by Et3N and in solvent-free ionic liquid immobilized catalyst.

Results: Cytotoxicity for the newly synthesized compounds toward cancer cell lines was measured, and the results revealed that many compounds exhibited high inhibitions.

Conclusion: The antiproliferative activity of the synthesized compounds was studied on six selected cancer cell lines. The nature of the heterocyclic ring and the variations of substituted groups showed a high effect through the inhibitions of the tested compound.

Graphical Abstract

[1]
Mahmoud, N.F.H.; El-Sewedy, A. Facile synthesis of novel heterocyclic compounds based on pyridine moiety with pharmaceutical activities. J. Heterocycl. Chem., 2020, 57(4), 1559-1572.
[http://dx.doi.org/10.1002/jhet.3881]
[2]
Lim, S.J.; Fox, P. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model. Sci. Total Environ., 2014, 470-471, 348-355.
[http://dx.doi.org/10.1016/j.scitotenv.2013.09.089] [PMID: 24144939]
[3]
Srivastava, V.; Singh, P.K.; Tivari, S.; Singh, P.P. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Org. Chem. Front., 2022, 9(5), 1485-1507.
[http://dx.doi.org/10.1039/D1QO01602D]
[4]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem., 2022, 4, 100606.
[http://dx.doi.org/10.1016/j.rechem.2022.100606]
[5]
Sallam, E.R.; Aboulnaga, S.F.; Samy, A.M.; Beltagy, D.M.; Desouky, J.M.E.; Abdel-Hamid, H.; Fetouh, H.A. Synthesis, characterization of new heterocyclic compound: Pyrazolyl hydrazino quinoxaline derivative: 3-[5-(hydroxy1methyl)-1-phenylpyrazol-3-yl]-2-[2, 4, 5-trimethoxybenzylidine] hydrazonyl-quinoxaline of potent antimicrobial, antioxidant, antiviral, and antitumor activity. J. Mol. Struct., 2023, 1271, 133983.
[http://dx.doi.org/10.1016/j.molstruc.2022.133983]
[6]
Banerjee, A.G.; Kothapalli, L.P.; Sharma, P.A.; Thomas, A.B.; Nanda, R.K.; Shrivastava, S.K.; Khatanglekar, V.V. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents. Arab. J. Chem., 2016, 9, S480-S489.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.001]
[7]
Taghartapeh, M.R.; Noroozi Pesyan, N.; Rashidnejad, H.; Khavasi, H.R.; Soltani, A. Synthesis, spectroscopic and photophysical studies of xanthene derivatives. J. Mol. Struct., 2017, 1149, 862-873.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.054]
[8]
Kusampally, U.; Pagadala, R.; Kamatala, C.R. Metal free Lewis acid promoted one-pot synthesis of 14-aryl-14H dibenzo[a,j] xanthenes and their simple biological evolution. Tetrahedron Lett., 2017, 58(33), 3316-3318.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.037]
[9]
Srinivas Lavanya Kumar, M.; Singh, J.; Manna, S.K.; Maji, S.; Konwar, R.; Panda, G. Diversity oriented synthesis of chromene-xanthene hybrids as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2018, 28(4), 778-782.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.065] [PMID: 29352645]
[10]
Khaki, D.; Namazi, H.; Amininasab, S.M. Synthesis and identification of new thermostable polyamides containing xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles. React. Funct. Polym., 2021, 158, 104780.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104780]
[11]
Gong, J.; Liu, C.; Jiao, X.; He, S.; Zhao, L.; Zeng, X. Novel mitochondria-targeted viscosity probe based on a fluorescent rotatable xanthene-hemicyanine dyad. Microchem. J., 2020, 158, 105191.
[http://dx.doi.org/10.1016/j.microc.2020.105191]
[12]
Almalki, F.A. An overview of structure-based activity outcomes of pyran derivatives against Alzheimer’s disease. Saudi Pharm. J., 2023, 31(6), 998-1018.
[http://dx.doi.org/10.1016/j.jsps.2023.04.030] [PMID: 37234350]
[13]
Zhang, C.; Wu, J.; Liu, W.; Zhang, W.; Lee, C.S.; Wang, P. NIR-II xanthene dyes with structure-inherent bacterial targeting for efficient photothermal and broad-spectrum antibacterial therapy. Acta Biomater., 2023, 159, 247-258.
[http://dx.doi.org/10.1016/j.actbio.2023.01.031] [PMID: 36724864]
[14]
Abdel-Lateef, M.A.; Omar, M.A.; Ali, R.; Derayea, S.M. Xanthene based spectroscopic probe for the analysis of HCV antiviral, daclatasvir dihydrochloride, through feasible complexation reaction. Microchem. J., 2019, 145, 672-675.
[http://dx.doi.org/10.1016/j.microc.2018.11.038]
[15]
Gerstmeier, J.; Kretzer, C.; Di Micco, S.; Miek, L.; Butschek, H.; Cantone, V.; Bilancia, R.; Rizza, R.; Troisi, F.; Cardullo, N.; Tringali, C.; Ialenti, A.; Rossi, A.; Bifulco, G.; Werz, O.; Pace, S. Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy. Biochem. Pharmacol., 2019, 165, 263-274.
[http://dx.doi.org/10.1016/j.bcp.2019.03.003] [PMID: 30836057]
[16]
Maia, M.; Resende, D.I.S.P.; Durães, F.; Pinto, M.M.M.; Sousa, E. Xanthenes in medicinal chemistry – synthetic strategies and biological activities. Eur. J. Med. Chem., 2021, 210, 113085.
[http://dx.doi.org/10.1016/j.ejmech.2020.113085] [PMID: 33310284]
[17]
Rahimi, J.; Maleki, A. Preparation of a trihydrazinotriazine-functionalized core-shell nanocatalyst as an extremely efficient catalyst for the synthesis of benzoxanthenes. Mater. Today Chem., 2020, 18, 100362.
[http://dx.doi.org/10.1016/j.mtchem.2020.100362]
[18]
Kefayati, H.; Bazargard, S.J.; Vejdansefat, P.; Shariati, S.; Kohankar, A.M. Fe3O4@MCM-41-SO3H@[HMIm][HSO4]: An effective magnetically separable nanocatalyst for the synthesis of novel spiro[benzoxanthene-indoline]diones. Dyes Pigments, 2016, 125, 309-315.
[http://dx.doi.org/10.1016/j.dyepig.2015.10.034]
[19]
Safaei-Ghomi, J.; Eshteghal, F. Nano-Fe3O4/PEG/succinic anhydride: A novel and efficient catalyst for the synthesis of benzoxanthenes under ultrasonic irradiation. Ultrason. Sonochem., 2017, 38, 488-495.
[http://dx.doi.org/10.1016/j.ultsonch.2017.03.047] [PMID: 28633851]
[20]
Quintás, D.; García, A.; Domínguez, D. Synthesis of spiro[pyrrolidine or piperidine-3,9′-xanthenes] by anionic cycloacylation of carbamates. Tetrahedron Lett., 2003, 44(52), 9291-9294.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.065]
[21]
Mroß, G.; Reinke, H.; Fischer, C.; Langer, P. Synthesis of functionalized 2-alkoxybenzoates, 2-aryloxybenzoates and xanthones based on formal [3+3] cyclocondensations of 3-alkoxy- and 3-aryloxy-1-silyloxy-1,3-butadienes with 3-silyloxy-2-en-1-ones. Tetrahedron, 2009, 65(19), 3910-3917.
[http://dx.doi.org/10.1016/j.tet.2009.02.052]
[22]
Anna, C.Z.; Chen, Z.; Qiao, H.; Gao, J.; Zhu, M.; Li, C. Synthesis of xanthones from 4-(2-phenoxyphenyl)-1-tosyl-1H-1,2,3-triazole via rhodium-catalyzed annulation/oxidation. Catal. Commun., 2021, 161, 106360.
[http://dx.doi.org/10.1016/j.catcom.2021.106360]
[23]
Sahoo, S.R.; Singh, V.K. Brønsted acid catalyzed friedel–crafts alkylation of naphthols with in situ generated naphthol-derived ortho -quinone methides: Synthesis of chiral and achiral xanthene derivatives. J. Org. Chem., 2023, 88(5), 3159-3172.
[http://dx.doi.org/10.1021/acs.joc.2c02939] [PMID: 36866580]
[24]
Mohareb, R.M.; Mukhtar, S.; Parveen, H.; Abdelaziz, M.A.; Alwan, E.S. Anti-proliferative, morphological and molecular dockingstudies of new thiophene derivatives and their strategy in ionic liquids immobilized reactions. Anticancer. Agents Med. Chem., 2024, 24(9), 4748.
[25]
Tandon, R.; Tandon, N.; Patil, S.M. Overview on magnetically recyclable ferrite nanoparticles: Synthesis and their applications in coupling and multicomponent reactions. RSC Advances, 2021, 11(47), 29333-29353.
[http://dx.doi.org/10.1039/D1RA03874E] [PMID: 35479579]
[26]
Mohareb, R.M.; Abdallah, A.E.M.; Abdelaziz, M.A. New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-b]pyridine, and thiazole derivatives together with their anti-tumor evaluations. Med. Chem. Res., 2014, 23(2), 564-579.
[http://dx.doi.org/10.1007/s00044-013-0664-7]
[27]
Mohareb, R.M.; Wardakhan, W.W.; Hamed, F.I. Synthesis and cytotoxicity of fused thiophene and pyrazole derivatives derived from 2-N-acetyl-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene. Med. Chem. Res., 2015, 24(5), 2043-2054.
[http://dx.doi.org/10.1007/s00044-014-1273-9]
[28]
Mohareb, R.M.; Zaki, M.Y.; Abbas, N.S. Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids, 2015, 98, 80-91.
[http://dx.doi.org/10.1016/j.steroids.2015.03.001] [PMID: 25759119]
[29]
Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-met inhibitor: 1-(2-hydroxy-2-methylpropyl)- N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51(13), 3688-3691.
[http://dx.doi.org/10.1021/jm800401t] [PMID: 18553959]
[30]
Ismail, L.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Elshaarawy, R.F.M.; Gad, E.M.; El-Sayed, W.N. Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity. J. Organomet. Chem., 2021, 949, 121960.
[http://dx.doi.org/10.1016/j.jorganchem.2021.121960]
[31]
Romagnoli, R.; Preti, D.; Hamel, E.; Bortolozzi, R.; Viola, G.; Brancale, A.; Ferla, S.; Morciano, G.; Pinton, P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem., 2021, 112, 104919.
[http://dx.doi.org/10.1016/j.bioorg.2021.104919] [PMID: 33957538]
[32]
Hollick, J.J.; Golding, B.T.; Hardcastle, I.R.; Martin, N.; Richardson, C.; Rigoreau, L.J.M.; Smith, G.C.M.; Griffin, R.J. 2,6-Disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-Dependent protein kinase (DNA-PK). Bioorg. Med. Chem. Lett., 2003, 13(18), 3083-3086.
[http://dx.doi.org/10.1016/S0960-894X(03)00652-8] [PMID: 12941339]
[33]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[34]
Rivera, D.G.; León, F.; Concepción, O.; Morales, F.E.; Wessjohann, L.A. A multiple multicomponent approach to chimeric peptide-peptoid podands. Chemistry, 2013, 19(20), 6417-6428.
[http://dx.doi.org/10.1002/chem.201201591] [PMID: 23512744]
[35]
Azgomi, A.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. A Chem., 2013, 398, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[36]
Ugi, I.; Werner, B.; Dömling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules, 2003, 8(1), 53-66.
[http://dx.doi.org/10.3390/80100053]
[37]
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. Chem., 2015, 398, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[38]
Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951.
[http://dx.doi.org/10.1021/jm800791f] [PMID: 19199650]
[39]
De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661.
[http://dx.doi.org/10.1093/jnci/djr093] [PMID: 21464397]
[40]
Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Vande Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60(6), 1113-1117.
[http://dx.doi.org/10.1016/S0090-4295(02)01954-4] [PMID: 12475693]
[41]
Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147(2), 386-396.
[PMID: 7639332]
[42]
Rubin, J.; Bottaro, D.P.; Aaronson, S.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta Rev. Cancer, 1993, 1155(3), 357-371.
[http://dx.doi.org/10.1016/0304-419X(93)90015-5] [PMID: 8268192]
[43]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl(Suppl.)), S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[44]
Jeffers, M.; Rong, S.; Vande Woude, G.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med. (Berl.), 1996, 74(9), 505-513.
[http://dx.doi.org/10.1007/BF00204976] [PMID: 8892055]
[45]
Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: Implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67(3), 967-975.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3552] [PMID: 17283128]
[46]
Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855.
[http://dx.doi.org/10.1016/j.bmc.2013.04.013] [PMID: 23628470]
[47]
Gieni, R.S.; Li, Y. HayGlass, K.T. Comparison of [3H]thymidine incorporation with MTT- and MTS-based bioassays for human and murine IL-2 and IL-4 analysis Tetrazolium assays provide markedly enhanced sensitivity. J. Immunol. Methods, 1995, 187(1), 85-93.
[http://dx.doi.org/10.1016/0022-1759(95)00170-F] [PMID: 7490461]
[48]
Devoos, L.; Biguenet, A.; Rousselot, J.; Bour, M.; Plésiat, P.; Fournie, D.; Jeannot, K. Performance of discs, sensititre EUMDROXF microplates and MTS gradient strips for the determination of the susceptibility of multidrug-resistant Pseudomonas aeruginosa to cefiderocol. Clin. Microbiol. Infect., 2023, 29(5), 652.e1-652.e8.
[http://dx.doi.org/10.1016/j.cmi.2022.12.021]
[49]
Zhao, R.; Cai, K.; Yang, J.J.; Zhou, Q.; Cao, W.; Xiang, J.; Shen, Y.H.; Cheng, L.L.; Zang, W.D.; Lin, Y.; Yuan, Y.Y.; Xu, W.; Tao, H.; Zhao, S.M.; Zhao, J.Y. Nuclear ATR lysine-tyrosylation protects against heart failure by activating DNA damage response. Cell Rep., 2023, 42(4), 112400.
[http://dx.doi.org/10.1016/j.celrep.2023.112400] [PMID: 37071536]
[50]
Liu, L.; Simon, M.; Muggiolu, G.; Vilotte, F.; Antoine, M.; Caron, J.; Kantor, G.; Barberet, P.; Seznec, H.; Audoin, B. Changes in intra-nuclear mechanics in response to DNA damaging agents revealed by time-domain Brillouin micro-spectroscopy. Photoacoustics, 2022, 27, 100385.
[http://dx.doi.org/10.1016/j.pacs.2022.100385] [PMID: 36068801]
[51]
Nunhart, P.; Konkoľová, E.; Janovec, L.; Jendželovský, R.; Vargová, J.; Ševc, J.; Matejová, M.; Miltáková, B.; Fedoročko, P.; Kozurkova, M. Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity. Bioorg. Chem., 2020, 94, 103393.
[http://dx.doi.org/10.1016/j.bioorg.2019.103393] [PMID: 31679839]