[3]
J.N. Dong, M. Yang, Z.R. Xie, and L.P. Cai, "Overview of underwater image object detection data set and detection algorithms", J. Atmos. Ocean. Technol., vol. 41, no. 5, pp. 60-72, 2022.
[5]
R.L. Yao, Y.W. Gui, and Q.G. Huang, "Recognition of freshwater fish species based on machine vision", Cyber. Secur. Data. Gov, vol. 36, no. 24, pp. 37-39, 2017.
[9]
S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks", Adv. Neural Inf. Process. Syst., vol. 28, pp. 1-9, 2015.
[10]
T.Y. Lin, P. Goyal, R. Girshick, K.M. He, and P. Dollár, "Focal loss for dense object detection", Proceedings of the IEEE international conference on computer vision, pp. 2980-2988, 2017.
[13]
C.Y. Li, L.L. Li, H.L. Jiang, K.H. Weng, Y.F. Geng, L. Liang, Z.D. Ke, Q.Y. Li, M. Cheng, W.Q. Nie, Y.D. Li, B. Zhang, Y.F. Liang, L.Y. Zhou, X.M. Xu, X.X. Chu, X.M. Wei, and X.L. Wei, "YOLOv6: A single-stage object detection framework for industrial applications", arXiv, vol. 2022, p. 02976, 2022.
[15]
Y.J. Gao, "Design and implementation of underwater target detection network based on ssd model", Electron. World., vol. 8, pp. 110-111, 2019.
[17]
X. Li, M. Shang, H. Qin, and L. Chen, "Fast accurate fish detection and recognition of underwater images with Fast R-CNN", OCEANS 2015 - MTS/IEEE Washington. Washington, DC, 19-22 October 2015, pp. 1-5.
[18]
X. Li, M. Shang, J. Hao, and Z. Yang, "Accelerating fish detection and recognition by sharing CNNs with objectness learning", OCEANS 2016 - Shanghai. Shanghai, China, 10-13 April 2016, pp. 1-5.
[19]
P.F. Shi, S. Han, J.J. Ni, and X. Yang, "Underwater object detection algorithm combining data enhancement and improved YOLOv4", J. Electron. Meas. Instrum., vol. 36, no. 3, pp. 113-121, 2022.
[21]
Z.B. Ye, X.H. Duan, and C. Zhao, "Research on underwater target detection by improved YOLOV3-SPP", Comput. Eng. Appl, vol. 59, no. 6, pp. 231-240, 2023.
[29]
T.Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection", Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, HI, USA, 2017, pp. 936-944.
[30]
S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path aggregation network for instance segmentation", Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA, 2018, pp. 8759-8768.
[31]
K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, "GhostNet: More features from cheap operations", Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, 2020, pp. 1577-1586.
[33]
J.Q. Wang, K. Chen, R. Xu, Z.W. Liu, C.C. Loy, and D.H. Lin, "Carafe: Content-aware reassembly of features", Proceedings of the IEEE/CVF international conference on computer vision. Seoul, Korea (South), 2019, pp. 3007-3016.
[34]
S. Woo, J. Park, J.Y. Lee, and I.S. Kweon, "Cbam: Convolutional block attention module", Proceedings of the European conference on computer vision (ECCV), vol. 11211, 2018.
[35]
S. Luo, X.L. Meng, M.Y. Zhu, W.L. Wang, H.L. Song, X.F. Wang, and H. Zheng, "Surface defect detection method of high temperature continuous casting billet based on improved yolov5x network model.", C.N. Patent 113487570. 2021.
[38]
B. Kang, C. Hou, Z.H. Xu, G.L. Ding, Z.Y. Wang, X.W. Zhang, and J.H. Sang, "GIS Infrared feature recognition system and method based on improved YOLOv5.", C.N. Patent 116342894. 2021.
[39]
Y.P. Chen, Y. Kalantidis, J.S. Li, S.C. Yan, and J.S. Feng, "A^2-nets: Double attention networks", arXiv, vol. 1810, p. 11579, 2018.
[40]
X.L. Wang, R. Girshick, A. Gupta, and K.M. He, "Non-local neural networks", Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA, 2018, pp. 7794-7803.
[41]
Y.M. Dai, F. Gieseke, S. Oehmcke, Y.Q. Wu, and K. Barnard, "Attentional feature fusion", Proceedings of the IEEE/CVF winter conference on applications of computer vision. Waikoloa, HI, USA, 2021, pp. 3559-3568.
[42]
H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation", Proceedings of the IEEE international conference on computer vision. Santiago, Chile, 2015, pp. 1520-1528.
[43]
C.H. Wu, W.H. Luo, X. Xu, and K. Xing, "A vehicle target detection method fusing gam, carafe and sniou.", C.N. Patent 115588126. 2023.
[45]
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization", Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA, 2016, pp. 2921-2929.