Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimer’s Disease: Recent Advances and Therapeutic Implications

Page: [1942 - 1959] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.

Graphical Abstract

[1]
Cenini, G.; Voos, W. Mitochondria as potential targets in alzheimer disease therapy: An update. Front Pharmacol., 2019, 10, ARTN 902.
[http://dx.doi.org/10.3389/fphar.2019.00902]
[2]
Carvalho, C.; Correia, S.C.; Cardoso, S.; Plácido, A.I.; Candeias, E.; Duarte, A.I.; Moreira, P.I. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Rev. Neurother., 2015, 15(8), 867-884.
[http://dx.doi.org/10.1586/14737175.2015.1058160] [PMID: 26092668]
[3]
Correia, S.C.; Santos, R.X.; Cardoso, S.; Carvalho, C.; Candeias, E.; Duarte, A.I.; Plácido, A.I.; Santos, M.S.; Moreira, P.I. Alzheimer disease as a vascular disorder: Where do mitochondria fit? Exp. Gerontol., 2012, 47(11), 878-886.
[http://dx.doi.org/10.1016/j.exger.2012.07.006] [PMID: 22824543]
[4]
Bhatia, S.; Rawal, R.; Sharma, P.; Singh, T.; Singh, M.; Singh, V. Mitochondrial dysfunction in Alzheimer’s disease: Opportunities for drug development. Curr. Neuropharmacol., 2022, 20(4), 675-692.
[http://dx.doi.org/10.2174/1570159X19666210517114016] [PMID: 33998995]
[5]
Ke, J.; Tian, Q.; Xu, Q.; Fu, Z.; Fu, Q. Mitochondrial dysfunction: A potential target for Alzheimer’s disease intervention and treatment. Drug Discov. Today, 2021, 26(8), 1991-2002.
[http://dx.doi.org/10.1016/j.drudis.2021.04.025] [PMID: 33962036]
[6]
Zhang, Y.; Yang, H.; Wei, D.; Zhang, X.; Wang, J.; Wu, X.; Chang, J. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. In: Exploration; Wiley Online Library, 2021; p. 20210115.
[7]
Bai, R.; Guo, J.; Ye, X.Y.; Xie, Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev., 2022, 77, 101619.
[http://dx.doi.org/10.1016/j.arr.2022.101619] [PMID: 35395415]
[8]
Gowda, P.; Reddy, P.H.; Kumar, S. Deregulated mitochondrial microRNAs in Alzheimer’s disease: Focus on synapse and mitochondria. Ageing Res. Rev., 2022, 73, 101529.
[http://dx.doi.org/10.1016/j.arr.2021.101529] [PMID: 34813976]
[9]
Sun, Q.; Li, Y.; Shi, L.; Hussain, R.; Mehmood, K.; Tang, Z.; Zhang, H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology, 2022, 469, 153136.
[http://dx.doi.org/10.1016/j.tox.2022.153136] [PMID: 35202761]
[10]
Pelucchi, S.; Gardoni, F.; Di Luca, M.; Marcello, E. Synaptic dysfunction in early phases of Alzheimer’s disease. Handb. Clin. Neurol., 2022, 184, 417-438.
[http://dx.doi.org/10.1016/B978-0-12-819410-2.00022-9] [PMID: 35034752]
[11]
Sorgdrager, F.J.H.; Vermeiren, Y.; Faassen, M.; Ley, C.; Nollen, E.A.A.; Kema, I.P.; De Deyn, P.P. Age‐ and disease‐specific changes of the kynurenine pathway in Parkinson’s and Alzheimer’s disease. J. Neurochem., 2019, 151(5), 656-668.
[http://dx.doi.org/10.1111/jnc.14843] [PMID: 31376341]
[12]
Castro-Chavira, S.A.; Fernandez, T.; Nicolini, H.; Diaz-Cintra, S.; Prado-Alcala, R.A. Genetic markers in biological fluids for aging-related major neurocognitive disorder. Curr. Alzheimer Res., 2015, 12(3), 200-209.
[http://dx.doi.org/10.2174/1567205012666150302155138] [PMID: 25731625]
[13]
Rahman, M.A.; Rhim, H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep., 2017, 50(7), 345-354.
[http://dx.doi.org/10.5483/BMBRep.2017.50.7.069] [PMID: 28454606]
[14]
Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol. Cell. Proteomics, 2016, 15(2), 409-425.
[http://dx.doi.org/10.1074/mcp.R115.053330] [PMID: 26657538]
[15]
Rahman, M.A.; Rahman, M.S.; Uddin, M.J.; Mamum-Or-Rashid, A.N.M.; Pang, M.G.; Rhim, H. Emerging risk of environmental factors: Insight mechanisms of Alzheimer’s diseases. Environ. Sci. Pollut. Res. Int., 2020, 27(36), 44659-44672.
[http://dx.doi.org/10.1007/s11356-020-08243-z] [PMID: 32201908]
[16]
Rahman, M.A.; Rahman, M.S.; Rahman, M.H.; Rasheduzzaman, M.; Mamun-Or-Rashid, A.N.M.; Uddin, M.J.; Rahman, M.R.; Hwang, H.; Pang, M.G.; Rhim, H. Modulatory effects of autophagy on APP processing as a potential treatment target for Alzheimer's disease. Biomedicines, 2020, 9, 5.
[http://dx.doi.org/10.3390/biomedicines9010005]
[17]
Liang, S.Y.; Wang, Z.T.; Tan, L.; Yu, J.T. Tau toxicity in neurodegeneration. Mol. Neurobiol., 2022, 59(6), 3617-3634.
[http://dx.doi.org/10.1007/s12035-022-02809-3] [PMID: 35359226]
[18]
González, A.; Singh, S.K.; Churruca, M.; Maccioni, R.B. Alzheimer’s disease and tau self-assembly: In the search of the missing link. Int. J. Mol. Sci., 2022, 23(8), 4192.
[http://dx.doi.org/10.3390/ijms23084192] [PMID: 35457009]
[19]
Ye, H.; Han, Y.; Li, P.; Su, Z.; Huang, Y. The role of post-translational modifications on the structure and function of tau protein. J. Mol. Neurosci., 2022, 72(8), 1557-1571.
[http://dx.doi.org/10.1007/s12031-022-02002-0] [PMID: 35325356]
[20]
Dhapola, R.; Sarma, P.; Medhi, B.; Prakash, A.; Reddy, D.H. Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimer’s disease. Mol. Neurobiol., 2022, 59(2022), 535-555.
[http://dx.doi.org/10.1007/s12035-021-02612-6]
[21]
Zhao, Y.; Jia, M.; Chen, W.; Liu, Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic. Biol. Med., 2022, 182, 206-218.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.02.021]
[22]
Du, F.; Yu, Q.; Kanaan, N.M.; Yan, S.S. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer’s disease. Hum. Mol. Genet., 2022, 31(15), 2498-2507.
[http://dx.doi.org/10.1093/hmg/ddab363] [PMID: 35165721]
[23]
Gong, W.; Xu, J.; Wang, Y.; Min, Q.; Chen, X.; Zhang, W.; Chen, J.; Zhan, Q. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Signal. Transduct. Target. Ther., 2022, 7(1), 40.
[http://dx.doi.org/10.1038/s41392-021-00865-0] [PMID: 35153295]
[24]
Zinovkin, R.A.; Zamyatnin, A.A., Jr Mitochondria-targeted drugs. Curr. Mol. Pharmacol., 2019, 12(3), 202-214.
[http://dx.doi.org/10.2174/1874467212666181127151059] [PMID: 30479224]
[25]
Almendro-Vedia, V.; Natale, P.; Valdivieso González, D.; Lillo, M.P.; Aragones, J.L.; López-Montero, I. How rotating ATP synthases can modulate membrane structure. Arch. Biochem. Biophys., 2021, 708, 108939.
[http://dx.doi.org/10.1016/j.abb.2021.108939] [PMID: 34052190]
[26]
Garbincius, J.F.; Elrod, J.W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev., 2022, 102(2), 893-992.
[http://dx.doi.org/10.1152/physrev.00041.2020] [PMID: 34698550]
[27]
Schapira, A.H.V. Mitochondrial disease. Lancet, 2006, 368(9529), 70-82.
[http://dx.doi.org/10.1016/S0140-6736(06)68970-8] [PMID: 16815381]
[28]
Cheung, G.; Bataveljic, D.; Visser, J.; Kumar, N.; Moulard, J.; Dallérac, G.; Mozheiko, D.; Rollenhagen, A.; Ezan, P.; Mongin, C.; Chever, O.; Bemelmans, A.P.; Lübke, J.; Leray, I.; Rouach, N. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat. Commun., 2022, 13(1), 753.
[http://dx.doi.org/10.1038/s41467-022-28331-7] [PMID: 35136061]
[29]
Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 2015, 162(3), 540-551.
[http://dx.doi.org/10.1016/j.cell.2015.07.016] [PMID: 26232224]
[30]
Tabassum, N.; Kheya, I.S.; Asaduzzaman, S.; Maniha, S.; Fayz, A.H.; Zakaria, A.; Noor, R. A review on the possible leakage of electrons through the electron transport chain within mitochondria. Life Sci., 2020, 6, 105-113.
[31]
Mani, S.; Swargiary, G.; Tyagi, S.; Singh, M.; Jha, N.K.; Singh, K.K. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci., 2021, 281, 119773.
[http://dx.doi.org/10.1016/j.lfs.2021.119773] [PMID: 34192595]
[32]
Horie, M.; Tabei, Y. Role of oxidative stress in nanoparticles toxicity. Free Radic. Res., 2021, 55(4), 331-342.
[http://dx.doi.org/10.1080/10715762.2020.1859108] [PMID: 33336617]
[33]
Aruoma, O. Alzheimer’s disease and Parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative Str.
[34]
Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants, 2020, 10(1), 23.
[http://dx.doi.org/10.3390/antiox10010023] [PMID: 33379372]
[35]
Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(9), 4850.
[http://dx.doi.org/10.3390/ijms22094850] [PMID: 34063708]
[36]
Brillo, V.; Chieregato, L.; Leanza, L.; Muccioli, S.; Costa, R. Mitochondrial dynamics, ROS, and cell signaling: A blended overview. Life (Basel), 2021, 11(4), 332.
[http://dx.doi.org/10.3390/life11040332] [PMID: 33920160]
[37]
Rahman, M.; Hannan, M.; Uddin, M.; Rahman, M.; Rashid, M.; Kim, B. Exposure to environmental arsenic and emerging risk of Alzheimer’s disease: Perspective mechanisms, management strategy, and future directions. Toxics, 2021, 9(8), 188.
[http://dx.doi.org/10.3390/toxics9080188] [PMID: 34437506]
[38]
Rahman, M.A.; Rahman, M.H.; Mamun-Or-Rashid, A.N.M.; Hwang, H.; Chung, S.; Kim, B.; Rhim, H. Autophagy modulation in aggresome formation: Emerging implications and treatments of Alzheimer’s disease. Biomedicines., 2022, 10(5), 1027.
[http://dx.doi.org/10.3390/biomedicines10051027] [PMID: 35625764]
[39]
Bera, A.; Lavanya, G.; Reshmi, R.; Dev, K.; Kumar, R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer’s disease. Eur. J. Neurosci., 2022, 56, 5516-5531.
[40]
Mondala, T.; Samantaa, S.; Kumara, A.; Govindarajua, T. Multifunctional inhibitors of multifaceted Aβ toxicity of Alzheimer's disease. In: Alzheimer’s Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities; Royal Society of Chemistry, 2022.
[41]
Taliyan, R.; Kakoty, V.; Sarathlal, K.C.; Kharavtekar, S.S.; Karennanavar, C.R.; Choudhary, Y.K.; Singhvi, G.; Riadi, Y.; Dubey, S.K.; Kesharwani, P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease. J. Control. Release, 2022, 343, 528-550.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.044] [PMID: 35114208]
[42]
Bomba-Warczak, E.; Savas, J.N. Long-lived mitochondrial proteins and why they exist. Trends Cell Biol., 2022, 32(8), 646-654.
[http://dx.doi.org/10.1016/j.tcb.2022.02.001] [PMID: 35221146]
[43]
Xie, L.; Shi, F.; Tan, Z.; Li, Y.; Bode, A.M.; Cao, Y. Mitochondrial network structure homeostasis and cell death. Cancer Sci., 2018, 109(12), 3686-3694.
[http://dx.doi.org/10.1111/cas.13830] [PMID: 30312515]
[44]
Wang, X.; Su, B.; Lee, H.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci., 2009, 29(28), 9090-9103.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-09.2009] [PMID: 19605646]
[45]
Boguszewska, K.; Szewczuk, M.; Kaźmierczak-Barańska, J.; Karwowski, B.T. The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules, 2020, 25(12), 2857.
[http://dx.doi.org/10.3390/molecules25122857] [PMID: 32575813]
[46]
Kim, D.K.; Mook-Jung, I. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease. BMB Rep., 2019, 52(12), 679-688.
[http://dx.doi.org/10.5483/BMBRep.2019.52.12.282] [PMID: 31722781]
[47]
Liu, X.; Zhang, Y.; Ni, M.; Cao, H.; Signer, R.A.J.; Li, D.; Li, M.; Gu, Z.; Hu, Z.; Dickerson, K.E.; Weinberg, S.E.; Chandel, N.S.; DeBerardinis, R.J.; Zhou, F.; Shao, Z.; Xu, J. Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat. Cell Biol., 2017, 19(6), 626-638.
[http://dx.doi.org/10.1038/ncb3527] [PMID: 28504707]
[48]
Ding, X.W.; Robinson, M.; Li, R.; Aldhowayan, H.; Geetha, T.; Babu, J.R. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in diabetes mellitus and Alzheimer’s disease. Pharmacol. Res., 2021, 171, 105783.
[http://dx.doi.org/10.1016/j.phrs.2021.105783] [PMID: 34302976]
[49]
Bilbao-Malavé, V.; González-Zamora, J.; de la Puente, M.; Recalde, S.; Fernandez-Robredo, P.; Hernandez, M.; Layana, A.G.; Saenz de Viteri, M. Mitochondrial dysfunction and endoplasmic reticulum stress in age related macular degeneration, role in pathophysiology, and possible new therapeutic strategies. Antioxidants, 2021, 10(8), 1170.
[http://dx.doi.org/10.3390/antiox10081170] [PMID: 34439418]
[50]
Machrina, Y.; Lindarto, D.; Pane, Y.S.; Harahap, N.S. The pattern of peroxisome proliferator-activated receptor gamma coactivator 1-alpha gene expression in type-2 diabetes mellitus rat model liver: Focus on exercise. Open Access Maced. J. Med. Sci., 2021, 9(T3), 124-128.
[http://dx.doi.org/10.3889/oamjms.2021.6362]
[51]
Wang, C.F.; Song, C.Y.; Wang, X.; Huang, L.Y.; Ding, M.; Yang, H.; Wang, P.; Xu, L.L.; Xie, Z.H.; Bi, J.Z. Protective effects of melatonin on mitochondrial biogenesis and mitochondrial structure and function in the HEK293-APPswe cell model of Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3542-3550.
[PMID: 31081111]
[52]
Singulani, M.P.; Pereira, C.P.M.; Ferreira, A.F.F.; Garcia, P.C.; Ferrari, G.D.; Alberici, L.C.; Britto, L.R. Impairment of PGC-1α-mediated mitochondrial biogenesis precedes mitochondrial dysfunction and Alzheimer’s pathology in the 3xTg mouse model of Alzheimer’s disease. Exp. Gerontol., 2020, 133, 110882.
[http://dx.doi.org/10.1016/j.exger.2020.110882] [PMID: 32084533]
[53]
Tiwari, S.; Dewry, R.K.; Srivastava, R.; Nath, S.; Mohanty, T.K. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology, 2022, 179, 22-31.
[http://dx.doi.org/10.1016/j.theriogenology.2021.11.013] [PMID: 34823058]
[54]
Durairajanayagam, D.; Singh, D.; Agarwal, A.; Henkel, R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia, 2021, 53(1), e13666.
[http://dx.doi.org/10.1111/and.13666] [PMID: 32510691]
[55]
Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol. Neurodegener., 2020, 15(1), 30.
[http://dx.doi.org/10.1186/s13024-020-00376-6] [PMID: 32471464]
[56]
Stojakovic, A.; Trushin, S.; Sheu, A.; Khalili, L.; Chang, S.Y.; Li, X.; Christensen, T.; Salisbury, J.L.; Geroux, R.E.; Gateno, B.; Flannery, P.J.; Dehankar, M.; Funk, C.C.; Wilkins, J.; Stepanova, A.; O’Hagan, T.; Galkin, A.; Nesbitt, J.; Zhu, X.; Tripathi, U.; Macura, S.; Tchkonia, T.; Pirtskhalava, T.; Kirkland, J.L.; Kudgus, R.A.; Schoon, R.A.; Reid, J.M.; Yamazaki, Y.; Kanekiyo, T.; Zhang, S.; Nemutlu, E.; Dzeja, P.; Jaspersen, A.; Kwon, Y.I.C.; Lee, M.K.; Trushina, E. Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun. Biol., 2021, 4(1), 61.
[http://dx.doi.org/10.1038/s42003-020-01584-y] [PMID: 33420340]
[57]
Belosludtsev, K.N.; Sharipov, R.R.; Boyarkin, D.P.; Belosludtseva, N.V.; Dubinin, M.V.; Krasilnikova, I.A.; Bakaeva, Z.V.; Zgodova, A.E.; Pinelis, V.G.; Surin, A.M. The effect of DS16570511, a new inhibitor of mitochondrial calcium uniporter, on calcium homeostasis, metabolism, and functional state of cultured cortical neurons and isolated brain mitochondria. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(5), 129847.
[http://dx.doi.org/10.1016/j.bbagen.2021.129847] [PMID: 33453305]
[58]
Carafoli, E. Historical review: Mitochondria and calcium: Ups and downs of an unusual relationship. Trends Biochem. Sci., 2003, 28(4), 175-181.
[http://dx.doi.org/10.1016/S0968-0004(03)00053-7] [PMID: 12713900]
[59]
Zeb, A.; Kim, D.; Alam, S.; Son, M.; Kumar, R.; Rampogu, S.; Parameswaran, S.; Shelake, R.; Rana, R.; Parate, S.; Kim, J.Y.; Lee, K. Computational simulations identify pyrrolidine-2, 3-dione derivatives as novel inhibitors of Cdk5/p25 complex to attenuate Alzheimer’s pathology. J. Clin. Med., 2019, 8(5), 746.
[http://dx.doi.org/10.3390/jcm8050746] [PMID: 31137734]
[60]
Bonora, M.; Giorgi, C.; Pinton, P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol., 2022, 23, 266-285.
[61]
Quintana, D.D.; Garcia, J.A.; Anantula, Y.; Rellick, S.L.; Engler-Chiurazzi, E.B.; Sarkar, S.N.; Brown, C.M.; Simpkins, J.W. Amyloid-β causes mitochondrial dysfunction via a Ca 2+-driven upregulation of oxidative phosphorylation and superoxide production in cerebrovascular endothelial cells. J. Alzheimers Dis., 2020, 75(1), 119-138.
[http://dx.doi.org/10.3233/JAD-190964] [PMID: 32250296]
[62]
Filippone, A.; Esposito, E.; Mannino, D.; Lyssenko, N.; Praticò, D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol. Ther., 2022, 238, 108178.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108178] [PMID: 35351465]
[63]
Sorrentino, V.; Romani, M.; Mouchiroud, L.; Beck, J.S.; Zhang, H.; D’Amico, D.; Moullan, N.; Potenza, F.; Schmid, A.W.; Rietsch, S.; Counts, S.E.; Auwerx, J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature, 2017, 552(7684), 187-193.
[http://dx.doi.org/10.1038/nature25143] [PMID: 29211722]
[64]
Van Skike, C.E.; Lin, A.L.; Roberts Burbank, R.; Halloran, J.J.; Hernandez, S.F.; Cuvillier, J.; Soto, V.Y.; Hussong, S.A.; Jahrling, J.B.; Javors, M.A.; Hart, M.J.; Fischer, K.E.; Austad, S.N.; Galvan, V. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell, 2020, 19(1), e13057.
[http://dx.doi.org/10.1111/acel.13057] [PMID: 31693798]
[65]
Zhang, W.; Xu, C.; Sun, J.; Shen, H.M.; Wang, J.; Yang, C. Impairment of the autophagy-lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm. Sin. B, 2022, 12(3), 1019-1040.
[http://dx.doi.org/10.1016/j.apsb.2022.01.008] [PMID: 35530153]
[66]
Pradeepkiran, J.A.; Hindle, A.; Kshirsagar, S.; Reddy, P.H. Are mitophagy enhancers therapeutic targets for Alzheimer’s disease? Biomed. Pharmacother., 2022, 149, 112918.
[http://dx.doi.org/10.1016/j.biopha.2022.112918] [PMID: 35585708]
[67]
Nazam, N.; Farhana, A.; Shaikh, S. Recent advances in Alzheimer’s disease in relation to cholinesterase inhibitors and NMDA receptor antagonists, autism spectrum disorder and Alzheimer's disease., 2021, 135-151.
[68]
Chiang, T.I.; Yu, Y.H.; Lin, C.H.; Lane, H.Y. Novel biomarkers of Alzheimer’s disease: Based upon N-methyl-d-aspartate receptor hypoactivation and oxidative stress. Clin. Psychopharmacol. Neurosci., 2021, 19(3), 423-433.
[http://dx.doi.org/10.9758/cpn.2021.19.3.423] [PMID: 34294612]
[69]
Cheng, Y.J.; Lin, C.H.; Lane, H.Y. Involvement of cholinergic, adrenergic, and glutamatergic network modulation with cognitive dysfunction in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(5), 2283.
[http://dx.doi.org/10.3390/ijms22052283] [PMID: 33668976]
[70]
Nguyen, V.T.T.; Sallbach, J.; dos Santos Guilherme, M.; Endres, K. Influence of acetylcholine esterase inhibitors and memantine, clinically approved for Alzheimer’s dementia treatment, on intestinal properties of the mouse. Int. J. Mol. Sci., 2021, 22(3), 1015.
[http://dx.doi.org/10.3390/ijms22031015] [PMID: 33498392]
[71]
Grundman, M.; Delaney, P.; Delaney, P. Antioxidant strategies for Alzheimer’s disease. Proc. Nutr. Soc., 2002, 61(2), 191-202.
[http://dx.doi.org/10.1079/PNS2002146] [PMID: 12133201]
[72]
Malty, R.H.; Jessulat, M.; Jin, K.; Musso, G.; Vlasblom, J.; Phanse, S.; Zhang, Z.; Babu, M. Mitochondrial targets for pharmacological intervention in human disease. J. Proteome Res., 2015, 14(1), 5-21.
[http://dx.doi.org/10.1021/pr500813f] [PMID: 25367773]
[73]
Wang, X.; Su, B.; Zheng, L.; Perry, G.; Smith, M.A.; Zhu, X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J. Neurochem., 2009, 109(Suppl. 1), 153-159.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05867.x] [PMID: 19393022]
[74]
Rahman, M.A.; Bishayee, K.; Huh, S.O. Angelica polymorpha maxim induces apoptosis of human SH-SY5Y neuroblastoma cells by regulating an intrinsic caspase pathway. Mol. Cells, 2016, 39(2), 119-128.
[http://dx.doi.org/10.14348/molcells.2016.2232] [PMID: 26674967]
[75]
Kwon, Y.H.; Bishayee, K.; Rahman, A.; Hong, J.S.; Lim, S.S.; Huh, S.O. Morus alba accumulates reactive oxygen species to initiate apoptosis via FOXO-caspase 3-dependent pathway in neuroblastoma cells. Mol. Cells, 2015, 38(7), 630-637.
[http://dx.doi.org/10.14348/molcells.2015.0030] [PMID: 25921607]
[76]
Rahman, M.A.; Hong, J.S.; Huh, S.O. Antiproliferative properties of Saussurea lappa Clarke root extract in SH-SY5Y neuroblastoma cells via intrinsic apoptotic pathway. Anim. Cells Syst., 2015, 19(2), 119-126.
[http://dx.doi.org/10.1080/19768354.2015.1008041]
[77]
Rahman, M.A.; Yang, H.; Kim, N.H.; Huh, S.O. Induction of apoptosis by Dioscorea nipponica Makino extracts in human SH-SY5Y neuroblastoma cells via mitochondria-mediated pathway. Anim. Cells Syst., 2014, 18(1), 41-51.
[http://dx.doi.org/10.1080/19768354.2014.880372]
[78]
Rahman, M.A.; Yang, H.; Lim, S.S.; Huh, S.O. Apoptotic effects of melandryum firmum root extracts in human SH-SY5Y neuroblastoma cells. Exp. Neurobiol., 2013, 22(3), 208-213.
[http://dx.doi.org/10.5607/en.2013.22.3.208] [PMID: 24167415]
[79]
Rahman, M.A.; Kim, N.H.; Huh, S.O. Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol. Cell. Biochem., 2013, 377(1-2), 187-196.
[http://dx.doi.org/10.1007/s11010-013-1584-z] [PMID: 23404459]
[80]
Rahman, M.A.; Kim, N.H.; Kim, S.H.; Oh, S.M.; Huh, S.O. Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat b103 neuroblastoma cells. Korean J. Physiol. Pharmacol., 2012, 16(5), 321-326.
[http://dx.doi.org/10.4196/kjpp.2012.16.5.321] [PMID: 23118555]
[81]
Ataur Rahman, M.; Kim, N.H.; Yang, H.; Huh, S.O. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol. Cell. Biochem., 2012, 369(1-2), 95-104.
[http://dx.doi.org/10.1007/s11010-012-1372-1] [PMID: 22766766]
[82]
Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.; Rahman, M.A.; Uddin, M.J.; Alam, M.; Moon, I. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs, 2020, 18, 347.
[http://dx.doi.org/10.3390/md18070347]
[83]
Rahman, M.A.; Rahman, M.R.; Zaman, T.; Uddin, M.S.; Islam, R.; Abdel-Daim, M.M.; Rhim, H. Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr. Pharm. Des., 2020, 26(7), 772-779.
[http://dx.doi.org/10.2174/1381612826666200107142541] [PMID: 31914904]
[84]
Rahman, M.A.; Saha, S.K.; Rahman, M.S.; Uddin, M.J.; Uddin, M.S.; Pang, M.G.; Rhim, H.; Cho, S.G. Molecular insights into therapeutic potential of autophagy modulation by natural products for cancer stem cells. Front. Cell Dev. Biol., 2020, 8, 283.
[http://dx.doi.org/10.3389/fcell.2020.00283]
[85]
Rahman, M.A.; Hwang, H.; Nah, S.Y.; Rhim, H. Gintonin stimulates autophagic flux in primary cortical astrocytes. J. Ginseng Res., 2020, 44(1), 67-78.
[http://dx.doi.org/10.1016/j.jgr.2018.08.004] [PMID: 32148391]
[86]
Rahman, M.A.; Bishayee, K.; Sadra, A.; Huh, S.O. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 23-36.
[http://dx.doi.org/10.1016/j.bbagen.2016.10.025] [PMID: 27815218]
[87]
Rahman, M.A.; Bishayee, K.; Habib, K.; Sadra, A.; Huh, S.O. 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis. Biochem. Pharmacol., 2016, 117, 97-112.
[http://dx.doi.org/10.1016/j.bcp.2016.08.006] [PMID: 27520483]
[88]
Jangra, A.; Arora, M.K.; Kisku, A.; Sharma, S. The multifaceted role of mangiferin in health and diseases: A review. Advn Tradi Med., 2021, 21(4), 619-643.
[http://dx.doi.org/10.1007/s13596-020-00471-5]
[89]
Sarikurkcu, C.; Sahinler, S.S.; Ceylan, O.; Tepe, B. Onosma pulchra: Phytochemical composition, antioxidant, skin-whitening and anti-diabetic activity. Ind. Crop. Prod, 2020, 154.
[90]
Franco, R.; Navarro, G.; Martinez-Pinilla, E. Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants-Basel, 2019, 8, 373.
[http://dx.doi.org/10.3390/antiox8090373]
[91]
Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1260-1270.
[http://dx.doi.org/10.1080/10408398.2016.1251390] [PMID: 28605204]
[92]
Vaiserman, A.; Koliada, A.; Lushchak, O. Neuroinflammation in pathogenesis of Alzheimer’s disease: Phytochemicals as potential therapeutics. Mech. Ageing Dev., 2020, 189, 111259.
[http://dx.doi.org/10.1016/j.mad.2020.111259] [PMID: 32450086]
[93]
Li, Y.; Zhang, J.; Wan, J.; Liu, A.; Sun, J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother., 2020, 132, 110887.
[http://dx.doi.org/10.1016/j.biopha.2020.110887] [PMID: 33254429]
[94]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234.
[http://dx.doi.org/10.1136/jim-2016-000240] [PMID: 27521081]
[95]
Wang, D.M.; Li, S.Q.; Wu, W.L.; Zhu, X.Y.; Wang, Y.; Yuan, H.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res., 2014, 39(8), 1533-1543.
[http://dx.doi.org/10.1007/s11064-014-1343-x] [PMID: 24893798]
[96]
Paula, P.C.; Angelica, M.S.G.; Luis, C.H.; Gloria, P.C.G. Preventive effect of quercetin in a triple transgenic Alzheimer's disease mice model. Molecules, 2019, 24.
[http://dx.doi.org/10.3390/molecules24122287]
[97]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[98]
Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. (Paris), 2019, 175(10), 724-741.
[http://dx.doi.org/10.1016/j.neurol.2019.08.005] [PMID: 31521398]
[99]
Sohel, M.; Biswas, P.; Al Amin, M.; Hossain, M.A.; Sultana, H.; Dey, D.; Aktar, S.; Setu, A.; Khan, M.S.; Paul, P.; Islam, M.N.; Rahman, M.A.; Kim, B.; Al Mamun, A. Genistein, a potential phytochemical against breast cancer treatment-Insight into the molecular mechanisms. Processes (Basel), 2022, 10(2), 415.
[http://dx.doi.org/10.3390/pr10020415]
[100]
Uddin, M.S.; Kabir, M.T. Emerging signal regulating potential of genistein against Alzheimer’s disease: A promising molecule of interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[101]
Pierzynowska, K.; Podlacha, M.; Gaffke, L.; Majkutewicz, I.; Mantej, J.; Węgrzyn, A.; Osiadły, M.; Myślińska, D.; Węgrzyn, G. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer’s disease. Neuropharmacology, 2019, 148, 332-346.
[http://dx.doi.org/10.1016/j.neuropharm.2019.01.030] [PMID: 30710571]
[102]
Rassu, G.; Porcu, E.; Fancello, S.; Obinu, A.; Senes, N.; Galleri, G.; Migheli, R.; Gavini, E.; Giunchedi, P. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics, 2018, 11(1), 8.
[http://dx.doi.org/10.3390/pharmaceutics11010008] [PMID: 30597930]
[103]
Jo, D.S.; Shin, D.W.; Park, S.J.; Bae, J.E.; Kim, J.B.; Park, N.Y.; Kim, J.S.; Oh, J.S.; Shin, J.W.; Cho, D.H. Attenuation of Aβ toxicity by promotion of mitochondrial fusion in neuroblastoma cells by liquiritigenin. Arch. Pharm. Res., 2016, 39(8), 1137-1143.
[http://dx.doi.org/10.1007/s12272-016-0780-2] [PMID: 27515055]
[104]
Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; LLoret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144.
[http://dx.doi.org/10.1016/j.brainres.2009.11.044] [PMID: 19948157]
[105]
Parrado-Fernández, C.; Sandebring-Matton, A.; Rodriguez-Rodriguez, P.; Aarsland, D.; Cedazo-Mínguez, A. Anthocyanins protect from complex I inhibition and APPswe mutation through modulation of the mitochondrial fission/fusion pathways. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(11), 2110-2118.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.002] [PMID: 27498295]
[106]
Godoy, J.A.; Lindsay, C.B.; Quintanilla, R.A.; Carvajal, F.J.; Cerpa, W.; Inestrosa, N.C. Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: The role of mitochondria. Mol. Neurobiol., 2017, 54(9), 7116-7128.
[http://dx.doi.org/10.1007/s12035-016-0203-x] [PMID: 27796749]
[107]
Kwon, S.H.; Ma, S.X.; Hwang, J.Y.; Lee, S.Y.; Jang, C.G. Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta25–35 neurotoxicity. Neuroscience, 2015, 304, 14-28.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.030] [PMID: 26192096]
[108]
Chesser, A.S.; Ganeshan, V.; Yang, J.; Johnson, G.V.W. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr. Neurosci., 2016, 19(1), 21-31.
[http://dx.doi.org/10.1179/1476830515Y.0000000038] [PMID: 26207957]
[109]
Huang, L.; Chen, C.; Zhang, X.; Li, X.; Chen, Z.; Yang, C.; Liang, X.; Zhu, G.; Xu, Z. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J. Mol. Neurosci., 2018, 64(1), 129-139.
[http://dx.doi.org/10.1007/s12031-017-1006-x] [PMID: 29243061]
[110]
Sousa, J.C.; Santana, A.C.F.; Magalhães, G.J.P. Resveratrol in Alzheimer’s disease: A review of pathophysiology and therapeutic potential. Arq. Neuropsiquiatr., 2020, 78(8), 501-511.
[http://dx.doi.org/10.1590/0004-282x20200010] [PMID: 32520230]
[111]
Qi, G.; Mi, Y.; Wang, Y.; Li, R.; Huang, S.; Li, X.; Liu, X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct., 2017, 8(12), 4421-4432.
[http://dx.doi.org/10.1039/C7FO00991G] [PMID: 29090295]
[112]
Yao, X.; Jiang, H.; NanXu, Y.; Piao, X.; Gao, Q.; Kim, N.H. Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology, 2019, 135, 174-180.
[http://dx.doi.org/10.1016/j.theriogenology.2019.06.013] [PMID: 31226607]
[113]
Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in cell senescence: Is mitophagy the weakest link? EBioMedicine, 2017, 21, 7-13.
[http://dx.doi.org/10.1016/j.ebiom.2017.03.020] [PMID: 28330601]
[114]
Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ., 2013, 20(1), 31-42.
[http://dx.doi.org/10.1038/cdd.2012.81] [PMID: 22743996]
[115]
Li, X.; Alafuzoff, I.; Soininen, H.; Winblad, B.; Pei, J.J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J., 2005, 272(16), 4211-4220.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04833.x] [PMID: 16098202]
[116]
Perluigi, M.; Di Domenico, F.; Butterfield, D.A. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis., 2015, 84, 39-49.
[http://dx.doi.org/10.1016/j.nbd.2015.03.014] [PMID: 25796566]
[117]
Pan, T.; Rawal, P.; Wu, Y.; Xie, W.; Jankovic, J.; Le, W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 2009, 164(2), 541-551.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.014] [PMID: 19682553]
[118]
Morton, H.; Kshirsagar, S.; Orlov, E.; Bunquin, L.E.; Sawant, N.; Boleng, L.; George, M.; Basu, T.; Ramasubramanian, B.; Pradeepkiran, J.A.; Kumar, S.; Vijayan, M.; Reddy, A.P.; Reddy, P.H. Defective mitophagy and synaptic degeneration in Alzheimer’s disease: Focus on aging, mitochondria and synapse. Free Radic. Biol. Med., 2021, 172, 652-667.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.07.013] [PMID: 34246776]
[119]
Wang, W.W.; Han, R.; He, H.J.; Wang, Z.; Luan, X.Q.; Li, J.; Feng, L.; Chen, S.Y.; Aman, Y.; Xie, C.L. Delineating the role of mitophagy inducers for Alzheimer disease patients. Aging Dis., 2021, 12(3), 852-867.
[http://dx.doi.org/10.14336/AD.2020.0913] [PMID: 34094647]
[120]
Jurcau, A. Insights into the pathogenesis of neurodegenerative diseases: Focus on mitochondrial dysfunction and oxidative stress. Int. J. Mol. Sci., 2021, 22(21), 11847.
[http://dx.doi.org/10.3390/ijms222111847] [PMID: 34769277]
[121]
Friedland-Leuner, K.; Stockburger, C.; Denzer, I.; Eckert, G.P.; Müller, W.E. Mitochondrial dysfunction. Prog. Mol. Biol. Transl. Sci., 2014, 127, 183-210.
[http://dx.doi.org/10.1016/B978-0-12-394625-6.00007-6] [PMID: 25149218]
[122]
von Gunten, A.; Schlaefke, S.; Überla, K. Efficacy of Ginkgo biloba extract EGb 761 ® in dementia with behavioural and psychological symptoms: A systematic review. World J. Biol. Psychiatry, 2016, 17(8), 622-633.
[http://dx.doi.org/10.3109/15622975.2015.1066513] [PMID: 26223956]
[123]
Heckmann, B.L.; Teubner, B.J.; Tummers, B.; Boada-Romero, E.; Harris, L.; Yang, M.; Guy, C.S.; Zakharenko, S.S.; Green, D.R. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell, 2019, 178, 536-551.
[124]
Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci., 2019, 22(3), 401-412.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[125]
Yeong, K.Y.; Berdigaliyev, N.; Chang, Y. Sirtuins and their implications in neurodegenerative diseases from a drug discovery perspective. ACS Chem. Neurosci., 2020, 11(24), 4073-4091.
[http://dx.doi.org/10.1021/acschemneuro.0c00696] [PMID: 33280374]
[126]
Zhang, Z.; Shen, Q.; Wu, X.; Zhang, D.; Xing, D. Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimer’s disease models. Aging Cell, 2020, 19(1), e13054.
[http://dx.doi.org/10.1111/acel.13054] [PMID: 31663252]
[127]
Chu, C.Q.; Yu, L.; Qi, G.; Mi, Y.S.; Wu, W.Q.; Lee, Y.; Zhai, Q.X.; Tian, F.W.; Chen, W. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev., 2022, 135, 104556.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104556] [PMID: 35122783]
[128]
Alemany-Cosme, E.; Sáez-González, E.; Moret, I.; Mateos, B.; Iborra, M.; Nos, P.; Sandoval, J.; Beltrán, B. Oxidative stress in the pathogenesis of crohn’s disease and the interconnection with immunological response, microbiota, external environmental factors, and epigenetics. Antioxidants, 2021, 10(1), 64.
[http://dx.doi.org/10.3390/antiox10010064] [PMID: 33430227]
[129]
Hadrich, F.; Chamkha, M.; Sayadi, S. Protective effect of olive leaves phenolic compounds against neurodegenerative disorders: Promising alternative for Alzheimer and Parkinson diseases modulation. Food Chem. Toxicol., 2022, 159, 112752.
[http://dx.doi.org/10.1016/j.fct.2021.112752] [PMID: 34871668]
[130]
Abdallah, I.M.; Al-Shami, K.M.; Yang, E.; Wang, J.; Guillaume, C.; Kaddoumi, A. Oleuropein-rich olive leaf extract attenuates neuroinflammation in the Alzheimer’s disease mouse model. ACS Chem. Neurosci., 2022, 13, 1002-1013.
[131]
Sridharan, B.; Lee, M.J. Ketogenic diet: A promising neuroprotective composition for managing Alzheimer’s diseases and its pathological mechanisms. Curr. Mol. Med., 2022, 22(7), 640-656.
[http://dx.doi.org/10.2174/1566524021666211004104703] [PMID: 34607541]
[132]
Napoleão, A.; Fernandes, L.; Miranda, C.; Marum, A.P. Effects of calorie restriction on health span and insulin resistance: Classic calorie restriction diet vs. ketosis-inducing diet. Nutrients, 2021, 13(4), 1302.
[http://dx.doi.org/10.3390/nu13041302] [PMID: 33920973]
[133]
Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 617588.
[http://dx.doi.org/10.3389/fnagi.2021.617588] [PMID: 33679375]
[134]
Nisoli, E.; Tonello, C.; Cardile, A.; Cozzi, V.; Bracale, R.; Tedesco, L.; Falcone, S.; Valerio, A.; Cantoni, O.; Clementi, E.; Moncada, S.; Carruba, M.O. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 2005, 310(5746), 314-317.
[http://dx.doi.org/10.1126/science.1117728] [PMID: 16224023]
[135]
Bo, H.; Kang, W.; Jiang, N.; Wang, X.; Zhang, Y.; Ji, L.L. Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxid. Med. Cell. Longev., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/834502] [PMID: 25538817]
[136]
Klein, C.P.; Hoppe, J.B.; Saccomori, A.B.; dos Santos, B.G.; Sagini, J.P.; Crestani, M.S.; August, P.M.; Hözer, R.M.; Grings, M.; Parmeggiani, B.; Leipnitz, G.; Navas, P.; Salbego, C.G.; Matté, C. Physical exercise during pregnancy prevents cognitive impairment induced by amyloid-β in adult offspring rats. Mol. Neurobiol., 2019, 56(3), 2022-2038.
[http://dx.doi.org/10.1007/s12035-018-1210-x] [PMID: 29982984]
[137]
Longobardi, A.; Nicsanu, R.; Bellini, S.; Squitti, R.; Catania, M.; Tiraboschi, P.; Saraceno, C.; Ferrari, C.; Zanardini, R.; Binetti, G.; Di Fede, G.; Benussi, L.; Ghidoni, R. Cerebrospinal fluid EV concentration and size are altered in Alzheimer’s disease and dementia with lewy bodies. Cells, 2022, 11(3), 462.
[http://dx.doi.org/10.3390/cells11030462] [PMID: 35159272]
[138]
Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: A randomized controlled trial. BMC Geriatr., 2015, 15(1), 60.
[http://dx.doi.org/10.1186/s12877-015-0058-4] [PMID: 26018225]
[139]
Zhang, S.; Lachance, B.B.; Mattson, M.P.; Jia, X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog. Neurobiol., 2021, 204, 102089.
[http://dx.doi.org/10.1016/j.pneurobio.2021.102089] [PMID: 34118354]
[140]
Terzo, S.; Amato, A.; Mulè, F. From obesity to Alzheimer’s disease through insulin resistance. J. Diabetes Complications, 2021, 35(11), 108026.
[http://dx.doi.org/10.1016/j.jdiacomp.2021.108026] [PMID: 34454830]
[141]
De Felice, F.G.; Gonçalves, R.A.; Ferreira, S.T. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat. Rev. Neurosci., 2022, 23(4), 215-230.
[http://dx.doi.org/10.1038/s41583-022-00558-9] [PMID: 35228741]
[142]
Hallschmid, M. Intranasal insulin for Alzheimer’s disease. CNS Drugs, 2021, 35(1), 21-37.
[http://dx.doi.org/10.1007/s40263-020-00781-x] [PMID: 33515428]
[143]
Chadha, S.; Behl, T.; Sehgal, A.; Kumar, A.; Bungau, S. Exploring the role of mitochondrial proteins as molecular target in Alzheimer’s disease. Mitochondrion, 2021, 56, 62-72.
[http://dx.doi.org/10.1016/j.mito.2020.11.008] [PMID: 33221353]
[144]
Athar, T.; Al Balushi, K.; Khan, S.A. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol. Biol. Rep., 2021, 48(7), 5629-5645.
[http://dx.doi.org/10.1007/s11033-021-06512-9] [PMID: 34181171]
[145]
Austad, S.N.; Ballinger, S.; Buford, T.W.; Carter, C.S.; Smith, D.L., Jr; Darley-Usmar, V.; Zhang, J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease. Acta Pharm. Sin. B, 2022, 12(2), 511-310.
[PMID: 35256932]
[146]
Nguyen, T.T.; Nguyen, T.T.D.; Nguyen, T.K.O.; Vo, T.K.; Vo, V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother., 2021, 139, 111623.
[http://dx.doi.org/10.1016/j.biopha.2021.111623] [PMID: 33915504]
[147]
Han, Y.; Chu, X.; Cui, L.; Fu, S.; Gao, C.; Li, Y.; Sun, B. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv., 2020, 27(1), 502-518.
[http://dx.doi.org/10.1080/10717544.2020.1745328] [PMID: 32228100]
[148]
Ordóñez-Gutiérrez, L.; Re, F.; Bereczki, E.; Ioja, E.; Gregori, M.; Andersen, A.J.; Antón, M.; Moghimi, S.M.; Pei, J.J.; Masserini, M.; Wandosell, F. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine, 2015, 11(2), 421-430.
[http://dx.doi.org/10.1016/j.nano.2014.09.015] [PMID: 25461285]
[149]
Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol., 2017, 74(5), 567-573.
[http://dx.doi.org/10.1001/jamaneurol.2016.5778] [PMID: 28319243]
[150]
Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants, 2021, 10(3), 408.
[http://dx.doi.org/10.3390/antiox10030408] [PMID: 33800526]
[151]
Luo, Q.; Lin, Y.X.; Yang, P.P.; Wang, Y.; Qi, G.B.; Qiao, Z.Y.; Li, B.N.; Zhang, K.; Zhang, J.P.; Wang, L.; Wang, H. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat. Commun., 2018, 9(1), 1802.
[http://dx.doi.org/10.1038/s41467-018-04255-z] [PMID: 29728565]
[152]
Wang, S.; Zheng, J.; Ma, L.; Petersen, R.B.; Xu, L.; Huang, K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130061.
[http://dx.doi.org/10.1016/j.bbagen.2021.130061] [PMID: 34822925]
[153]
Nguyen, T.T.; Vo, T.K.; Vo, G.V. Therapeutic strategies and nano-drug delivery applications in management of aging Alzheimer’s disease. Rev. New Drug Targets in Age-Related Disorders, 2021, 183-198.
[154]
Gobbi, M.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; Brogioli, D.; Musicanti, C.; Gasco, P.; Salmona, M.; Masserini, M.E. Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials, 2010, 31(25), 6519-6529.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.044] [PMID: 20553982]
[155]
Poudel, P.; Park, S. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics, 2022, 14, 835.
[156]
Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimer’s disease. Mol. Neurobiol., 2017, 54(8), 6490-6506.
[http://dx.doi.org/10.1007/s12035-016-0136-4] [PMID: 27730512]
[157]
Liu, X.; An, C.; Jin, P.; Liu, X.; Wang, L. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials, 2013, 34(3), 817-830.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.017] [PMID: 23111336]
[158]
Lohan, S.; Raza, K.; Mehta, S.K.; Bhatti, G.K.; Saini, S.; Singh, B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm., 2017, 530(1-2), 263-278.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[159]
Mirsadeghi, S.; Shanehsazzadeh, S.; Atyabi, F.; Dinarvand, R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater. Sci. Eng. C, 2016, 59, 390-397.
[http://dx.doi.org/10.1016/j.msec.2015.10.026] [PMID: 26652388]
[160]
Conti, E.; Gregori, M.; Radice, I.; Da Re, F.; Grana, D.; Re, F.; Salvati, E.; Masserini, M.; Ferrarese, C.; Zoia, C.P.; Tremolizzo, L. Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer’s disease. Neurochem. Int., 2017, 108, 60-65.
[http://dx.doi.org/10.1016/j.neuint.2017.02.012] [PMID: 28238790]
[161]
Karimzadeh, M.; Rashidi, L.; Ganji, F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev. Ind. Pharm., 2017, 43(4), 628-636.
[http://dx.doi.org/10.1080/03639045.2016.1275668] [PMID: 28043167]
[162]
Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv., 2016, 23(4), 1434-1443.
[http://dx.doi.org/10.3109/10717544.2015.1089956] [PMID: 26405825]
[163]
Li, H.; Luo, Y.; Derreumaux, P.; Wei, G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophys. J., 2011, 101(9), 2267-2276.
[http://dx.doi.org/10.1016/j.bpj.2011.09.046] [PMID: 22067167]
[164]
Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem., 2013, 24(6), 997-1007.
[http://dx.doi.org/10.1021/bc400055h] [PMID: 23718945]
[165]
Karatas, H.; Aktas, Y.; Gursoy-Ozdemir, Y.; Bodur, E.; Yemisci, M.; Caban, S.; Vural, A.; Pinarbasli, O.; Capan, Y.; Fernandez-Megia, E.; Novoa-Carballal, R.; Riguera, R.; Andrieux, K.; Couvreur, P.; Dalkara, T. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci., 2009, 29(44), 13761-13769.
[http://dx.doi.org/10.1523/JNEUROSCI.4246-09.2009] [PMID: 19889988]
[166]
Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; Ames, D.; Rowe, C.C.; Masters, C.L. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol., 2013, 12(4), 357-367.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[167]
Schaffhauser, H.; Mathiasen, J.R.; DiCamillo, A.; Huffman, M.J.; Lu, L.D.; McKenna, B.A.; Qian, J.; Marino, M.J. Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem. Pharmacol., 2009, 78(8), 1035-1042.
[http://dx.doi.org/10.1016/j.bcp.2009.06.021] [PMID: 19549510]
[168]
Burns, D.K.; Chiang, C.; Welsh-Bohmer, K.A.; Brannan, S.K.; Culp, M.; O’Neil, J.; Runyan, G.; Harrigan, P.; Plassman, B.L.; Lutz, M.; Lai, E.; Haneline, S.; Yarnall, D.; Yarbrough, D.; Metz, C.; Ponduru, S.; Sundseth, S.; Saunders, A.M. The TOMMORROW study: Design of an Alzheimer’s disease delay‐of‐onset clinical trial. Alzheimers Dement. (N. Y.), 2019, 5(1), 661-670.
[http://dx.doi.org/10.1016/j.trci.2019.09.010] [PMID: 31720367]
[169]
Swerdlow, R.H.; Bothwell, R.; Hutfles, L.; Burns, J.M.; Reed, G.A. Tolerability and pharmacokinetics of oxaloacetate 100mg capsules in Alzheimer’s subjects. BBA Clin., 2016, 5, 120-123.
[http://dx.doi.org/10.1016/j.bbacli.2016.03.005] [PMID: 27051598]
[170]
Mani, S.; Swargiary, G.; Singh, M.; Agarwal, S.; Dey, A.; Ojha, S.; Jha, N.K. Mitochondrial defects: An emerging theranostic avenue towards Alzheimer’s associated dysregulations. Life Sci., 2021, 285, 119985.
[http://dx.doi.org/10.1016/j.lfs.2021.119985] [PMID: 34592237]