Mini-Reviews in Medicinal Chemistry

Author(s): Kihang Choi*

DOI: 10.2174/0113895575308674240415074629

DownloadDownload PDF Flyer Cite As
Structure-property Relationships Reported for the New Drugs Approved in 2023

Page: [1822 - 1833] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Drug-like properties play pivotal roles in drug adsorption, distribution, metabolism, excretion, and toxicity. Therefore, efficiently optimizing these properties is essential for the successful development of novel therapeutics. Understanding the structure–property relationships of clinically approved drugs can provide valuable insights for drug design and optimization strategies. Among the new drugs approved in 2023, which include 31 small-molecule drugs in the US, the structureproperty relationships of nine drugs were compiled from the medicinal chemistry literature, in which detailed information on pharmacokinetic and/or physicochemical properties was reported not only for the final drug but also for its key analogs generated during drug development. The structure- property relationships of nine newly approved drugs are summarized, including three kinase inhibitors and three G-protein-coupled receptor antagonists. Several optimization strategies, such as bioisosteric replacement and steric handle installation, have successfully produced clinical candidates with enhanced physicochemical and pharmacokinetic properties. The summarized structure– property relationships demonstrate how appropriate structural modifications can effectively improve overall drug-like properties. The ongoing exploration of structure–property relationships of clinically approved drugs is expected to offer valuable guidance for developing future drugs.

Keywords: Structure-property relationship, metabolic stability, covalent drugs, lead optimization, candidate selection, drug discovery.

Graphical Abstract

[1]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[2]
Di, L.; Kerns, E.; Carter, G. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des., 2009, 15(19), 2184-2194.
[http://dx.doi.org/10.2174/138161209788682479] [PMID: 19601822]
[3]
Leeson, P.D.; Young, R.J. Molecular property design: Does everyone get it? ACS Med. Chem. Lett., 2015, 6(7), 722-725.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00157] [PMID: 26191353]
[4]
Di, L.; Kerns, E.H. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization, 2nd ed; Academic Press, 2016, pp. 1-580.
[http://dx.doi.org/10.1016/C2013-0-18378-X]
[5]
Schnider, P. Overview of strategies for solving ADMET challenges. The Medicinal Chemist’s Guide to Solving ADMET Challenges; The Royal Society of Chemistry, 2021, pp. 1-15.
[http://dx.doi.org/10.1039/9781788016414-00001]
[6]
Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; Wallace, O.; Weir, A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov., 2015, 14(7), 475-486.
[http://dx.doi.org/10.1038/nrd4609] [PMID: 26091267]
[7]
O’ Donovan, D.H.; De Fusco, C.; Kuhnke, L.; Reichel, A. Trends in molecular properties, bioavailability, and permeability across the Bayer compound collection. J. Med. Chem., 2023, 66(4), 2347-2360.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01577] [PMID: 36752336]
[8]
Choi, K. Structure-property relationships reported for the new drugs approved in 2022. Mini Rev. Med. Chem., 2024, 24(3), 330-340.
[http://dx.doi.org/10.2174/1389557523666230519162803] [PMID: 37211842]
[9]
Mullard, A. 2022 FDA approvals. Nat. Rev. Drug Discov., 2023, 22(2), 83-88.
[http://dx.doi.org/10.1038/d41573-023-00001-3] [PMID: 36596858]
[11]
Choi, K. The structure–property relationships of clinically approved protein kinase inhibitors. Curr. Med. Chem., 2023, 30(22), 2518-2541.
[http://dx.doi.org/10.2174/0929867329666220822123552] [PMID: 35996243]
[12]
Janku, F.; Yap, T.A.; Meric-Bernstam, F. Targeting the PI3K pathway in cancer: Are we making headway? Nat. Rev. Clin. Oncol., 2018, 15(5), 273-291.
[http://dx.doi.org/10.1038/nrclinonc.2018.28] [PMID: 29508857]
[13]
Huang, J.; Chen, L.; Wu, J.; Ai, D.; Zhang, J.Q.; Chen, T.G.; Wang, L. Targeting the PI3K/AKT/mTOR signaling pathway in the treatment of human diseases: Current status, trends, and solutions. J. Med. Chem., 2022, 65(24), 16033-16061.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01070] [PMID: 36503229]
[14]
McHardy, T.; Caldwell, J.J.; Cheung, K.M.; Hunter, L.J.; Taylor, K.; Rowlands, M.; Ruddle, R.; Henley, A.; de Haven Brandon, A.; Valenti, M.; Davies, T.G.; Fazal, L.; Seavers, L.; Raynaud, F.I.; Eccles, S.A.; Aherne, G.W.; Garrett, M.D.; Collins, I. Discovery of 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt). J. Med. Chem., 2010, 53(5), 2239-2249.
[http://dx.doi.org/10.1021/jm901788j] [PMID: 20151677]
[15]
Addie, M.; Ballard, P.; Buttar, D.; Crafter, C.; Currie, G.; Davies, B.R.; Debreczeni, J.; Dry, H.; Dudley, P.; Greenwood, R.; Johnson, P.D.; Kettle, J.G.; Lane, C.; Lamont, G.; Leach, A.; Luke, R.W.A.; Morris, J.; Ogilvie, D.; Page, K.; Pass, M.; Pearson, S.; Ruston, L. Discovery of 4-Amino-N-[(1 S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7 H -pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of akt kinases. J. Med. Chem., 2013, 56(5), 2059-2073.
[http://dx.doi.org/10.1021/jm301762v] [PMID: 23394218]
[16]
Skorupskaite, K.; Anderson, R.A. Hypothalamic neurokinin signalling and its application in reproductive medicine. Pharmacol. Ther., 2022, 230, 107960.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107960] [PMID: 34273412]
[17]
Depypere, H.; Lademacher, C.; Siddiqui, E.; Fraser, G.L. Fezolinetant in the treatment of vasomotor symptoms associated with menopause. Expert Opin. Investig. Drugs, 2021, 30(7), 681-694.
[http://dx.doi.org/10.1080/13543784.2021.1893305] [PMID: 33724119]
[18]
Hoveyda, H.R.; Fraser, G.L.; Roy, M.O.; Dutheuil, G.; Batt, F.; El Bousmaqui, M.; Korac, J.; Lenoir, F.; Lapin, A.; Noël, S.; Blanc, S. Discovery and optimization of novel antagonists to the human neurokinin-3 receptor for the treatment of sex-hormone disorders (Part I). J. Med. Chem., 2015, 58(7), 3060-3082.
[http://dx.doi.org/10.1021/jm5017413] [PMID: 25738882]
[19]
Hoveyda, H.R.; Fraser, G.L.; Dutheuil, G.; El Bousmaqui, M.; Korac, J.; Lenoir, F.; Lapin, A.; Noël, S. Optimization of novel antagonists to the neurokinin-3 receptor for the treatment of sex-hormone disorders (Part II). ACS Med. Chem. Lett., 2015, 6(7), 736-740.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00117] [PMID: 26191358]
[20]
Colden, M.A.; Kumar, S.; Munkhbileg, B.; Babushok, D.V. Insights into the emergence of paroxysmal nocturnal hemoglobinuria. Front. Immunol., 2022, 12, 830172.
[http://dx.doi.org/10.3389/fimmu.2021.830172] [PMID: 35154088]
[21]
Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov., 2019, 18(9), 707-729.
[http://dx.doi.org/10.1038/s41573-019-0031-6] [PMID: 31324874]
[22]
Schubart, A.; Anderson, K.; Mainolfi, N.; Sellner, H.; Ehara, T.; Adams, C.M.; Mac Sweeney, A.; Liao, S.M.; Crowley, M.; Littlewood-Evans, A.; Sarret, S.; Wieczorek, G.; Perrot, L.; Dubost, V.; Flandre, T.; Zhang, Y.; Smith, R.J.H.; Risitano, A.M.; Karki, R.G.; Zhang, C.; Valeur, E.; Sirockin, F.; Gerhartz, B.; Erbel, P.; Hughes, N.; Smith, T.M.; Cumin, F.; Argikar, U.A.; Haraldsson, B.; Mogi, M.; Sedrani, R.; Wiesmann, C.; Jaffee, B.; Maibaum, J.; Flohr, S.; Harrison, R.; Eder, J. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc. Natl. Acad. Sci., 2019, 116(16), 7926-7931.
[http://dx.doi.org/10.1073/pnas.1820892116] [PMID: 30926668]
[23]
Mainolfi, N.; Ehara, T.; Karki, R.G.; Anderson, K.; Mac Sweeney, A.; Liao, S.M.; Argikar, U.A.; Jendza, K.; Zhang, C.; Powers, J.; Klosowski, D.W.; Crowley, M.; Kawanami, T.; Ding, J.; April, M.; Forster, C.; Serrano-Wu, M.; Capparelli, M.; Ramqaj, R.; Solovay, C.; Cumin, F.; Smith, T.M.; Ferrara, L.; Lee, W.; Long, D.; Prentiss, M.; De Erkenez, A.; Yang, L.; Liu, F.; Sellner, H.; Sirockin, F.; Valeur, E.; Erbel, P.; Ostermeier, D.; Ramage, P.; Gerhartz, B.; Schubart, A.; Flohr, S.; Gradoux, N.; Feifel, R.; Vogg, B.; Wiesmann, C.; Maibaum, J.; Eder, J.; Sedrani, R.; Harrison, R.A.; Mogi, M.; Jaffee, B.D.; Adams, C.M. Discovery of 4-((2S,4S)-4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl)benzoic acid (LNP023), a factor B inhibitor specifically designed to be applicable to treating a diverse array of complement mediated diseases. J. Med. Chem., 2020, 63(11), 5697-5722.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01870] [PMID: 32073845]
[24]
Schubart, A.; Flohr, S.; Junt, T.; Eder, J. Low‐molecular weight inhibitors of the alternative complement pathway. Immunol. Rev., 2023, 313(1), 339-357.
[http://dx.doi.org/10.1111/imr.13143] [PMID: 36217774]
[25]
James, A.D.; Kulmatycki, K.; Poller, B.; Romeo, A.A.; Van Lier, J.J.; Klein, K.; Pearson, D. Absorption, distribution, metabolism, and excretion of [14C]iptacopan in healthy male volunteers and in in vivo and in vitro studies. Drug Metab. Dispos., 2023, 51(7), 873-883.
[http://dx.doi.org/10.1124/dmd.123.001290] [PMID: 37308298]
[26]
Rathi, S.; Hasan, R.; Ueffing, M.; Clark, S.J. Therapeutic targeting of the complement system in ocular disease. Drug Discov. Today, 2023, 28(11), 103757.
[http://dx.doi.org/10.1016/j.drudis.2023.103757] [PMID: 37657753]
[27]
Lucas, C.L.; Chandra, A.; Nejentsev, S.; Condliffe, A.M.; Okkenhaug, K. PI3Kδ and primary immunodeficiencies. Nat. Rev. Immunol., 2016, 16(11), 702-714.
[http://dx.doi.org/10.1038/nri.2016.93] [PMID: 27616589]
[28]
Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2016, 7(8), 762-767.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00119] [PMID: 27563400]
[29]
Hoegenauer, K.; Soldermann, N.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; von Matt, A.; Smith, A.B.; Wolf, R.M.; Wilcken, R.; Haasen, D.; Burkhart, C.; Zécri, F. Discovery of novel pyrrolidineoxy-substituted heteroaromatics as potent and selective PI3K delta inhibitors with improved physicochemical properties. Bioorg. Med. Chem. Lett., 2016, 26(23), 5657-5662.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.069] [PMID: 27816514]
[30]
Hoegenauer, K.; Soldermann, N.; Zécri, F.; Strang, R.S.; Graveleau, N.; Wolf, R.M.; Cooke, N.G.; Smith, A.B.; Hollingworth, G.J.; Blanz, J.; Gutmann, S.; Rummel, G.; Littlewood-Evans, A.; Burkhart, C. Discovery of CDZ173 (leniolisib), representing a structurally novel class of PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2017, 8(9), 975-980.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00293] [PMID: 28947947]
[31]
Forster, M.; Gehringer, M.; Laufer, S.A. Recent advances in JAK3 inhibition: Isoform selectivity by covalent cysteine targeting. Bioorg. Med. Chem. Lett., 2017, 27(18), 4229-4237.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.079] [PMID: 28844493]
[32]
Dai, J.; Yang, L.; Addison, G. Current status in the discovery of covalent Janus kinase 3 (JAK3) inhibitors. Mini Rev. Med. Chem., 2019, 19(18), 1531-1543.
[http://dx.doi.org/10.2174/1389557519666190617152011] [PMID: 31288716]
[33]
Telliez, J.B.; Dowty, M.E.; Wang, L.; Jussif, J.; Lin, T.; Li, L.; Moy, E.; Balbo, P.; Li, W.; Zhao, Y.; Crouse, K.; Dickinson, C.; Symanowicz, P.; Hegen, M.; Banker, M.E.; Vincent, F.; Unwalla, R.; Liang, S.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Yang, X.; Bauman, J.; Trujillo, J.I.; Casimiro-Garcia, A.; Vajdos, F.F.; Leung, L.; Geoghegan, K.F.; Quazi, A.; Xuan, D.; Jones, L.; Hett, E.; Wright, K.; Clark, J.D.; Thorarensen, A. Discovery of a JAK3-selective inhibitor: Functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016, 11(12), 3442-3451.
[http://dx.doi.org/10.1021/acschembio.6b00677] [PMID: 27791347]
[34]
Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; Trujillo, J.I.; Liang, S.; Balbo, P.; Che, Y.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Leung, L.; Yang, X.; Soucy, S.; Hegen, M.; Coe, J.; Langille, J.; Vajdos, F.; Chrencik, J.; Telliez, J.B. Design of a Janus kinase 3 (JAK3) specific inhibitor 1-((2S,5R)-5-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem., 2017, 60(5), 1971-1993.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01694] [PMID: 28139931]
[35]
Flanagan, M.E.; Abramite, J.A.; Anderson, D.P.; Aulabaugh, A.; Dahal, U.P.; Gilbert, A.M.; Li, C.; Montgomery, J.; Oppenheimer, S.R.; Ryder, T.; Schuff, B.P.; Uccello, D.P.; Walker, G.S.; Wu, Y.; Brown, M.F.; Chen, J.M.; Hayward, M.M.; Noe, M.C.; Obach, R.S.; Philippe, L.; Shanmugasundaram, V.; Shapiro, M.J.; Starr, J.; Stroh, J.; Che, Y. Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J. Med. Chem., 2014, 57(23), 10072-10079.
[http://dx.doi.org/10.1021/jm501412a] [PMID: 25375838]
[36]
Leung, L.; Yang, X.; Strelevitz, T.J.; Montgomery, J.; Brown, M.F.; Zientek, M.A.; Banfield, C.; Gilbert, A.M.; Thorarensen, A.; Dowty, M.E. Clearance prediction of targeted covalent inhibitors by in vitro-in vivo extrapolation of hepatic and extrahepatic clearance mechanisms. Drug Metab. Dispos., 2017, 45(1), 1-7.
[http://dx.doi.org/10.1124/dmd.116.072983] [PMID: 27784718]
[37]
Selvaskandan, H.; Gonzalez-Martin, G.; Barratt, J.; Cheung, C.K. IgA nephropathy: an overview of drug treatments in clinical trials. Expert Opin. Investig. Drugs, 2022, 31(12), 1321-1338.
[http://dx.doi.org/10.1080/13543784.2022.2160315] [PMID: 36588457]
[38]
Komers, R.; Plotkin, H. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2016, 310(10), R877-R884.
[http://dx.doi.org/10.1152/ajpregu.00425.2015] [PMID: 27009050]
[39]
Gillis, J.C.; Markham, A. Irbesartan. Drugs, 1997, 54(6), 885-902.
[http://dx.doi.org/10.2165/00003495-199754060-00007] [PMID: 9421695]
[40]
Murugesan, N.; Tellew, J.E.; Gu, Z.; Kunst, B.L.; Fadnis, L.; Cornelius, L.A.; Baska, R.A.F.; Yang, Y.; Beyer, S.M.; Monshizadegan, H.; Dickinson, K.E.; Panchal, B.; Valentine, M.T.; Chong, S.; Morrison, R.A.; Carlson, K.E.; Powell, J.R.; Moreland, S.; Barrish, J.C.; Kowala, M.C.; Macor, J.E. Discovery of N-isoxazolyl biphenylsulfonamides as potent dual angiotensin II and endothelin A receptor antagonists. J. Med. Chem., 2002, 45(18), 3829-3835.
[http://dx.doi.org/10.1021/jm020138n] [PMID: 12190306]
[41]
Murugesan, N.; Gu, Z.; Fadnis, L.; Tellew, J.E.; Baska, R.A.F.; Yang, Y.; Beyer, S.M.; Monshizadegan, H.; Dickinson, K.E.; Valentine, M.T.; Humphreys, W.G.; Lan, S.J.; Ewing, W.R.; Carlson, K.E.; Kowala, M.C.; Zahler, R.; Macor, J.E. Dual angiotensin II and endothelin A receptor antagonists: Synthesis of 2′-substituted N-3-isoxazolyl biphenylsulfonamides with improved potency and pharmacokinetics. J. Med. Chem., 2005, 48(1), 171-179.
[http://dx.doi.org/10.1021/jm049548x] [PMID: 15634011]
[42]
Murugesan, N.; Gu, Z.; Spergel, S.; Young, M.; Chen, P.; Mathur, A.; Leith, L.; Hermsmeier, M.; Liu, E.C.K.; Zhang, R.; Bird, E.; Waldron, T.; Marino, A.; Koplowitz, B.; Humphreys, W.G.; Chong, S.; Morrison, R.A.; Webb, M.L.; Moreland, S.; Trippodo, N.; Barrish, J.C. Biphenylsulfonamide endothelin receptor antagonists. 4. discovery of N -[[2‘-[[(4,5-Dimethyl-3-isoxazolyl)amino]sulfonyl]-4-(2-oxazolyl)[1,1‘-biphenyl]- 2-yl]methyl]- N, 3,3-trimethylbutanamide (BMS-207940), A highly potent and orally active ET A selective antagonist. J. Med. Chem., 2003, 46(1), 125-137.
[http://dx.doi.org/10.1021/jm020289q] [PMID: 12502366]
[43]
Rosenberg, A.S.; Puig, M.; Nagaraju, K.; Hoffman, E.P.; Villalta, S.A.; Rao, V.A.; Wakefield, L.M.; Woodcock, J. Immune-mediated pathology in Duchenne muscular dystrophy. Sci. Transl. Med., 2015, 7(299), 299rv4.
[http://dx.doi.org/10.1126/scitranslmed.aaa7322]
[44]
Verhaart, I.E.C.; Aartsma-Rus, A. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol., 2019, 15(7), 373-386.
[http://dx.doi.org/10.1038/s41582-019-0203-3] [PMID: 31147635]
[45]
Vandewalle, J.; Luypaert, A.; De Bosscher, K.; Libert, C. Therapeutic mechanisms of glucocorticoids. Trends Endocrinol. Metab., 2018, 29(1), 42-54.
[http://dx.doi.org/10.1016/j.tem.2017.10.010] [PMID: 29162310]
[46]
Weikum, E.R.; Knuesel, M.T.; Ortlund, E.A.; Yamamoto, K.R. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol., 2017, 18(3), 159-174.
[http://dx.doi.org/10.1038/nrm.2016.152] [PMID: 28053348]
[47]
Baudy, A.R.; Reeves, E.K.M.; Damsker, J.M.; Heier, C.; Garvin, L.M.; Dillingham, B.C.; McCall, J.; Rayavarapu, S.; Wang, Z.; Vandermeulen, J.H.; Sali, A.; Jahnke, V.; Duguez, S.; DuBois, D.; Rose, M.C.; Nagaraju, K.; Hoffman, E.P.Δ. -9,11 modification of glucocorticoids dissociates nuclear factor-κB inhibitory efficacy from glucocorticoid response element-associated side effects. J. Pharmacol. Exp. Ther., 2012, 343(1), 225-232.
[http://dx.doi.org/10.1124/jpet.112.194340] [PMID: 22743576]
[48]
Heier, C.R.; Damsker, J.M.; Yu, Q.; Dillingham, B.C.; Huynh, T.; Van der Meulen, J.H.; Sali, A.; Miller, B.K.; Phadke, A.; Scheffer, L.; Quinn, J.; Tatem, K.; Jordan, S.; Dadgar, S.; Rodriguez, O.C.; Albanese, C.; Calhoun, M.; Gordish-Dressman, H.; Jaiswal, J.K.; Connor, E.M.; McCall, J.M.; Hoffman, E.P.; Reeves, E.K.M.; Nagaraju, K. VBP15, a novel anti‐inflammatory and membrane‐stabilizer, improves muscular dystrophy without side effects. EMBO Mol. Med., 2013, 5(10), 1569-1585.
[http://dx.doi.org/10.1002/emmm.201302621] [PMID: 24014378]
[49]
Reeves, E.K.M.; Hoffman, E.P.; Nagaraju, K.; Damsker, J.M.; McCall, J.M. VBP15: Preclinical characterization of a novel anti-inflammatory delta 9,11 steroid. Bioorg. Med. Chem., 2013, 21(8), 2241-2249.
[http://dx.doi.org/10.1016/j.bmc.2013.02.009] [PMID: 23498916]
[50]
Bell, I.M. Calcitonin gene-related peptide receptor antagonists: New therapeutic agents for migraine. J. Med. Chem., 2014, 57(19), 7838-7858.
[http://dx.doi.org/10.1021/jm500364u] [PMID: 24960305]
[51]
Dubowchik, G.M.; Conway, C.M.; Xin, A.W. Blocking the CGRP pathway for acute and preventive treatment of migraine: The evolution of success. J. Med. Chem., 2020, 63(13), 6600-6623.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01810] [PMID: 32058712]
[52]
Han, X.; Civiello, R.L.; Conway, C.M.; Cook, D.A.; Davis, C.D.; Degnan, A.P.; Jiang, X.J.; Macci, R.; Mathias, N.R.; Moench, P.; Pin, S.S.; Schartman, R.; Signor, L.J.; Thalody, G.; Tora, G.; Whiterock, V.; Xu, C.; Macor, J.E.; Dubowchik, G.M. The synthesis and SAR of calcitonin gene-related peptide (CGRP) receptor antagonists derived from tyrosine surrogates. Part 2. Bioorg. Med. Chem. Lett., 2013, 23(6), 1870-1873.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.011] [PMID: 23402880]
[53]
Degnan, A.P.; Chaturvedula, P.V.; Conway, C.M.; Cook, D.A.; Davis, C.D.; Denton, R.; Han, X.; Macci, R.; Mathias, N.R.; Moench, P.; Pin, S.S.; Ren, S.X.; Schartman, R.; Signor, L.J.; Thalody, G.; Widmann, K.A.; Xu, C.; Macor, J.E.; Dubowchik, G.M. Discovery of (R)-4-(8-Fluoro-2-oxo-1,2-dihydroquinazolin-3(4 H)-yl)- N -(3-(7-methyl-1 H -indazol-5-yl)-1-oxo-1-(4-(piperidin-1-yl)piperidin-1-yl)propan-2-yl)piperidine-1-carboxamide (BMS-694153): A potent antagonist of the human calcitonin gene-related peptide receptor for migraine with rapid and efficient intranasal exposure. J. Med. Chem., 2008, 51(16), 4858-4861.
[http://dx.doi.org/10.1021/jm800546t] [PMID: 18665579]
[54]
Degnan, A.P.; Conway, C.M.; Dalterio, R.A.; Macci, R.; Mercer, S.E.; Schartman, R.; Xu, C.; Dubowchik, G.M.; Macor, J.E. Carbamates as potent calcitonin gene-related peptide antagonists with improved solution stability. Bioorg. Med. Chem. Lett., 2009, 19(13), 3555-3558.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.150] [PMID: 19467597]
[55]
Burgey, C.S.; Stump, C.A.; Nguyen, D.N.; Deng, J.Z.; Quigley, A.G.; Norton, B.R.; Bell, I.M.; Mosser, S.D.; Salvatore, C.A.; Rutledge, R.Z.; Kane, S.A.; Koblan, K.S.; Vacca, J.P.; Graham, S.L.; Williams, T.M. Benzodiazepine calcitonin gene-related peptide (CGRP) receptor antagonists: Optimization of the 4-substituted piperidine. Bioorg. Med. Chem. Lett., 2006, 16(19), 5052-5056.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.044] [PMID: 16889959]
[56]
Chaturvedula, P.V.; Mercer, S.E.; Pin, S.S.; Thalody, G.; Xu, C.; Conway, C.M.; Keavy, D.; Signor, L.; Cantor, G.H.; Mathias, N.; Moench, P.; Denton, R.; Macci, R.; Schartman, R.; Whiterock, V.; Davis, C.; Macor, J.E.; Dubowchik, G.M. Discovery of (R)-N-(3-(7-methyl-1H-indazol-5-yl)-1-(4-(1-methylpiperidin-4-yl)-1-oxopropan-2-yl)-4-(2-oxo-1,2-dihydroquinolin-3-yl)piperidine-1-carboxamide (BMS-742413): A potent human CGRP antagonist with superior safety profile for the treatment of migraine through intranasal delivery. Bioorg. Med. Chem. Lett., 2013, 23(11), 3157-3161.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.012] [PMID: 23632269]
[57]
Sun, S.; Wesolowski, S.S. Biologically active metabolites in drug discovery. Bioorg. Med. Chem. Lett., 2021, 48, 128255.
[http://dx.doi.org/10.1016/j.bmcl.2021.128255] [PMID: 34245850]
[58]
Scott, L.J. Brexanolone: First global approval. Drugs, 2019, 79(7), 779-783.
[http://dx.doi.org/10.1007/s40265-019-01121-0] [PMID: 31006078]
[59]
Hogenkamp, D.J.; Tahir, S.H.; Hawkinson, J.E.; Upasani, R.B.; Alauddin, M.; Kimbrough, C.L.; Acosta-Burruel, M.; Whittemore, E.R.; Woodward, R.M.; Lan, N.C.; Gee, K.W.; Bolger, M.B. Synthesis and in vitro activity of 3β-Substituted-3α-hydroxypregnan-20-ones: Allosteric modulators of the GABA A Receptor. J. Med. Chem., 1997, 40(1), 61-72.
[http://dx.doi.org/10.1021/jm960021x] [PMID: 9016329]
[60]
Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Shen, K.; Belfort, G.M.; Loya, C.M.; Ackley, M.A.; Grossman, S.J.; Hoffmann, E.; Jia, S.; Wang, J.; Doherty, J.J.; Robichaud, A.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-aminobutyric acid)A receptor: Structure–activity relationships of heterocyclic substitution at C-21. J. Med. Chem., 2015, 58(8), 3500-3511.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00032] [PMID: 25799373]
[61]
Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Blanco, M.J.; Belfort, G.M.; Dai, J.; Loya, C.M.; Ackley, M.A.; Althaus, A.L.; Grossman, S.J.; Hoffmann, E.; Doherty, J.J.; Robichaud, A.J. Neuroactive Steroids. 2. 3α-Hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1′-yl)-19-nor-5β-pregnan-20-one (SAGE-217): A clinical next generation neuroactive steroid positive allosteric modulator of the (γ-aminobutyric acid)A receptor. J. Med. Chem., 2017, 60(18), 7810-7819.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00846] [PMID: 28753313]
[62]
Subbaiah, M.A.M.; Meanwell, N.A. Bioisosteres of the phenyl ring: Recent strategic applications in lead optimization and drug design. J. Med. Chem., 2021, 64(19), 14046-14128.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01215] [PMID: 34591488]
[63]
Chiodi, D.; Ishihara, Y. “Magic chloro”: Profound effects of the chlorine atom in drug discovery. J. Med. Chem., 2023, 66(8), 5305-5331.
[http://dx.doi.org/10.1021/acs.jmedchem.2c02015] [PMID: 37014977]
[64]
St Jean, D.J., Jr; Fotsch, C. Mitigating heterocycle metabolism in drug discovery. J. Med. Chem., 2012, 55(13), 6002-6020.
[http://dx.doi.org/10.1021/jm300343m] [PMID: 22533875]
[65]
Baillie, T.A. Approaches to mitigate the risk of serious adverse reactions in covalent drug design. Expert Opin. Drug Discov., 2021, 16(3), 275-287.
[http://dx.doi.org/10.1080/17460441.2021.1832079] [PMID: 33006907]
[66]
Dahal, U.P.; Wahlstrom, J.L. He, K.; Hollenberg, P.F.; Wienkers, L.C., Eds.; Drug development of covalent inhibitors.Overcoming Obstacles in Drug Discovery and Development; Academic Press, 2023, pp. 51-62.
[http://dx.doi.org/10.1016/B978-0-12-817134-9.00009-X]
[67]
Fell, J.B.; Fischer, J.P.; Baer, B.R.; Blake, J.F.; Bouhana, K.; Briere, D.M.; Brown, K.D.; Burgess, L.E.; Burns, A.C.; Burkard, M.R.; Chiang, H.; Chicarelli, M.J.; Cook, A.W.; Gaudino, J.J.; Hallin, J.; Hanson, L.; Hartley, D.P.; Hicken, E.J.; Hingorani, G.P.; Hinklin, R.J.; Mejia, M.J.; Olson, P.; Otten, J.N.; Rhodes, S.P.; Rodriguez, M.E.; Savechenkov, P.; Smith, D.J.; Sudhakar, N.; Sullivan, F.X.; Tang, T.P.; Vigers, G.P.; Wollenberg, L.; Christensen, J.G.; Marx, M.A. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. J. Med. Chem., 2020, 63(13), 6679-6693.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02052] [PMID: 32250617]
[68]
Owen, D.R.; Allerton, C.M.N.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; Dantonio, A.; Di, L.; Eng, H.; Ferre, R.; Gajiwala, K.S.; Gibson, S.A.; Greasley, S.E.; Hurst, B.L.; Kadar, E.P.; Kalgutkar, A.S.; Lee, J.C.; Lee, J.; Liu, W.; Mason, S.W.; Noell, S.; Novak, J.J.; Obach, R.S.; Ogilvie, K.; Patel, N.C.; Pettersson, M.; Rai, D.K.; Reese, M.R.; Sammons, M.F.; Sathish, J.G.; Singh, R.S.P.; Steppan, C.M.; Stewart, A.E.; Tuttle, J.B.; Updyke, L.; Verhoest, P.R.; Wei, L.; Yang, Q.; Zhu, Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374(6575), 1586-1593.
[http://dx.doi.org/10.1126/science.abl4784] [PMID: 34726479]
[69]
Singh, J. The ascension of targeted covalent inhibitors. J. Med. Chem., 2022, 65(8), 5886-5901.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02134] [PMID: 35439421]
[70]
Boike, L.; Henning, N.J.; Nomura, D.K. Advances in covalent drug discovery. Nat. Rev. Drug Discov., 2022, 21(12), 881-898.
[http://dx.doi.org/10.1038/s41573-022-00542-z] [PMID: 36008483]
[71]
Wagner, J.; Dahlem, A.M.; Hudson, L.D.; Terry, S.F.; Altman, R.B.; Gilliland, C.T.; DeFeo, C.; Austin, C.P. A dynamic map for learning, communicating, navigating and improving therapeutic development. Nat. Rev. Drug Discov., 2018, 17(2), 150-150.
[http://dx.doi.org/10.1038/nrd.2017.217] [PMID: 29269942]
[72]
Veale, C.G.L. Into the fray! A beginner’s guide to medicinal chemistry. ChemMedChem, 2021, 16(8), 1199-1225.
[http://dx.doi.org/10.1002/cmdc.202000929] [PMID: 33591595]
[73]
Pennington, L.D.; Muegge, I. Holistic drug design for multiparameter optimization in modern small molecule drug discovery. Bioorg. Med. Chem. Lett., 2021, 41, 128003.
[http://dx.doi.org/10.1016/j.bmcl.2021.128003] [PMID: 33798703]