Green Synthesis of Silver Nanoparticles using Cirsium congestum Extract Modified by Chitosan/Alginate: Bactericidal Activity against Pathogenic Bacteria and Cytotoxicity Analysis in Normal Cell Line

Page: [1610 - 1623] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Aim: The study aimed to determine in vitro pharmacological effects of modified Ag nanoparticles (AgNPs).

Background: AgNPs are considered antimicrobial agents. However, the cytotoxicity of chemically synthesized AgNPs (cAgNPs) has raised challenges that limit their use.

Objective: The purpose of the study was to examine the antimicrobial and cytotoxicity effects of AgNPs synthesized using Cirsium congestum extract modified by chitosan/alginate AgNPS (Ch/ALG-gAgNPs).

Methods: Nanoparticles were characterized using TEM, DLS, XRD, and FTIR. Resistant strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used for the antimicrobial analysis of Ch/ALG-gAgNPs using disc diffusion and microdilution methods. The effects of NPs on cell viability and apoptosis in L929 normal cells were determined using MTT assay and annexin/PI staining, respectively.

Results: Physicochemical characterizations confirmed Ch/ALG-gAgNPs to be spherical and uniformly dispersed, and their size ranged from 50 to 500 nm. Ch/ALG-gAgNPs inhibited the growth of microbial strains in a dose-dependent manner. The antibacterial effect of Ch/ALG-gAgNPs was significantly higher than cAgNPs. The Ch/ALG-gAgNPs showed little cytotoxicity against normal cells at concentrations less than 50 μg/ml. Cytotoxicity effects of Ch/ALG-gAgNP were less than cAgNPs. Flow cytometry and real-time PCR results showed a decrease in apoptosis percentage and BAX marker in the presence of Ch/ALG-gAgNPs relative to when the cell was treated with cAgNPs.

Conclusion: Current findings introduce novel gAgNPs modified with chitosan/alginate for use in medicine.

[1]
Kadhum WR, Al-Zuhairy SA, Mohamed MB, et al. A nanotechnological approach for enhancing the topical drug delivery by newly developed liquid crystal formulations. Int J Drug Deliv Technol 2021; 11: 716-20.
[2]
Al-Zuhairy SAS, Kadhum WR, Alhijjaj M, et al. Development and evaluation of biocompatible topical petrolatum-liquid crystal formulations with enhanced skin permeation properties. J Oleo Sci 2022; 71(3): 459-68.
[http://dx.doi.org/10.5650/jos.ess21344] [PMID: 35173089]
[3]
Kadhum WR, See GL, Alhijjaj M, et al. Evaluation of the skin permeation-enhancing abilities of newly developed water-soluble self-assembled liquid crystal formulations based on hexosomes. Crystals 2022; 12(9): 1238-45.
[http://dx.doi.org/10.3390/cryst12091238]
[4]
Budi HS, Jameel Al-azzawi MF, Al-Dolaimy F, et al. Injectable and 3D-printed hydrogels: State-of-the-art platform for bone regeneration in dentistry. Inorg Chem Commun 2024; 161(3): 112026.
[http://dx.doi.org/10.1016/j.inoche.2024.112026]
[5]
Soteyome T, Thedkwanchai S. Encapsulation of aromatic coconut water with sodium alginate and calcium chloride. Caspian J Environ Sci 2024; 22: 221-38.
[6]
Mulenos MR, Lujan H, Pitts LR, Sayes CM. Silver nanoparticles agglomerate intracellularly depending on the stabilizing agent: implications for nanomedicine efficacy. Nanomaterials 2020; 10(10): 1953.
[http://dx.doi.org/10.3390/nano10101953] [PMID: 33007984]
[7]
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020; 10(20): 8996-9031.
[http://dx.doi.org/10.7150/thno.45413] [PMID: 32802176]
[8]
Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 2016; 10(8): 1021-40.
[http://dx.doi.org/10.1080/17435390.2016.1189614] [PMID: 27240148]
[9]
Abramenko N, Semenova M, Khina A, et al. The toxicity of coated silver nanoparticles and their stabilizers towards Paracentrotus lividus sea urchin embryos. Nanomaterials 2022; 12(22): 4003.
[http://dx.doi.org/10.3390/nano12224003] [PMID: 36432289]
[10]
Das B, Tripathy S, Adhikary J, et al. Surface modification minimizes the toxicity of silver nanoparticles: An in vitro and in vivo study. J Biol Inorg Chem 2017; 22(6): 893-918.
[http://dx.doi.org/10.1007/s00775-017-1468-x] [PMID: 28643149]
[11]
Al-Shik LA, Alshirifi AN, Alkaim AF. Preparation of highly efficient new poly sodium alginate (acrylic acid-co-acrylamide) grafted ZnO/CNT hydrogel nanocomposite: Application adsorption of drug, isotherm and thermodynamics. Caspian J Environ Sci 2023; 21: 865-74.
[12]
Alhattab ZD, Aljeboree AM, Jawad MA, Sheri FS, Obaid Aldulaim AK, Alkaim AF. Highly adsorption of alginate/bentonite impregnated TiO2 beads for wastewater treatment: Optimization, kinetics, and regeneration studies. Caspian J Environ Sci 2023; 21: 657-64.
[13]
Hirn S, Semmler-Behnke M, Schleh C, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 2011; 77(3): 407-16.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.029] [PMID: 21195759]
[14]
Umut EJ. Surface modification of nanoparticles used in biomedical applications. Mater Sci 2013; 20: 185-208.
[15]
Travan A, Pelillo C, Donati I, et al. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 2009; 10(6): 1429-35.
[http://dx.doi.org/10.1021/bm900039x] [PMID: 19405545]
[16]
Fahmy HM, Mosleh AM, Elghany AA, et al. Coated silver nanoparticles: Synthesis, cytotoxicity, and optical properties. RSC Advances 2019; 9(35): 20118-36.
[http://dx.doi.org/10.1039/C9RA02907A] [PMID: 35514687]
[17]
Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 2017; 105(Pt 1): 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.047] [PMID: 28705499]
[18]
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010; 62(1): 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[19]
Abd El-Hack ME, El-Saadony MT, Shafi ME, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol 2020; 164: 2726-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[20]
Confederat LG, Tuchilus CG, Dragan M, Sha’at M, Dragostin OM. Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules 2021; 26(12): 3694.
[http://dx.doi.org/10.3390/molecules26123694] [PMID: 34204251]
[21]
Frank LA, Onzi GR, Morawski AS, et al. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym 2020; 147: 104459.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104459]
[22]
Saravanakumar K, Sathiyaseelan A, Manivasagan P, et al. Photothermally responsive chitosan-coated iron oxide nanoparticles for enhanced eradication of bacterial biofilms. Biomater Adv 2022; 141: 213129.
[http://dx.doi.org/10.1016/j.bioadv.2022.213129] [PMID: 36191538]
[23]
Shahid-ul-Islam , Butola BS, Verma D. Facile synthesis of chitosan-silver nanoparticles onto linen for antibacterial activity and free-radical scavenging textiles. Int J Biol Macromol 2019; 133: 1134-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.186] [PMID: 31047926]
[24]
Bharathi D, Ranjithkumar R, Vasantharaj S, Chandarshekar B, Bhuvaneshwari V. Synthesis and characterization of chitosan/iron oxide nanocomposite for biomedical applications. Int J Biol Macromol 2019; 132: 880-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.233] [PMID: 30940585]
[25]
Shao C, Yu Z, Luo T, et al. Chitosan-coated selenium nanoparticles attenuate PRRSV replication and ROS/JNK-mediated apoptosis in vitro. Int J Nanomed 2022; 17: 3043-54.
[http://dx.doi.org/10.2147/IJN.S370585] [PMID: 35832119]
[26]
Badawy MEI, Lotfy TMR, Shawir SMS. Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bull Natl Res Cent 2019; 43(1): 83.
[http://dx.doi.org/10.1186/s42269-019-0124-8]
[27]
Peng Y, Song C, Yang C, Guo Q, Yao M. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int J Nanomed 2017; 12: 295-304.
[http://dx.doi.org/10.2147/IJN.S122357] [PMID: 28115847]
[28]
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499: 41-53.
[http://dx.doi.org/10.1016/j.cca.2019.08.028] [PMID: 31476303]
[29]
Reddy SG. Alginates a seaweed product: Its properties and applications of alginates. Polymers 2021; 14: 225-40.
[30]
Venkatesan J, Lee JY, Kang DS, et al. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 2017; 98: 515-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.120] [PMID: 28147234]
[31]
Martins AF, Monteiro JP, Bonafé EG, et al. Bactericidal activity of hydrogel beads based on N,N,N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chin Chem Lett 2015; 26(9): 1129-32.
[http://dx.doi.org/10.1016/j.cclet.2015.04.032]
[32]
Mokhena TC, Luyt AS. Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydr Polym 2017; 165: 304-12.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.068] [PMID: 28363554]
[33]
Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri HJ. A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int Food Res J 2016; 23: 446.
[34]
Akhtar MS, Panwar J, Yun YS. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 2013; 1(6): 591-602.
[http://dx.doi.org/10.1021/sc300118u]
[35]
Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett 2016; 38(4): 545-60.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[36]
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13(10): 2638-50.
[http://dx.doi.org/10.1039/c1gc15386b]
[37]
Bao Y, He J, Song K, Guo J, Zhou X. Plant-extract-mediated synthesis of metal nanoparticles. J Chem 2021; 2021: 1-14.
[38]
Jalili M, Sharifi AJJ. Chemical composition and antibacterial activities of the essential oil and extract of Cirsium congestum. J food sci technol 2023; 13: 53-60.
[39]
Khoshhal F, Sharifi A. Investigating iron content, phenolic compounds and antioxidant activity of Cirsium congestum extract. Innov Food Sci Emerg Technol 2018; 10: 79-86.
[40]
Rezagholizade-Shirvan A, Masrournia M, Najafi FM, Behmadi H. Synthesis and characterization of nanoparticles based on chitosan-biopolymers systems as nanocarrier agents for curcumin: study on pharmaceutical and environmental applications. Polym Bull 2023; 80(2): 1495-517.
[http://dx.doi.org/10.1007/s00289-022-04095-4]
[41]
Rezagholizade-Shirvan A, Fathi Najafi M, Behmadi H, Masrournia M. Preparation of nano-composites based on curcumin/chitosan-PVA-alginate to improve stability, antioxidant, antibacterial and anticancer activity of curcumin. Inorg Chem Commun 2022; 145: 110022.
[http://dx.doi.org/10.1016/j.inoche.2022.110022]
[42]
Farhadi L, Mohtashami M, Saeidi J, et al. Green synthesis of chitosan-coated silver nanoparticle, characterization, antimicrobial activities, and cytotoxicity analysis in cancerous and normal cell lines. J Inorg Organomet Polym Mater 2022; 32(5): 1637-49.
[http://dx.doi.org/10.1007/s10904-021-02208-6]
[43]
Ghasemi A, Salari A, Kalantarmahdavi M, Amiryousefi MR. Sodium metabisulfite in dried plum and its cytotoxic effects on K 562 and L 929 normal cell lines. J Food Sci 2022; 87(2): 856-66.
[http://dx.doi.org/10.1111/1750-3841.16034] [PMID: 35067933]
[44]
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(5): 544-68.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
[45]
Zhang XF, Shen W, Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 2016; 17(10): 1603.
[http://dx.doi.org/10.3390/ijms17101603] [PMID: 27669221]
[46]
Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X. Nano silver-induced toxicity and associated mechanisms. Int J Nanomedicine 2022; 17: 1851-64.
[http://dx.doi.org/10.2147/IJN.S355131] [PMID: 35502235]
[47]
Zafar S, Zafar A, Jabeen F, Siddiq MA. Biological Synthesis of Silver Nanoparticles and their Biomedical Activity: A Review. Curr Green Chem 2021; 8(3): 222-41.
[http://dx.doi.org/10.2174/2213346109666211217091042]
[48]
Adur AJ, Nandini N, Shilpashree Mayachar K, Ramya R, Srinatha N. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry. J Photochem Photobiol B 2018; 183: 30-4.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.020] [PMID: 29684718]
[49]
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016; 7(1): 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[50]
Arif R, Uddin R. A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Med Devices Sens 2021; 4(1): e10158.
[http://dx.doi.org/10.1002/mds3.10158]
[51]
Loo YY, Chieng BW, Nishibuchi M, Radu S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int J Nanomedicine 2012; 7: 4263-7.
[PMID: 22904632]
[52]
Negi S, Singh V. Algae: A potential source for nanoparticle synthesis. J Appl Nat Sci 2018; 10(4): 1134-40.
[http://dx.doi.org/10.31018/jans.v10i4.1878]
[53]
Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016; 11(23): 3157-77.
[http://dx.doi.org/10.2217/nnm-2016-0279] [PMID: 27809668]
[54]
Flieger J, Franus W, Panek R, et al. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity. Molecules 2021; 26(16): 4986.
[http://dx.doi.org/10.3390/molecules26164986] [PMID: 34443574]
[55]
Shumail H, Khalid S, Ahmad I, Khan H, Amin S, Ullah B. Review on green synthesis of silver nanoparticles through plants. Endocr Metab Immune Disord Drug Targets 2021; 21(6): 994-1007.
[http://dx.doi.org/10.2174/1871530320666200729153714] [PMID: 32727342]
[56]
Rani N, Singla RK, Redhu R, Narwal S, Sonia , Bhatt A. A review on green synthesis of silver nanoparticles and its role against cancer. Curr Top Med Chem 2022; 22(18): 1460-71.
[http://dx.doi.org/10.2174/1568026622666220601165005] [PMID: 35652404]
[57]
Karamian R. Green synthesis of silver nanoparticles using Cuminum cyminum leaf extract and evaluation of their biological activities. J Nanostruct 2019; 9(1): 74-85.
[58]
Anna B, Barbara K, Magdalena O. How the surface properties affect the nanocytotoxicity of silver? Study of the influence of three types of nanosilver on two wheat varieties. Acta Physiol Plant 2018; 40(2): 31.
[http://dx.doi.org/10.1007/s11738-018-2613-z]
[59]
Pang C, Zhang P, Mu Y, Ren J, Zhao B. Transformation and cytotoxicity of surface-modified silver nanoparticles undergoing long-term aging. Nanomaterials 2020; 10(11): 2255.
[http://dx.doi.org/10.3390/nano10112255] [PMID: 33203023]
[60]
Bressan E, Ferroni L, Gardin C, et al. Silver nanoparticles and mitochondrial interaction. Int J Dent 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/312747] [PMID: 24101927]
[61]
Park EJ, Yi J, Kim Y, Choi K, Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 2010; 24(3): 872-8.
[http://dx.doi.org/10.1016/j.tiv.2009.12.001] [PMID: 19969064]
[62]
Bastos V, Ferreira-de-Oliveira JM, Carrola J, Daniel-da-Silva AL, Duarte IF, Santos C. Coating independent cytotoxicity of citrate-and PEG-coated silver nanoparticles on a human hepatoma cell line. J Environ Sci 2017; 51: 191-201.
[http://dx.doi.org/10.1016/j.jes.2016.05.028] [PMID: 28115130]
[63]
Wang F, Chen Z, Wang Y, et al. Silver nanoparticles induce apoptosis in HepG2 cells through particle-specific effects on mitochondria. Environ Sci Technol 2022; 56(9): 5706-13.
[http://dx.doi.org/10.1021/acs.est.1c08246] [PMID: 35353488]
[64]
Vuković B, Milić M, Dobrošević B, et al. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials 2020; 10(7): 1390.
[http://dx.doi.org/10.3390/nano10071390] [PMID: 32708883]
[65]
Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 2018; 13: 8013-24.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[66]
Bin-Jumah M, AL-Abdan M, Albasher G, Alarifi S. Effects of green silver nanoparticles on apoptosis and oxidative stress in normal and cancerous human hepatic cells in vitro. Int J Nanomedicine 2020; 15: 1537-48.
[http://dx.doi.org/10.2147/IJN.S239861] [PMID: 32210550]
[67]
Olmos D, González-Benito J. Polymeric materials with antibacterial activity: A review. Polymers 2021; 13(4): 613.
[http://dx.doi.org/10.3390/polym13040613] [PMID: 33670638]
[68]
Jiang Y, Zheng W, Tran K, et al. Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat Commun 2022; 13(1): 197.
[http://dx.doi.org/10.1038/s41467-021-27193-9] [PMID: 35017467]