Research Progress of Eye Movement Analyses and its Detection Algorithms in Alzheimer’s Disease

Page: [91 - 100] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer's disease (AD) has been considered one of the most challenging forms of dementia. The earlier the people are diagnosed with AD, the easier it is for doctors to find a treatment. Based on the previous literature summarizing the research results on the relationship between eye movement and AD before 2013, this paper reviewed 34 original eye movements research papers only closely related to AD published in the past ten years and pointed out that the prosaccade (4 papers) and antisaccade (5 papers) tasks, reading tasks (3 papers), visual search tasks (3 papers) are still the research objects of many researchers, Some researchers have looked at King-Devick tasks (2 papers), reading tasks (3 papers) and special tasks (8 papers), and began to use combinations of different saccade tasks to detect the relationship between eye movement and AD, which had not been done before. These reflect the diversity of eye movement tasks and the complexity and difficulty of the relationship between eye movement and AD. On this basis, the current processing and analysis methods of eye movement datasets are analyzed and discussed in detail, and we note that certain key data that may be especially important for the early diagnosis of AD by using eye movement studies cannot be miss-classified as noise and removed. Finally, we note that the development of methods that can accurately denoise and classify and quickly process massive eye movement data is quite significant for detecting eye movements in early diagnosis of AD.

[1]
Alzheimer’s Association. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11(3): 332-84.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 25984581]
[2]
Zhang JJ, Ze-Xuan-Zhu , Guang-Min-Xu , Su P, Lei Q, Li W. Comprehensive analysis of differential expression profiles of long non-coding RNAs with associated co-expression and competing endogenous RNA networks in the hippocampus of patients with Alzheimer’s disease. Curr Alzheimer Res 2021; 18(11): 884-99.
[http://dx.doi.org/10.2174/1567205018666211202143449] [PMID: 34856901]
[3]
Jin S, Guan X, Min D. Evidence of clinical efficacy and pharmacological mechanisms of resveratrol in the treatment of Alzheimer’s disease. Curr Alzheimer Res 2023; 20(8): 588-602.
[http://dx.doi.org/10.2174/0115672050272577231120060909] [PMID: 38047366]
[4]
Green ZD, Kueck PJ, John CS, Burns JM, Morris JK. Blood biomarkers discriminate cerebral anyloid status and cognitive diagnosis when collected with ACD-anticoagulant. Curr Alzheimer Res 2023; 20(8): 557-66.
[http://dx.doi.org/10.2174/0115672050271523231111192725] [PMID: 38047367]
[5]
Süß P, Schlachetzki JCM. Microglia in Alzheimer’s disease. Curr Alzheimer Res 2020; 17(1): 29-43.
[http://dx.doi.org/10.2174/1567205017666200212155234] [PMID: 32048973]
[6]
Prince PM, Ali G, Ali G. World Alzheimer Report 2015. The Global Impact of Dementia. 2015. Available From: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
[7]
Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[8]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[9]
Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018; 554(7691): 249-54.
[http://dx.doi.org/10.1038/nature25456] [PMID: 29420472]
[10]
Xiong Y, Ye C, Sun R, et al. Disrupted balance of gray matter volume and directed functional connectivity in mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res 2023; 20(3): 161-74.
[http://dx.doi.org/10.2174/1567205020666230602144659] [PMID: 37278043]
[11]
Braak H, Braak E. Staging of alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 1995; 16(3): 271-8.
[http://dx.doi.org/10.1016/0197-4580(95)00021-6] [PMID: 7566337]
[12]
Daffner KR, Scinto LFM, Weintraub S, Guinessey JE, Mesulam MM. Diminished curiosity in patients with probable Alzheimer’s disease as measured by exploratory eye movements. Neurology 1992; 42(2): 320-8.
[http://dx.doi.org/10.1212/WNL.42.2.320] [PMID: 1736159]
[13]
Katz B, Rimmer S. Ophthalmologic manifestations of Alzheimer’s disease. Surv Ophthalmol 1989; 34(1): 31-43.
[http://dx.doi.org/10.1016/0039-6257(89)90127-6] [PMID: 2678551]
[14]
Opwonya J, Doan DNT, Kim SG, et al. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Neuropsychol Rev 2022; 32(2): 193-227.
[http://dx.doi.org/10.1007/s11065-021-09495-3] [PMID: 33959887]
[15]
Anderson TJ, MacAskill MR. Eye movements in patients with neurodegenerative disorders. Nat Rev Neurol 2013; 9(2): 74-85.
[http://dx.doi.org/10.1038/nrneurol.2012.273] [PMID: 23338283]
[16]
Hannula DE, Althoff RR, Warren DE, Riggs L, Cohen NJ, Ryan JD. Worth a glance: Using eye movements to investigate the cognitive neuroscience of memory. Front Hum Neurosci 2010; 4: 166.
[http://dx.doi.org/10.3389/fnhum.2010.00166] [PMID: 21151363]
[17]
Santana R, Mendiburu A, Lozano JA. Multi-view classification of psychiatric conditions based on saccades. Appl Soft Comput 2015; 31: 308-16.
[http://dx.doi.org/10.1016/j.asoc.2015.02.038]
[18]
Leigh RJ, Zee DS. The neurology of eye movements. New York: Oxford University Press 2015.
[http://dx.doi.org/10.1093/med/9780199969289.001.0001]
[19]
Molitor RJ, Ko PC, Ally BA. Eye movements in Alzheimer’s disease. J Alzheimers Dis 2015; 44(1): 1-12.
[http://dx.doi.org/10.3233/JAD-141173] [PMID: 25182738]
[20]
Kowalska M, Wize K, Prendecki M, Lianeri M, Kozubski W, Dorszewska J. Genetic variants and oxidative stress in Alzheimer’s disease. Curr Alzheimer Res 2020; 17(3): 208-23.
[http://dx.doi.org/10.2174/1567205017666200224121447] [PMID: 32091332]
[21]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[PMID: 28482786]
[22]
Jia J, Zhang Y, Shi Y, et al. A 19-year-old adolescent with probable Alzheimer’s Disease. J Alzheimers Dis 2023; 91(3): 915-22.
[http://dx.doi.org/10.3233/JAD-221065] [PMID: 36565128]
[23]
Perry G. Alzheimer’s disease: Not just for the aged? J Alzheimers Dis 2023; 91(3): 923-4.
[http://dx.doi.org/10.3233/JAD-230016] [PMID: 36710685]
[24]
Boz HE, Koçoğlu K, Akkoyun M, et al. The influence of stimulus eccentricity on prosaccade outcomes in patients with Alzheimer’s Disease dementia at an early stage and amnestic mild cognitive impairment. J Clin Exp Neuropsychol 2022; 44(10): 713-29.
[http://dx.doi.org/10.1080/13803395.2023.2183937] [PMID: 36856708]
[25]
Yang Q, Wang T, Su N, Xiao S, Kapoula Z. Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age (Omaha) 2013; 35(4): 1287-98.
[http://dx.doi.org/10.1007/s11357-012-9420-z] [PMID: 22576337]
[26]
Polden M, Wilcockson TDW, Crawford TJ. The disengagement of visual attention: An eye-tracking study of cognitive impairment, ethnicity and age. Brain Sci 2020; 10(7): 461.
[http://dx.doi.org/10.3390/brainsci10070461] [PMID: 32708375]
[27]
Crawford TJ, Devereaux A, Higham S, Kelly C. The disengagement of visual attention in Alzheimer’s disease: A longitudinal eye-tracking study. Front Aging Neurosci 2015; 7: 118.
[http://dx.doi.org/10.3389/fnagi.2015.00118] [PMID: 26157388]
[28]
Heuer HW, Mirsky JB, Kong EL, et al. Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology 2013; 81(14): 1235-43.
[http://dx.doi.org/10.1212/WNL.0b013e3182a6cbfe] [PMID: 23986300]
[29]
Wilcockson TDW, Mardanbegi D, Xia B, et al. Abnormalities of saccadic eye movements in dementia due to Alzheimer’s disease and mild cognitive impairment. Aging (Albany NY) 2019; 11(15): 5389-98.
[http://dx.doi.org/10.18632/aging.102118] [PMID: 31375642]
[30]
Crawford TJ, Taylor S, Mardanbegi D, et al. The effects of previous error and success in Alzheimer’s disease and mild cognitive impairment. Sci Rep 2019; 9(1): 20204.
[http://dx.doi.org/10.1038/s41598-019-56625-2] [PMID: 31882919]
[31]
Kaufman LD, Pratt J, Levine B, Black SE. Executive deficits detected in mild Alzheimer’s disease using the antisaccade task. Brain Behav 2012; 2(1): 15-21.
[http://dx.doi.org/10.1002/brb3.28] [PMID: 22574270]
[32]
Alichniewicz KK, Brunner F, Klünemann HH, Greenlee MW. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Front Psychol 2013; 4: 467.
[http://dx.doi.org/10.3389/fpsyg.2013.00467] [PMID: 23898312]
[33]
Galetta KM, Chapman KR, Essis MD, et al. Screening utility of the King-Devick test in mild cognitive impairment and Alzheimer’s disease dementia. Alzheimer Dis Assoc Disord 2017; 31(2): 152-8.
[http://dx.doi.org/10.1097/WAD.0000000000000157] [PMID: 27299935]
[34]
Hannonen S, Andberg S, Kärkkäinen V, et al. Shortening of saccades as a possible easy-to-use biomarker to detect risk of Alzheimer’s disease. J Alzheimers Dis 2022; 88(2): 609-18.
[http://dx.doi.org/10.3233/JAD-215551] [PMID: 35662117]
[35]
Boucart M, Bubbico G, Szaffarczyk S, Pasquier F. Animal spotting in Alzheimer’s disease: An eye tracking study of object categorization. J Alzheimers Dis 2014; 39(1): 181-9.
[http://dx.doi.org/10.3233/JAD-131331] [PMID: 24121969]
[36]
Pereira MLGF, Camargo MZA, Bellan AFR, et al. Visual search efficiency in mild cognitive impairment and Alzheimer’s disease: An eye movement study. J Alzheimers Dis 2020; 75(1): 261-75.
[http://dx.doi.org/10.3233/JAD-190690] [PMID: 32250291]
[37]
Ramzaoui H, Faure S, David R, Spotorno S. Top-down and bottom-up sources of eye-movement guidance during realistic scene search in Alzheimer’s disease. Neuropsychology 2022; 36(7): 597-613.
[http://dx.doi.org/10.1037/neu0000797] [PMID: 35797174]
[38]
Davis R, Sikorskii A. Eye tracking analysis of visual cues during wayfinding in early stage Alzheimer’s disease. Dement Geriatr Cogn Disord 2020; 49(1): 91-7.
[http://dx.doi.org/10.1159/000506859] [PMID: 32516764]
[39]
Chiu YC, Algase D, Whall A, et al. Getting lost: Directed attention and executive functions in early Alzheimer’s disease patients. Dement Geriatr Cogn Disord 2004; 17(3): 174-80.
[http://dx.doi.org/10.1159/000076353] [PMID: 14739541]
[40]
Davis R, Ohman JM, Weisbeck C. Salient cues and wayfinding in alzheimer’s disease within a virtual senior residence. Environ Behav 2017; 49(9): 1038-65.
[http://dx.doi.org/10.1177/0013916516677341] [PMID: 29230067]
[41]
Fernández G, Laubrock J, Mandolesi P, Colombo O, Agamennoni O. Registering eye movements during reading in Alzheimer’s disease: Difficulties in predicting upcoming words. J Clin Exp Neuropsychol 2014; 36(3): 302-16.
[http://dx.doi.org/10.1080/13803395.2014.892060] [PMID: 24580505]
[42]
Fernández G, Castro LR, Schumacher M, Agamennoni OE. Diagnosis of mild Alzheimer disease through the analysis of eye movements during reading. J Integr Neurosci 2015; 14(1): 121-33.
[http://dx.doi.org/10.1142/S0219635215500090] [PMID: 25728469]
[43]
Fernández G, Schumacher M, Castro L, Orozco D, Agamennoni O. Patients with mild Alzheimer’s disease produced shorter outgoing saccades when reading sentences. Psychiatry Res 2015; 229(1-2): 470-8.
[http://dx.doi.org/10.1016/j.psychres.2015.06.028] [PMID: 26228165]
[44]
Suzuki A, Shinozaki J, Yazawa S, et al. Establishing a new screening system for mild cognitive impairment and Alzheimer’s disease with mental rotation tasks that evaluate visuospatial function. J Alzheimers Dis 2018; 61(4): 1653-65.
[http://dx.doi.org/10.3233/JAD-170801] [PMID: 29376869]
[45]
Fernández G, Orozco D, Agamennoni O, et al. Visual processing during short-term memory binding in mild Alzheimer’s disease. J Alzheimers Dis 2018; 63(1): 185-94.
[http://dx.doi.org/10.3233/JAD-170728] [PMID: 29614644]
[46]
Nakamagoe K, Yamada S, Kawakami R, Koganezawa T, Tamaoka A. Abnormal saccadic intrusions with Alzheimer’s disease in darkness. Curr Alzheimer Res 2019; 16(4): 293-301.
[http://dx.doi.org/10.2174/1567205016666190311102130] [PMID: 30854969]
[47]
Laurens B, Planche V, Cubizolle S, et al. A spatial decision eye-tracking task in patients with prodromal and mild Alzheimer’s disease. J Alzheimers Dis 2019; 71(2): 613-21.
[http://dx.doi.org/10.3233/JAD-190549] [PMID: 31424412]
[48]
Polden M, Crawford TJ. Active visual inhibition is preserved in the presence of a distracter: A cross-cultural, ageing and dementia study. Cortex 2021; 142: 169-85.
[http://dx.doi.org/10.1016/j.cortex.2021.05.016] [PMID: 34271261]
[49]
Kim KW, Choi J, Chin J, Lee BH, Na DL. Eye-tracking metrics for figure-copying processes in early-vs. late-onset Alzheimer’s disease. Front Neurol 2022; 13: 844341.
[http://dx.doi.org/10.3389/fneur.2022.844341] [PMID: 35651346]
[50]
Moghadami M, Moghimi S, Moghimi A, Malekzadeh GR, Fadardi JS. The investigation of simultaneous EEG and eye tracking characteristics during fixation task in mild Alzheimer’s disease. Clin EEG Neurosci 2021; 52(3): 211-20.
[http://dx.doi.org/10.1177/1550059420932752] [PMID: 32539459]
[51]
Peltsch A, Hemraj A, Garcia A, Munoz DP. Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer’s disease. Eur J Neurosci 2014; 39(11): 2000-13.
[http://dx.doi.org/10.1111/ejn.12617] [PMID: 24890471]
[52]
Crawford TJ, Higham S, Mayes J, Dale M, Shaunak S, Lekwuwa G. The role of working memory and attentional disengagement on inhibitory control: Effects of aging and Alzheimer’s disease. Age (Omaha) 2013; 35(5): 1637-50.
[http://dx.doi.org/10.1007/s11357-012-9466-y] [PMID: 22903189]
[53]
Chehrehnegar N, Shati M, Esmaeili M, Foroughan M. Executive function deficits in mild cognitive impairment: Evidence from saccade tasks. Aging Ment Health 2022; 26(5): 1001-9.
[http://dx.doi.org/10.1080/13607863.2021.1913471] [PMID: 33928806]
[54]
Holden JG, Cosnard A, Laurens B, et al. Prodromal Alzheimer’s disease demonstrates increased errors at a simple and automated anti-saccade task. J Alzheimers Dis 2018; 65(4): 1209-23.
[http://dx.doi.org/10.3233/JAD-180082] [PMID: 30149445]
[55]
Bourgin J, Guyader N, Chauvin A, et al. Early emotional attention is impacted in Alzheimer’s disease: An eye-tracking study. J Alzheimers Dis 2018; 63(4): 1445-58.
[http://dx.doi.org/10.3233/JAD-180170] [PMID: 29782325]
[56]
Noiret N, Carvalho N, Laurent É, et al. Saccadic eye movements and attentional control in Alzheimer’s disease. Arch Clin Neuropsychol 2018; 33(1): 1-13.
[http://dx.doi.org/10.1093/arclin/acx044] [PMID: 28525567]
[57]
Opwonya J, Wang C, Jang KM, Lee K, Kim JI, Kim JU. Inhibitory control of saccadic eye movements and cognitive impairment in mild cognitive impairment. Front Aging Neurosci 2022; 14: 871432.
[http://dx.doi.org/10.3389/fnagi.2022.871432] [PMID: 35478701]
[58]
Shakespeare TJ, Kaski D, Yong KXX, et al. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain 2015; 138(7): 1976-91.
[http://dx.doi.org/10.1093/brain/awv103] [PMID: 25895507]
[59]
Lage C, López-García S, Bejanin A, et al. Distinctive oculomotor behaviors in Alzheimer’s disease and frontotemporal dementia. Front Aging Neurosci 2021; 12: 603790.
[http://dx.doi.org/10.3389/fnagi.2020.603790] [PMID: 33613262]
[60]
Ciuffreda KJ, Tannen B. Eye movement basics for the clinician. Amsterdam: Elsevier 1995.
[61]
Engbert R, Kliegl R. Microsaccades uncover the orientation of covert attention. Vision Res 2003; 43(9): 1035-45.
[http://dx.doi.org/10.1016/S0042-6989(03)00084-1] [PMID: 12676246]
[62]
Nealson RL, Arrington LE, Fironzshahi N, et al. A constructivist lens of eye-tracking in special populations.International encyclopedia of education. (4th ed..). Amsterdam: Elsevier Ltd. 2023; pp. 414-22.
[63]
Komogortsev OV, Gobert DV, Jayarathna S, Gowda SM, Gowda S. Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans Biomed Eng 2010; 57(11): 2635-45.
[http://dx.doi.org/10.1109/TBME.2010.2057429] [PMID: 20667803]
[64]
Nyström M, Holmqvist K. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behav Res Methods 2010; 42(1): 188-204.
[http://dx.doi.org/10.3758/BRM.42.1.188] [PMID: 20160299]
[65]
Friedman L, Rigas I, Abdulin E, Komogortsev OV. A novel evaluation of two related and two independent algorithms for eye movement classification during reading. Behav Res Methods 2018; 50(4): 1374-97.
[http://dx.doi.org/10.3758/s13428-018-1050-7] [PMID: 29766396]
[66]
Voloh B, Watson MR, König S, Womelsdorf T. MAD saccade: Statistically robust saccade threshold estimation via the median absolute deviation. J Eye Mov Res 2020; 12(8): 3.
[http://dx.doi.org/10.16910/jemr.12.8.3] [PMID: 33828776]
[67]
König SD, Buffalo EA. A nonparametric method for detecting fixations and saccades using cluster analysis: Removing the need for arbitrary thresholds. J Neurosci Methods 2014; 227: 121-31.
[http://dx.doi.org/10.1016/j.jneumeth.2014.01.032] [PMID: 24509130]
[68]
Santini T, Fuhl W, Kübler T, Kasneci E. Bayesian identification of fixations, saccades, and smooth pursuits. Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research. 14–17 March; New York, USA: 2016; pp. 163-70.
[http://dx.doi.org/10.1145/2857491.2857512]
[69]
Pekkanen J, Lappi O. A new and general approach to signal denoising and eye movement classification based on segmented linear regression. Sci Rep 2017; 7(1): 17726.
[http://dx.doi.org/10.1038/s41598-017-17983-x] [PMID: 29255207]
[70]
Komogortsev OV, Khan J. Kalman filtering in the design of eyegaze-guided computer interfaces. International Conference on Human-Computer Interaction (HCI 2007). 22-27 July 2007; Berlin, Heidelberg, China, . 2007; pp. 1-10.
[71]
Sauter D, Martin BJ, Di Renzo N, Vomscheid C. Analysis of eye tracking movements using innovations generated by a Kalman filter. Med Biol Eng Comput 1991; 29(1): 63-9.
[http://dx.doi.org/10.1007/BF02446297] [PMID: 2016922]
[72]
Salvucci DD, Goldberg JH. Identifying fixations and saccades in eye tracking protocols. Proceedings of the 2000 Symposium Eye Tracking Research. Application, Florida, USA. New York, USA: 2000; pp. 6-8 November; 71-8.
[http://dx.doi.org/10.1145/355017.355028]
[73]
Engbert R, Mergenthaler K. Microsaccades are triggered by low retinal image slip. Proc Natl Acad Sci USA 2006; 103(18): 7192-7.
[http://dx.doi.org/10.1073/pnas.0509557103] [PMID: 16632611]
[74]
Zhu H, Salcudean S, Rohling R. The Neyman Pearson detection of microsaccades with maximum likelihood estimation of parameters. J Vis 2019; 19(13): 17.
[http://dx.doi.org/10.1167/19.13.17]
[75]
Bellet ME, Bellet J, Nienborg H, Hafed ZM, Berens P. Human-level saccade detection performance using deep neural networks. J Neurophysiol 2019; 121(2): 646-61.
[http://dx.doi.org/10.1152/jn.00601.2018] [PMID: 30565968]
[76]
Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. A parametric model for saccadic eye movement. 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 03-03 December 2016; Philadelphia, PA, USA, . 2016.
[http://dx.doi.org/10.1109/SPMB.2016.7846860]
[77]
Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. Detection of normal and slow saccades using implicit piecewise polynomial approximation. J Vis 2021; 21(6): 8.
[http://dx.doi.org/10.1167/jov.21.6.8]
[78]
Larsson L, Nyström M, Stridh M. Detection of saccades and postsaccadic oscillations in the presence of smooth pursuit. IEEE Trans Biomed Eng 2013; 60(9): 2484-93.
[http://dx.doi.org/10.1109/TBME.2013.2258918] [PMID: 23625350]
[79]
Rizzo JR, Hudson TE, Dai W, et al. Rapid number naming in chronic concussion: Eye movements in the King–Devick test. Ann Clin Transl Neurol 2016; 3(10): 801-11.
[http://dx.doi.org/10.1002/acn3.345] [PMID: 27752515]
[80]
Zemblys R, Niehorster DC, Komogortsev O, Holmqvist K. Using machine learning to detect events in eye-tracking data. Behav Res Methods 2018; 50(1): 160-81.
[http://dx.doi.org/10.3758/s13428-017-0860-3] [PMID: 28233250]
[81]
Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 1964; 36(8): 1627-39.
[http://dx.doi.org/10.1021/ac60214a047]
[82]
Dai W, Selesnick I, Rizzo JR, Rucker J, Hudson T. A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades. J Vis 2017; 17(9): 10.
[http://dx.doi.org/10.1167/17.9.10]