Carboxylic Group Functionalized Carbon Quantum Dots inhibit Hen Egg White Lysozyme Amyloidogenesis, leading to the Formation of Spherical Aggregates with Reduced Toxicity and ROS Generation

Page: [626 - 637] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Proteinopathies are a group of diseases where the protein structure has been altered. These alterations are linked to the production of amyloids, which are persistent, organized clumps of protein molecules through inter-molecular interactions. Several disorders, including Alzheimer's and Parkinson's, have been related to the presence of amyloids. Highly ordered beta sheets or beta folds are characteristic of amyloids; these structures can further self- assemble into stable fibrils.

Methods: Protein aggregation is caused by a wide variety of environmental and experimental factors, including mutations, high pH, high temperature, and chemical modification. Despite several efforts, a cure for amyloidosis has yet to be found. Due to its advantageous semi-conducting characteristics, unique optical features, high surface area-to-volume ratio, biocompatibility, etc., carbon quantum dots (CQDs) have lately emerged as key instruments for a wide range of biomedical applications. To this end, we have investigated the effect of CQDs with a carboxyl group on their surface (CQD-CA) on the in vitro amyloidogenesis of hen egg white lysozyme (HEWL).

Results: By generating a stable compound that is resistant to fibrillation, our findings show that CQD-CA can suppress amyloid and disaggregate HEWL. In addition, CQD-CA caused the creation of non-toxic spherical aggregates, which generated much less reactive oxygen species (ROS).

Conclusion: Overall, our results show that more research into amyloidosis treatments, including surface functionalized CQDs, is warranted.

Graphical Abstract

[1]
Arosio, P.; Knowles, T.P.J.; Linse, S. On the lag phase in amyloid fibril formation. Phys. Chem. Chem. Phys., 2015, 17(12), 7606-7618.
[http://dx.doi.org/10.1039/C4CP05563B] [PMID: 25719972]
[2]
Olzscha, H.; Schermann, S.M.; Woerner, A.C.; Pinkert, S.; Hecht, M.H.; Tartaglia, G.G.; Vendruscolo, M.; Hayer-Hartl, M.; Hartl, F.U.; Vabulas, R.M. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell, 2011, 144(1), 67-78.
[http://dx.doi.org/10.1016/j.cell.2010.11.050] [PMID: 21215370]
[3]
Ferrone, F. Analysis of protein aggregation kinetics. Methods in enzymology; Academic Press: Massachusetts, United States, 1999, pp. 256-274.
[4]
Chatterjee, R.; Kolli, V.; Sarkar, N. Trehalose and magnesium chloride exert a common anti-amyloidogenic effect towards hen egg white lysozyme. Protein J., 2017, 36(2), 138-146.
[http://dx.doi.org/10.1007/s10930-017-9705-2] [PMID: 28299593]
[5]
Javed, M.; Saqib, A.N.S.; Ata-ur-Rehman; Ali, B.; Faizan, M.; Anang, D.A.; Iqbal, Z.; Abbas, S.M. Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim. Acta, 2019, 297, 250-257.
[http://dx.doi.org/10.1016/j.electacta.2018.11.167]
[6]
Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci. Rep., 2016, 6(1), 31100.
[http://dx.doi.org/10.1038/srep31100] [PMID: 27492748]
[7]
Chandra, S.; Pathan, S.H.; Mitra, S.; Modha, B.H.; Goswami, A.; Pramanik, P. Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Advances, 2012, 2(9), 3602-3606.
[http://dx.doi.org/10.1039/c2ra00030j]
[8]
Pires, N.R.; Santos, C.M.W.; Sousa, R.R.; Paula, R.C.M.; Cunha, P.L.R.; Feitosa, J.P.A. Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum. J. Braz. Chem. Soc., 2015, 26, 1274-1282.
[http://dx.doi.org/10.5935/0103-5053.20150094]
[9]
S, T.; D, R.S. Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl. Surf. Sci., 2016, 390, 435-443.
[http://dx.doi.org/10.1016/j.apsusc.2016.08.106]
[10]
Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry, 2014, 20(17), 4993-4999.
[http://dx.doi.org/10.1002/chem.201304869] [PMID: 24623706]
[11]
Liu, C.; Zhang, P.; Zhai, X.; Tian, F.; Li, W.; Yang, J.; Liu, Y.; Wang, H.; Wang, W.; Liu, W. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012, 33(13), 3604-3613.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.052] [PMID: 22341214]
[12]
Zhao, Y.; Zhang, Y.; Liu, X.; Kong, H.; Wang, Y.; Qin, G.; Cao, P.; Song, X.; Yan, X.; Wang, Q.; Qu, H. Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Sci. Rep., 2017, 7(1), 4452.
[http://dx.doi.org/10.1038/s41598-017-04073-1] [PMID: 28667269]
[13]
Zhu, C.; Zhai, J.; Dong, S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. (Camb.), 2012, 48(75), 9367-9369.
[http://dx.doi.org/10.1039/c2cc33844k] [PMID: 22911246]
[14]
Zhang, B.; Liu, C.; Liu, Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles. Eur. J. Inorg. Chem., 2010, 2010(28), 4411-4414.
[http://dx.doi.org/10.1002/ejic.201000622]
[15]
Xu, Y.; Wu, M.; Liu, Y.; Feng, X.Z.; Yin, X.B.; He, X.W.; Zhang, Y.K. Nitrogen-doped carbon dots: A facile and general preparation method, photoluminescence investigation, and imaging applications. Chemistry, 2013, 19(7), 2276-2283.
[http://dx.doi.org/10.1002/chem.201203641] [PMID: 23322649]
[16]
Liu, Y.; Zhao, Y.; Zhang, Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens. Actuators B Chem., 2014, 196, 647-652.
[http://dx.doi.org/10.1016/j.snb.2014.02.053]
[17]
Sachdev, A.; Gopinath, P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst (Lond.), 2015, 140(12), 4260-4269.
[http://dx.doi.org/10.1039/C5AN00454C] [PMID: 25927267]
[18]
Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sens. Actuators B Chem., 2017, 242, 679-686.
[http://dx.doi.org/10.1016/j.snb.2016.11.109]
[19]
Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater. Lett., 2012, 66(1), 222-224.
[http://dx.doi.org/10.1016/j.matlet.2011.08.081]
[20]
Sun, D.; Ban, R.; Zhang, P.H.; Wu, G.H.; Zhang, J.R.; Zhu, J.J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon, 2013, 64, 424-434.
[http://dx.doi.org/10.1016/j.carbon.2013.07.095]
[21]
Chunduri, L.A.A.; Kurdekar, A.; Patnaik, S.; Dev, B.V.; Rattan, T.M.; Kamisetti, V. Carbon quantum dots from coconut husk: Evaluation for antioxidant and cytotoxic activity. Materials Focus, 2016, 5(1), 55-61.
[http://dx.doi.org/10.1166/mat.2016.1289]
[22]
Sarkar, N.; Kumar Dubey, V. Protein nano-fibrillar structure and associated diseases. Curr. Proteomics, 2010, 7(2), 116-120.
[http://dx.doi.org/10.2174/157016410791330516]
[23]
Bloch, D.N.; Ben Zichri, S.; Kolusheva, S.; Jelinek, R. Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. Nanoscale Adv., 2020, 2(12), 5866-5873.
[http://dx.doi.org/10.1039/D0NA00870B] [PMID: 36133854]
[24]
Li, S.; Wang, L.; Chusuei, C.C.; Suarez, V.M.; Blackwelder, P.L.; Micic, M.; Orbulescu, J.; Leblanc, R.M. Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem. Mater., 2015, 27(5), 1764-1771.
[http://dx.doi.org/10.1021/cm504572b]
[25]
Kuruvilla, S.J.; Li, S.; Sansalone, L.; Fortes, B.; Zheng, I.; Blackwelder, P.; Pumilia, C.; Micic, M.; Orbulescu, J.; Leblanc, R.M. Dihydrolipoic acid conjugated carbon dots accelerate human insulin fibrillation. J. Parkinsons Dis. Alzheimers Dis., 2015, 2(1), 1.
[26]
Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. Carbon dots: Surface engineering and applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(35), 5772-5788.
[http://dx.doi.org/10.1039/C6TB00976J] [PMID: 32263748]
[27]
Kalhor, H.R.; Yahyazadeh, A. Investigating the effects of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation. Colloids Surf. B Biointerfaces, 2019, 176, 471-479.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.033] [PMID: 30684903]
[28]
Wu, J.A.; Chen, Y.C.; Tu, L.H. Dopamine-conjugated carbon dots inhibit human calcitonin fibrillation. Nanomaterials (Basel), 2021, 11(9), 2242.
[http://dx.doi.org/10.3390/nano11092242] [PMID: 34578556]
[29]
Zaman, M.; Ahmad, E.; Qadeer, A.; Rabbani, G.; Khan, R.H. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomedicine, 2014, 9, 899-912.
[PMID: 24611007]
[30]
Prabhu, M.P.T.; Sarkar, N. Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophys. Chem., 2022, 280, 106714.
[http://dx.doi.org/10.1016/j.bpc.2021.106714] [PMID: 34749221]
[31]
Ulicna, K.; Bednarikova, Z.; Hsu, W.T.; Holztragerova, M.; Wu, J.W.; Hamulakova, S.; Wang, S.S.S.; Gazova, Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf. B Biointerfaces, 2018, 166, 108-118.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.010] [PMID: 29550545]
[32]
Sulatsky, M.I.; Sulatskaya, A.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14(1), 67-75.
[http://dx.doi.org/10.1080/19336896.2020.1720487] [PMID: 32008441]
[33]
Antosova, A.; Chelli, B.; Bystrenova, E.; Siposova, K.; Valle, F.; Imrich, J.; Vilkova, M.; Kristian, P.; Biscarini, F.; Gazova, Z. Structure-activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(4), 465-474.
[http://dx.doi.org/10.1016/j.bbagen.2011.01.007] [PMID: 21276838]
[34]
Bourassa, P.; Kanakis, C.D.; Tarantilis, P.; Pollissiou, M.G.; Tajmir-Riahi, H.A. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B, 2010, 114(9), 3348-3354.
[http://dx.doi.org/10.1021/jp9115996] [PMID: 20148537]
[35]
Zhang, C.; Gao, C.; Mu, J.; Qiu, Z.; Li, L. Spectroscopic studies on unfolding processes of apo-neuroglobin induced by guanidine hydrochloride and urea. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/349542] [PMID: 23984347]
[36]
Wang, B.B.; Wang, Y.Y.; Zhang, X.Y.; Xu, Z.Q.; Jiang, P.; Jiang, F.L.; Liu, Y. Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. Int. J. Biol. Macromol., 2020, 147, 453-462.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.267] [PMID: 31923519]
[37]
Han, Q.; Cai, S.; Yang, L.; Wang, X.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl. Mater. Interfaces, 2017, 9(25), 21116-21123.
[http://dx.doi.org/10.1021/acsami.7b03816] [PMID: 28613069]
[38]
Seraghni, N.; Belattar, S.; Mameri, Y.; Debbache, N.; Sehili, T. Fe (III)-citrate-complex-induced photooxidation of 3-methylphenol in aqueous solution. Int. J. Photoenergy, 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/630425]
[39]
Pimpang, P.; Sumang, R.; Choopun, S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2018, 45(5), 2005.
[40]
Clogston, J.D.; Patri, A.K. Zeta potential measurement.Characterization of Nanoparticles intended for drug delivery: Methods in Molecular Biology; McNeil, S., Ed.; Humana Press: New Jersey, 2010, pp. 63-70.
[41]
Ahlawat, J.; Narayan, M. Multifunctional carbon quantum dots prevent soluble-to-toxic transformation of amyloid and oxidative stress. ACS Sustain. Chem. Eng., 2022, 10(14), 4610-4622.
[http://dx.doi.org/10.1021/acssuschemeng.1c08638]
[42]
Whitmore, L.; Wallace, B.A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89(5), 392-400.
[http://dx.doi.org/10.1002/bip.20853] [PMID: 17896349]
[43]
Maity, S.; Kumar, R.; Maity, S.K.; Jana, P.; Bera, S.; Haldar, D. Synthesis and study of 2-acetyl amino-3-[4-(2-amino-5-sulfo-phenylazo)-phenyl]-propionic acid: A new class of inhibitor for hen egg white lysozyme amyloidogenesis. Med. Chem. Comm., 2013, 4(3), 530-536.
[http://dx.doi.org/10.1039/c2md20236k]
[44]
Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J.M.; Raussens, V. ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. Biochim. Biophys. Acta Biomembr., 2013, 1828(10), 2328-2338.
[http://dx.doi.org/10.1016/j.bbamem.2013.04.012]
[45]
Pace, C.N.; Scholtz, J.M. Measuring the conformational stability of a protein. In Protein structure: A practical approach; Creighton, T.E., Ed.; Oxford University Press: Oxford, 1997, pp. 299-321.
[http://dx.doi.org/10.1093/oso/9780199636198.003.0012]
[46]
Fersht, A.R. A kinetically significant intermediate in the folding of barnase. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14121-14126.
[http://dx.doi.org/10.1073/pnas.260502597] [PMID: 11114199]
[47]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[48]
Getachew, G.; Korupalli, C.; Rasal, A.S.; Chang, J.Y. ROS generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics to integrate with polydopamine nanoparticles/GOx towards cooperative cancer therapy. Compos., Part B Eng., 2021, 226, 109364.
[http://dx.doi.org/10.1016/j.compositesb.2021.109364]