ANRIL: A Long Noncoding RNA in Age-related Diseases

Page: [1930 - 1939] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.

[1]
Li, Z.; Zhang, Z.; Ren, Y.; Wang, Y.; Fang, J.; Yue, H.; Ma, S.; Guan, F. Aging and age‐related diseases: From mechanisms to therapeutic strategies. Biogerontology, 2021, 22(2), 165-187.
[http://dx.doi.org/10.1007/s10522-021-09910-5] [PMID: 33502634]
[2]
Kontis, V.; Bennett, J.E.; Mathers, C.D.; Li, G.; Foreman, K.; Ezzati, M. Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. Lancet, 2017, 389(10076), 1323-1335.
[http://dx.doi.org/10.1016/S0140-6736(16)32381-9] [PMID: 28236464]
[3]
Niccoli, T.; Partridge, L. Ageing as a risk factor for disease. Curr. Biol., 2012, 22(17), R741-R752.
[http://dx.doi.org/10.1016/j.cub.2012.07.024] [PMID: 22975005]
[4]
Zarrouk, A.; Vejux, A.; Mackrill, J.; O’Callaghan, Y.; Hammami, M.; O’Brien, N.; Lizard, G. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res. Rev., 2014, 18, 148-162.
[http://dx.doi.org/10.1016/j.arr.2014.09.006] [PMID: 25305550]
[5]
Hirode, G.; Wong, R.J. Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA, 2020, 323(24), 2526-2528.
[http://dx.doi.org/10.1001/jama.2020.4501] [PMID: 32573660]
[6]
Bao, Q.; Pan, J.; Qi, H.; Wang, L.; Qian, H.; Jiang, F.; Shao, Z.; Xu, F.; Tao, Z.; Ma, Q.; Nelson, P.; Hu, X. Aging and age-related diseases – From endocrine therapy to target therapy. Mol. Cell. Endocrinol., 2014, 394(1-2), 115-118.
[http://dx.doi.org/10.1016/j.mce.2014.07.005] [PMID: 25038521]
[7]
Dominguez, L.J.; Barbagallo, M. The biology of the metabolic syndrome and aging. Curr. Opin. Clin. Nutr. Metab. Care, 2016, 19(1), 5-11.
[http://dx.doi.org/10.1097/MCO.0000000000000243] [PMID: 26560521]
[8]
Arora, R.; Lee, Y.; Wischnewski, H.; Brun, C.M.; Schwarz, T.; Azzalin, C.M. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun., 2014, 5(1), 5220.
[http://dx.doi.org/10.1038/ncomms6220] [PMID: 25330849]
[9]
Delás, M.J.; Sabin, L.R.; Dolzhenko, E.; Knott, S.R.V.; Munera Maravilla, E.; Jackson, B.T.; Wild, S.A.; Kovacevic, T.; Stork, E.M.; Zhou, M.; Erard, N.; Lee, E.; Kelley, D.R.; Roth, M.; Barbosa, I.A.M.; Zuber, J.; Rinn, J.L.; Smith, A.D.; Hannon, G.J. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. eLife, 2017, 6, e25607.
[http://dx.doi.org/10.7554/eLife.25607] [PMID: 28875933]
[10]
Sirey, T.M. The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. eLife, 2019, 8, e45051.
[11]
Kitagawa, M.; Kitagawa, K.; Kotake, Y.; Niida, H.; Ohhata, T. Cell cycle regulation by long non-coding RNAs. Cell. Mol. Life Sci., 2013, 70(24), 4785-4794.
[http://dx.doi.org/10.1007/s00018-013-1423-0] [PMID: 23880895]
[12]
Matai, L.; Slack, F.J. MicroRNAs in age-related proteostasis and stress responses. Noncoding RNA, 2023, 9(2), 26.
[http://dx.doi.org/10.3390/ncrna9020026] [PMID: 37104008]
[13]
Wang, S.; Xiao, F.; Li, J.; Fan, X.; He, Z.; Yan, T.; Yang, M.; Yang, D. Circular RNAs involved in the regulation of the age-related pathways. Int. J. Mol. Sci., 2022, 23(18), 10443.
[http://dx.doi.org/10.3390/ijms231810443] [PMID: 36142352]
[14]
Kleaveland, B.; Shi, C.Y.; Stefano, J.; Bartel, D.P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell, 2018, 174(2), 350-362.e17.
[http://dx.doi.org/10.1016/j.cell.2018.05.022] [PMID: 29887379]
[15]
Ahn, J.H.; Lee, H.S.; Lee, J.S.; Lee, Y.S.; Park, J.L.; Kim, S.Y.; Hwang, J.A.; Kunkeaw, N.; Jung, S.Y.; Kim, T.J.; Lee, K.S.; Jeon, S.H.; Lee, I.; Johnson, B.H.; Choi, J.H.; Lee, Y.S. nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer. Nat. Commun., 2018, 9(1), 1166.
[http://dx.doi.org/10.1038/s41467-018-03556-7] [PMID: 29563500]
[16]
Jiang, L.; Shao, C.; Wu, Q.J.; Chen, G.; Zhou, J.; Yang, B.; Li, H.; Gou, L.T.; Zhang, Y.; Wang, Y.; Yeo, G.W.; Zhou, Y.; Fu, X.D. NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nat. Struct. Mol. Biol., 2017, 24(10), 816-824.
[http://dx.doi.org/10.1038/nsmb.3455] [PMID: 28846091]
[17]
Zealy, R.W.; Fomin, M.; Davila, S.; Makowsky, D.; Thigpen, H.; McDowell, C.H.; Cummings, J.C.; Lee, E.S.; Kwon, S.H.; Min, K.W.; Yoon, J.H. Long noncoding RNA complementarity and target transcripts abundance. Biochim. Biophys. Acta. Gene Regul. Mech., 2018, 1861(3), 224-234.
[http://dx.doi.org/10.1016/j.bbagrm.2018.02.001] [PMID: 29421307]
[18]
Schmidt, K.; Weidmann, C.A.; Hilimire, T.A.; Yee, E.; Hatfield, B.M.; Schneekloth, J.S., Jr; Weeks, K.M.; Novina, C.D. Targeting the oncogenic long non-coding RNA SLNCR1 by blocking its sequence-specific binding to the androgen receptor. Cell Rep., 2020, 30(2), 541-554.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.12.011] [PMID: 31940495]
[19]
Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv., 2017, 3(9), eaao2110.
[http://dx.doi.org/10.1126/sciadv.aao2110] [PMID: 28959731]
[20]
Jathar, S.; Kumar, V.; Srivastava, J.; Tripathi, V. Technological developments in lncRNA biology. Adv. Exp. Med. Biol., 2017, 1008, 283-323.
[http://dx.doi.org/10.1007/978-981-10-5203-3_10] [PMID: 28815544]
[21]
Wang, J.; Su, Z.; Lu, S.; Fu, W.; Liu, Z.; Jiang, X.; Tai, S. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin. Chim. Acta, 2018, 485, 229-233.
[http://dx.doi.org/10.1016/j.cca.2018.07.004] [PMID: 29981289]
[22]
Kong, Y.; Hsieh, C.H.; Alonso, L.C. ANRIL: A lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front. Endocrinol., 2018, 9, 405.
[http://dx.doi.org/10.3389/fendo.2018.00405] [PMID: 30087655]
[23]
Congrains, A.; Kamide, K.; Ohishi, M.; Rakugi, H. ANRIL: Molecular mechanisms and implications in human health. Int. J. Mol. Sci., 2013, 14(1), 1278-1292.
[http://dx.doi.org/10.3390/ijms14011278] [PMID: 23306151]
[24]
Maggi, L.B., Jr; Winkeler, C.L.; Miceli, A.P.; Apicelli, A.J.; Brady, S.N.; Kuchenreuther, M.J.; Weber, J.D. ARF tumor suppression in the nucleolus. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(6), 831-839.
[http://dx.doi.org/10.1016/j.bbadis.2014.01.016] [PMID: 24525025]
[25]
Meseure, D.; Vacher, S.; Alsibai, K.D.; Nicolas, A.; Chemlali, W.; Caly, M.; Lidereau, R.; Pasmant, E.; Callens, C.; Bieche, I. Expression of ANRIL –polycomb complexes– CDKN2A/B/ARF genes in breast tumors: Identification of a two-gene (EZH2/CBX7) signature with independent prognostic value. Mol. Cancer Res., 2016, 14(7), 623-633.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0418] [PMID: 27102007]
[26]
Aguilo, F.; Zhou, M.M.; Walsh, M.J. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res., 2011, 71(16), 5365-5369.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4379] [PMID: 21828241]
[27]
Li, W.Q.; Pfeiffer, R.M.; Hyland, P.L.; Shi, J.; Gu, F.; Wang, Z.; Bhattacharjee, S.; Luo, J.; Xiong, X.; Yeager, M.; Deng, X.; Hu, N.; Taylor, P.R.; Albanes, D.; Caporaso, N.E.; Gapstur, S.M.; Amundadottir, L.; Chanock, S.J.; Chatterjee, N.; Landi, M.T.; Tucker, M.A.; Goldstein, A.M.; Yang, X.R. Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. Carcinogenesis, 2014, 35(12), 2698-2705.
[http://dx.doi.org/10.1093/carcin/bgu203] [PMID: 25239644]
[28]
Zhang, H.; Ahearn, T.U.; Lecarpentier, J.; Barnes, D.; Beesley, J.; Qi, G.; Jiang, X.; O’Mara, T.A.; Zhao, N.; Bolla, M.K.; Dunning, A.M.; Dennis, J.; Wang, Q.; Ful, Z.A.; Aittomäki, K.; Andrulis, I.L.; Anton-Culver, H.; Arndt, V.; Aronson, K.J.; Arun, B.K.; Auer, P.L.; Azzollini, J.; Barrowdale, D.; Becher, H.; Beckmann, M.W.; Behrens, S.; Benitez, J.; Bermisheva, M.; Bialkowska, K.; Blanco, A.; Blomqvist, C.; Bogdanova, N.V.; Bojesen, S.E.; Bonanni, B.; Bondavalli, D.; Borg, A.; Brauch, H.; Brenner, H.; Briceno, I.; Broeks, A.; Brucker, S.Y.; Brüning, T.; Burwinkel, B.; Buys, S.S.; Byers, H.; Caldés, T.; Caligo, M.A.; Calvello, M.; Campa, D.; Castelao, J.E.; Chang-Claude, J.; Chanock, S.J.; Christiaens, M.; Christiansen, H.; Chung, W.K.; Claes, K.B.M.; Clarke, C.L.; Cornelissen, S.; Couch, F.J.; Cox, A.; Cross, S.S.; Czene, K.; Daly, M.B.; Devilee, P.; Diez, O.; Domchek, S.M.; Dörk, T.; Dwek, M.; Eccles, D.M.; Ekici, A.B.; Evans, D.G.; Fasching, P.A.; Figueroa, J.; Foretova, L.; Fostira, F.; Friedman, E.; Frost, D.; Gago-Dominguez, M.; Gapstur, S.M.; Garber, J.; García-Sáenz, J.A.; Gaudet, M.M.; Gayther, S.A.; Giles, G.G.; Godwin, A.K.; Goldberg, M.S.; Goldgar, D.E.; González-Neira, A.; Greene, M.H.; Gronwald, J.; Guénel, P.; Häberle, L.; Hahnen, E.; Haiman, C.A.; Hake, C.R.; Hall, P.; Hamann, U.; Harkness, E.F.; Heemskerk-Gerritsen, B.A.M.; Hillemanns, P.; Hogervorst, F.B.L.; Holleczek, B.; Hollestelle, A.; Hooning, M.J.; Hoover, R.N.; Hopper, J.L.; Howell, A.; Huebner, H.; Hulick, P.J.; Imyanitov, E.N.; Isaacs, C.; Izatt, L.; Jager, A.; Jakimovska, M.; Jakubowska, A.; James, P.; Janavicius, R.; Janni, W.; John, E.M.; Jones, M.E.; Jung, A.; Kaaks, R.; Kapoor, P.M.; Karlan, B.Y.; Keeman, R.; Khan, S.; Khusnutdinova, E.; Kitahara, C.M.; Ko, Y.D.; Konstantopoulou, I.; Koppert, L.B.; Koutros, S.; Kristensen, V.N.; Laenkholm, A.V.; Lambrechts, D.; Larsson, S.C.; Laurent-Puig, P.; Lazaro, C.; Lazarova, E.; Lejbkowicz, F.; Leslie, G.; Lesueur, F.; Lindblom, A.; Lissowska, J.; Lo, W.Y.; Loud, J.T.; Lubinski, J.; Lukomska, A.; MacInnis, R.J.; Mannermaa, A.; Manoochehri, M.; Manoukian, S.; Margolin, S.; Martinez, M.E.; Matricardi, L.; McGuffog, L.; McLean, C.; Mebirouk, N.; Meindl, A.; Menon, U.; Miller, A.; Mingazheva, E.; Montagna, M.; Mulligan, A.M.; Mulot, C.; Muranen, T.A.; Nathanson, K.L.; Neuhausen, S.L.; Nevanlinna, H.; Neven, P.; Newman, W.G.; Nielsen, F.C.; Nikitina-Zake, L.; Nodora, J.; Offit, K.; Olah, E.; Olopade, O.I.; Olsson, H.; Orr, N.; Papi, L.; Papp, J.; Park-Simon, T.W.; Parsons, M.T.; Peissel, B.; Peixoto, A.; Peshkin, B.; Peterlongo, P.; Peto, J.; Phillips, K.A.; Piedmonte, M.; Plaseska-Karanfilska, D.; Prajzendanc, K.; Prentice, R.; Prokofyeva, D.; Rack, B.; Radice, P.; Ramus, S.J.; Rantala, J.; Rashid, M.U.; Rennert, G.; Rennert, H.S.; Risch, H.A.; Romero, A.; Rookus, M.A.; Rübner, M.; Rüdiger, T.; Saloustros, E.; Sampson, S.; Sandler, D.P.; Sawyer, E.J.; Scheuner, M.T.; Schmutzler, R.K.; Schneeweiss, A.; Schoemaker, M.J.; Schöttker, B.; Schürmann, P.; Senter, L.; Sharma, P.; Sherman, M.E.; Shu, X.O.; Singer, C.F.; Smichkoska, S.; Soucy, P.; Southey, M.C.; Spinelli, J.J.; Stone, J.; Stoppa-Lyonnet, D.; Swerdlow, A.J.; Szabo, C.I.; Tamimi, R.M.; Tapper, W.J.; Taylor, J.A.; Teixeira, M.R.; Terry, M.; Thomassen, M.; Thull, D.L.; Tischkowitz, M.; Toland, A.E.; Tollenaar, R.A.E.M.; Tomlinson, I.; Torres, D.; Troester, M.A.; Truong, T.; Tung, N.; Untch, M.; Vachon, C.M.; van den Ouweland, A.M.W.; van der Kolk, L.E.; van Veen, E.M.; vanRensburg, E.J.; Vega, A.; Wappenschmidt, B.; Weinberg, C.R.; Weitzel, J.N.; Wildiers, H.; Winqvist, R.; Wolk, A.; Yang, X.R.; Yannoukakos, D.; Zheng, W.; Zorn, K.K.; Milne, R.L.; Kraft, P.; Simard, J.; Pharoah, P.D.P.; Michailidou, K.; Antoniou, A.C.; Schmidt, M.K.; Trench, C.G.; Easton, D.F.; Chatterjee, N.; Closas, G.M. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat. Genet., 2020, 52(6), 572-581.
[http://dx.doi.org/10.1038/s41588-020-0609-2] [PMID: 32424353]
[29]
Roca, A. A Association of ANRIL gene polymorphisms with major adverse cardiovascular events in hemodialysis patients. Clin. Chim. Acta, 2017, 466, 61-67.
[30]
MacMillan, H.J.; Kong, Y.; Roitberg, C.E.; Alonso, L.C.; Pai, A.A. High-throughput analysis of ANRIL circRNA isoforms in human pancreatic islets. Sci. Rep., 2022, 12(1), 7745.
[http://dx.doi.org/10.1038/s41598-022-11668-w] [PMID: 35546161]
[31]
Li, J.; Seligson, N.; Zhang, X.; Johnson, J.; Vangundy, Z.; Wang, D.; Phelps, M.; Hofmeister, C.; Sadee, W.; Poi, M.J. Association of ANRIL polymorphism with overall survival in adult patients with hematologic malignancies after allogeneic hematopoietic stem cell transplantation. Anticancer Res., 2020, 40(10), 5707-5713.
[http://dx.doi.org/10.21873/anticanres.14585] [PMID: 32988896]
[32]
Kong, Y.; Sharma, R.B.; Ly, S.; Stamateris, R.E.; Jesdale, W.M.; Alonso, L.C. CDKN2A/B T2D genome-wide association study risk SNPs impact locus gene expression and proliferation in human islets. Diabetes, 2018, 67(5), 872-884.
[http://dx.doi.org/10.2337/db17-1055] [PMID: 29432124]
[33]
Broadbent, H.M.; Peden, J.F.; Lorkowski, S.; Goel, A.; Ongen, H.; Green, F.; Clarke, R.; Collins, R.; Franzosi, M.G.; Tognoni, G.; Seedorf, U.; Rust, S.; Eriksson, P.; Hamsten, A.; Farrall, M.; Watkins, H. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet., 2008, 17(6), 806-814.
[http://dx.doi.org/10.1093/hmg/ddm352] [PMID: 18048406]
[34]
Pasmant, E.; Sabbagh, A.; Vidaud, M.; Bièche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J., 2011, 25(2), 444-448.
[http://dx.doi.org/10.1096/fj.10-172452] [PMID: 20956613]
[35]
Hubberten, M.; Bochenek, G.; Chen, H.; Häsler, R.; Wiehe, R.; Rosenstiel, P.; Jepsen, S.; Dommisch, H.; Schaefer, A.S. Linear isoforms of the long noncoding RNA CDKN2B-AS1 regulate the c-myc-enhancer binding factor RBMS1. Eur. J. Hum. Genet., 2019, 27(1), 80-89.
[http://dx.doi.org/10.1038/s41431-018-0210-7] [PMID: 30108282]
[36]
Taheri Bajgan, E.; Zahedmehr, A.; Shakerian, F.; Maleki, M.; Bakhshandeh, H.; Mowla, S.J.; Malakootian, M. Associations between low serum levels of ANRIL and some common gene SNPs in Iranian patients with premature coronary artery disease. Sci. Rep., 2024, 14(1), 1244.
[http://dx.doi.org/10.1038/s41598-024-51715-2] [PMID: 38218954]
[37]
Murray, R.; Bryant, J.; Titcombe, P.; Barton, S.J.; Inskip, H.; Harvey, N.C.; Cooper, C.; Lillycrop, K.; Hanson, M.; Godfrey, K.M. DNA methylation at birth within the promoter of ANRIL predicts markers of cardiovascular risk at 9 years. Clin. Epigenetics, 2016, 8(1), 90.
[http://dx.doi.org/10.1186/s13148-016-0259-5] [PMID: 27594927]
[38]
Rao, S.S.P.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; Aiden, E.L. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 2014, 159(7), 1665-1680.
[http://dx.doi.org/10.1016/j.cell.2014.11.021] [PMID: 25497547]
[39]
Pasmant, E.; Laurendeau, I.; Héron, D.; Vidaud, M.; Vidaud, D.; Bièche, I. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res., 2007, 67(8), 3963-3969.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2004] [PMID: 17440112]
[40]
Drak Alsibai, K.; Vacher, S.; Meseure, D.; Nicolas, A.; Lae, M.; Schnitzler, A.; Chemlali, W.; Cros, J.; Longchampt, E.; Cacheux, W.; Pignot, G.; Callens, C.; Pasmant, E.; Allory, Y.; Bieche, I. High positive correlations between ANRIL and p16-CDKN2A/p15-CDKN2B/p14-ARF gene cluster overexpression in multi-tumor types suggest deregulated activation of an ANRIL–ARF bidirectional promoter. Noncoding RNA, 2019, 5(3), 44.
[http://dx.doi.org/10.3390/ncrna5030044] [PMID: 31438464]
[41]
Matheu, A.; Maraver, A.; Collado, M.; Cao, G.I.; Cañamero, M.; Borras, C.; Flores, J.M.; Klatt, P.; Viña, J.; Serrano, M. Anti‐aging activity of the Ink4/Arf locus. Aging Cell, 2009, 8(2), 152-161.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00458.x] [PMID: 19239418]
[42]
Cánepa, E.T.; Scassa, M.E.; Ceruti, J.M.; Marazita, M.C.; Carcagno, A.L.; Sirkin, P.F.; Ogara, M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life, 2007, 59(7), 419-426.
[http://dx.doi.org/10.1080/15216540701488358] [PMID: 17654117]
[43]
Kong, Y.; Sharma, R.B.; Nwosu, B.U.; Alonso, L.C. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia, 2016, 59(8), 1579-1593.
[http://dx.doi.org/10.1007/s00125-016-3967-7] [PMID: 27155872]
[44]
Kaur, S.; Mirza, A.H.; Overgaard, A.J.; Pociot, F.; Størling, J. A dual systems genetics approach identifies common genes, networks, and pathways for type 1 and 2 diabetes in human islets. Front. Genet., 2021, 12, 630109.
[http://dx.doi.org/10.3389/fgene.2021.630109] [PMID: 33777101]
[45]
Dayeh, T.A.; Olsson, A.H.; Volkov, P.; Almgren, P.; Rönn, T.; Ling, C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia, 2013, 56(5), 1036-1046.
[http://dx.doi.org/10.1007/s00125-012-2815-7] [PMID: 23462794]
[46]
Qin, Q.; Zheng, P.; Tu, R.; Huang, J.; Cao, X. Integrated bioinformatics analysis for the identification of hub genes and signaling pathways related to circANRIL. PeerJ, 2022, 10, e13135.
[http://dx.doi.org/10.7717/peerj.13135] [PMID: 35497183]
[47]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[48]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[49]
Huang, T.; Zhao, H.Y.; Zhang, X.B.; Gao, X.L.; Peng, W.P.; Zhou, Y.; Zhao, W.H.; Yang, H.F. LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(4), 1956-1969.
[PMID: 32141564]
[50]
Gotoh, N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci., 2008, 99(7), 1319-1325.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00840.x] [PMID: 18452557]
[51]
Wang, J.; Zhao, S.M. LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sci., 2021, 264, 118728.
[http://dx.doi.org/10.1016/j.lfs.2020.118728] [PMID: 33160992]
[52]
Nikolajevic, J.; Ariaee, N.; Liew, A.; Abbasnia, S.; Fazeli, B.; Sabovic, M. The role of MicroRNAs in endothelial cell senescence. Cells, 2022, 11(7), 1185.
[http://dx.doi.org/10.3390/cells11071185] [PMID: 35406749]
[53]
Zhou, B.; Li, L.; Qiu, X.; Wu, J.; Xu, L.; Shao, W. Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol. Med. Rep., 2020, 22(2), 1489-1497.
[http://dx.doi.org/10.3892/mmr.2020.11203] [PMID: 32626959]
[54]
Mateo, R.C.; Pozo, L.S.; Thibaut, M.L.; Estellés, M.M.; Garcés, C.; González, D.; Lahuerta, M.; Aguado, C.; Giménez, G.J.L.; Sanz, P.; Pallardó, F.V. Age-Related microRNA overexpression in lafora disease male mice provides links between neuroinflammation and oxidative stress. Int. J. Mol. Sci., 2023, 24(2), 1089.
[http://dx.doi.org/10.3390/ijms24021089] [PMID: 36674605]
[55]
Achari, A.; Jain, S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18(6), 1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[56]
Straub, L.G.; Scherer, P.E. Metabolic messengers. Adiponectin. Nat. Metab., 2019, 1(3), 334-339.
[http://dx.doi.org/10.1038/s42255-019-0041-z] [PMID: 32661510]
[57]
Yanai, H.; Yoshida, H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int. J. Mol. Sci., 2019, 20(5), 1190.
[http://dx.doi.org/10.3390/ijms20051190] [PMID: 30857216]
[58]
Chen, C.; Zhou, M.; Ge, Y.; Wang, X. SIRT1 and aging related signaling pathways. Mech. Ageing Dev., 2020, 187, 111215.
[http://dx.doi.org/10.1016/j.mad.2020.111215] [PMID: 32084459]
[59]
Shen, P.; Deng, X.; Chen, Z.; Ba, X.; Qin, K.; Huang, Y.; Huang, Y.; Li, T.; Yan, J.; Tu, S. SIRT1: A potential therapeutic target in autoimmune diseases. Front. Immunol., 2021, 12, 779177.
[http://dx.doi.org/10.3389/fimmu.2021.779177] [PMID: 34887866]
[60]
Sun, L.Y.; Li, X.J.; Sun, Y.M.; Huang, W.; Fang, K.; Han, C.; Chen, Z.H.; Luo, X.Q.; Chen, Y.Q.; Wang, W.T. LncRNA ANRIL regulates AML development through modulating the glucose metabolism pathway of AdipoR1/AMPK/SIRT1. Mol. Cancer, 2018, 17(1), 127.
[http://dx.doi.org/10.1186/s12943-018-0879-9] [PMID: 30134922]
[61]
Harismendy, O.; Notani, D.; Song, X.; Rahim, N.G.; Tanasa, B.; Heintzman, N.; Ren, B.; Fu, X.D.; Topol, E.J.; Rosenfeld, M.G.; Frazer, K.A. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature, 2011, 470(7333), 264-268.
[http://dx.doi.org/10.1038/nature09753] [PMID: 21307941]
[62]
Wang, Y.; Wang, L.; Wen, X.; Hao, D.; Zhang, N.; He, G.; Jiang, X. NF-κB signaling in skin aging. Mech. Ageing Dev., 2019, 184, 111160.
[http://dx.doi.org/10.1016/j.mad.2019.111160] [PMID: 31634486]
[63]
Peng, C.; Ouyang, Y.; Lu, N.; Li, N. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: Recent advances. Front. Immunol., 2020, 11, 1387.
[http://dx.doi.org/10.3389/fimmu.2020.01387] [PMID: 32695120]
[64]
Guo, F.; Tang, C.; Li, Y.; Liu, Y.; Lv, P.; Wang, W.; Mu, Y. The interplay of Lnc RNA ANRIL and miR‐181b on the inflammation‐relevant coronary artery disease through mediating NF ‐κB signalling pathway. J. Cell. Mol. Med., 2018, 22(10), 5062-5075.
[http://dx.doi.org/10.1111/jcmm.13790] [PMID: 30079603]
[65]
Wei, J.C.; Shi, Y.L.; Wang, Q. LncRNA ANRIL knockdown ameliorates retinopathy in diabetic rats by inhibiting the NF-κB pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7732-7739.
[PMID: 31599399]
[66]
Zhou, X.; Han, X.; Wittfeldt, A.; Sun, J.; Liu, C.; Wang, X.; Gan, L.M.; Cao, H.; Liang, Z. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-κB pathway. RNA Biol., 2016, 13(1), 98-108.
[http://dx.doi.org/10.1080/15476286.2015.1122164] [PMID: 26618242]
[67]
Peng, W-X.; Koirala, P.; Mo, Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41), 5661-5667.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[68]
Luo, M.L. Methods to study long noncoding RNA biology in cancer. Adv. Exp. Med. Biol., 2016, 927, 69-107.
[http://dx.doi.org/10.1007/978-981-10-1498-7_3] [PMID: 27376732]
[69]
Jiang, L.; Li, Z.; Wang, R. Long non coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review). Int. J. Oncol., 2019, 55(3), 585-596.
[http://dx.doi.org/10.3892/ijo.2019.4850] [PMID: 31364742]
[70]
Hu, H.; Zhu, C.; Ai, H.; Zhang, L.; Zhao, J.; Zhao, Q.; Liu, H. LPI-ETSLP: lncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol. Biosyst., 2017, 13(9), 1781-1787.
[http://dx.doi.org/10.1039/C7MB00290D] [PMID: 28702594]
[71]
Zhang, W.; Yue, X.; Tang, G.; Wu, W.; Huang, F.; Zhang, X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput. Biol., 2018, 14(12), e1006616.
[http://dx.doi.org/10.1371/journal.pcbi.1006616] [PMID: 30533006]
[72]
Cai, R.; Jiang, J. LncRNA ANRIL silencing alleviates high glucose-induced inflammation, oxidative stress, and apoptosis via upregulation of MME in podocytes. Inflammation, 2020, 43(6), 2147-2155.
[http://dx.doi.org/10.1007/s10753-020-01282-1] [PMID: 32617859]
[73]
Sooshtari, P.; Feng, B.; Biswas, S.; Levy, M.; Lin, H.; Su, Z.; Chakrabarti, S. ANRIL regulates multiple molecules of pathogenetic significance in diabetic nephropathy. PLoS One, 2022, 17(8), e0270287.
[http://dx.doi.org/10.1371/journal.pone.0270287] [PMID: 35984863]
[74]
Thomas, A.A.; Feng, B.; Chakrabarti, S. ANRIL: A regulator of VEGF in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(1), 470-480.
[http://dx.doi.org/10.1167/iovs.16-20569] [PMID: 28122089]
[75]
Huang, M.; Chen, W.; Qi, F.; Xia, R.; Sun, M.; Xu, T.; Yin, L.; Zhang, E.; De, W.; Shu, Y. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J. Hematol. Oncol., 2015, 8(1), 57.
[http://dx.doi.org/10.1186/s13045-015-0153-1] [PMID: 27391317]
[76]
Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.M. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell, 2010, 38(5), 662-674.
[http://dx.doi.org/10.1016/j.molcel.2010.03.021] [PMID: 20541999]
[77]
Congrains, A.; Kamide, K.; Katsuya, T.; Yasuda, O.; Oguro, R.; Yamamoto, K.; Ohishi, M.; Rakugi, H. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC. Biochem. Biophys. Res. Commun., 2012, 419(4), 612-616.
[http://dx.doi.org/10.1016/j.bbrc.2012.02.050] [PMID: 22382030]
[78]
Holdt, L.M.; Hoffmann, S.; Sass, K.; Langenberger, D.; Scholz, M.; Krohn, K.; Finstermeier, K.; Stahringer, A.; Wilfert, W.; Beutner, F.; Gielen, S.; Schuler, G.; Gäbel, G.; Bergert, H.; Bechmann, I.; Stadler, P.F.; Thiery, J.; Teupser, D. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet., 2013, 9(7), e1003588.
[http://dx.doi.org/10.1371/journal.pgen.1003588] [PMID: 23861667]
[79]
He, C.; Wang, K.; Gao, Y.; Wang, C.; Li, L.; Liao, Y.; Hu, K.; Liang, M. Roles of noncoding RNA in reproduction. Front. Genet., 2021, 12, 777510.
[http://dx.doi.org/10.3389/fgene.2021.777510] [PMID: 34956326]
[80]
Xie, Y.; Dang, W.; Zhang, S.; Yue, W.; Yang, L.; Zhai, X.; Yan, Q.; Lu, J. The role of exosomal noncoding RNAs in cancer. Mol. Cancer, 2019, 18(1), 37.
[http://dx.doi.org/10.1186/s12943-019-0984-4] [PMID: 30849983]
[81]
Wang, Y.; Li, Q.; Wang, S.; Wang, B.; Jin, Y.; Hu, H.; Fu, Q.; Wang, J.; Wu, Q.; Qian, L.; Cao, T.; Xia, Y.; Huang, X.; Xu, L. The role of noncoding RNAs in cancer lipid metabolism. Front. Oncol., 2022, 12, 1026257.
[http://dx.doi.org/10.3389/fonc.2022.1026257] [PMID: 36452489]
[82]
Roberts, R.; Chang, C.C.; Hadley, T. Genetic risk stratification. JACC Basic Transl. Sci., 2021, 6(3), 287-304.
[http://dx.doi.org/10.1016/j.jacbts.2020.09.004] [PMID: 33778213]
[83]
Sun, J.; Qiu, S. Expression of lncRNA-ANRIL before and after treatment and its predictive value for short-term survival in patients with coronary heart disease. BioMed Res. Int., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/5431985] [PMID: 34901274]
[84]
Biswas, S.; Coyle, A.; Chen, S.; Gostimir, M.; Gonder, J.; Chakrabarti, S. Expressions of serum lncrnas in diabetic retinopathy – A potential diagnostic tool. Front. Endocrinol., 2022, 13, 851967.
[http://dx.doi.org/10.3389/fendo.2022.851967] [PMID: 35464068]
[85]
Crooke, S.T.; Witztum, J.L.; Bennett, C.F.; Baker, B.F. RNA-Targeted therapeutics. Cell Metab., 2018, 27(4), 714-739.
[http://dx.doi.org/10.1016/j.cmet.2018.03.004] [PMID: 29617640]
[86]
Zhang, L.; Li, C.; Su, X. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J. Exp. Clin. Cancer Res., 2020, 39(1), 271.
[http://dx.doi.org/10.1186/s13046-020-01784-8] [PMID: 33267888]
[87]
Hyttinen, J.M.T.; Blasiak, J.; Kaarniranta, K. Non-coding RNAs regulating mitochondrial functions and the oxidative stress response as putative targets against age-related macular degeneration (AMD). Int. J. Mol. Sci., 2023, 24(3), 2636.
[http://dx.doi.org/10.3390/ijms24032636] [PMID: 36768958]
[88]
Cherouveim, P.; Mavrogianni, D.; Drakaki, E.; Potiris, A.; Zikopoulos, A.; Papamentzelopoulou, M.; Kouvoutsaki, K.; Machairiotis, N.; Karampitsakos, T.; Skentou, C.; Domali, E.; Vrachnis, N.; Drakakis, P.; Stavros, S. ANRIL rs4977574 gene polymorphism in women with recurrent pregnancy loss. J. Clin. Med., 2023, 12(18), 5944.
[http://dx.doi.org/10.3390/jcm12185944] [PMID: 37762885]
[89]
Razeghian-Jahromi, I.; Zibaeenezhad, M.J.; Akhormeh, K.A.; Dara, M. Expression ratio of circular to linear ANRIL in hypertensive patients with coronary artery disease. Sci. Rep., 2022, 12(1), 1802.
[http://dx.doi.org/10.1038/s41598-022-05731-9] [PMID: 35110626]
[90]
Zindy, F.; Quelle, D.E.; Roussel, M.F.; Sherr, C.J. Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene, 1997, 15(2), 203-211.
[http://dx.doi.org/10.1038/sj.onc.1201178] [PMID: 9244355]
[91]
Krishnamurthy, J.; Torrice, C.; Ramsey, M.R.; Kovalev, G.I.; Al-Regaiey, K.; Su, L.; Sharpless, N.E. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest., 2004, 114(9), 1299-1307.
[http://dx.doi.org/10.1172/JCI22475] [PMID: 15520862]
[92]
Nielsen, G.P.; Stemmer-Rachamimov, A.O.; Shaw, J.; Roy, J.E.; Koh, J.; Louis, D.N. Immunohistochemical survey of p16INK4A expression in normal human adult and infant tissues. Lab. Invest., 1999, 79(9), 1137-1143.
[PMID: 10496532]
[93]
Ren, S.; Wang, F.; Shen, J.; Sun, Y.; Xu, W.; Lu, J.; Wei, M.; Xu, C.; Wu, C.; Zhang, Z.; Gao, X.; Liu, Z.; Hou, J.; Huang, J.; Sun, Y. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur. J. Cancer, 2013, 49(13), 2949-2959.
[http://dx.doi.org/10.1016/j.ejca.2013.04.026] [PMID: 23726266]
[94]
Campisi, J. Cancer and ageing: Rival demons? Nat. Rev. Cancer, 2003, 3(5), 339-349.
[http://dx.doi.org/10.1038/nrc1073] [PMID: 12724732]
[95]
Lowe, S.W.; Sherr, C.J. Tumor suppression by Ink4a–Arf: Progress and puzzles. Curr. Opin. Genet. Dev., 2003, 13(1), 77-83.
[http://dx.doi.org/10.1016/S0959-437X(02)00013-8] [PMID: 12573439]
[96]
Rane, S.G.; Dubus, P.; Mettus, R.V.; Galbreath, E.J.; Boden, G.; Reddy, E.P.; Barbacid, M. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet., 1999, 22(1), 44-52.
[http://dx.doi.org/10.1038/8751] [PMID: 10319860]
[97]
Tsutsui, T.; Hesabi, B.; Moons, D.S.; Pandolfi, P.P.; Hansel, K.S.; Koff, A.; Kiyokawa, H. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol. Cell. Biol., 1999, 19(10), 7011-7019.
[http://dx.doi.org/10.1128/MCB.19.10.7011] [PMID: 10490638]
[98]
Krishnamurthy, J.; Ramsey, M.R.; Ligon, K.L.; Torrice, C.; Koh, A.; Bonner-Weir, S.; Sharpless, N.E. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature, 2006, 443(7110), 453-457.
[http://dx.doi.org/10.1038/nature05092] [PMID: 16957737]
[99]
Molofsky, A.V.; Slutsky, S.G.; Joseph, N.M.; He, S.; Pardal, R.; Krishnamurthy, J.; Sharpless, N.E.; Morrison, S.J. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 2006, 443(7110), 448-452.
[http://dx.doi.org/10.1038/nature05091] [PMID: 16957738]
[100]
Janzen, V.; Forkert, R.; Fleming, H.E.; Saito, Y.; Waring, M.T.; Dombkowski, D.M.; Cheng, T.; DePinho, R.A.; Sharpless, N.E.; Scadden, D.T. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 2006, 443(7110), 421-426.
[http://dx.doi.org/10.1038/nature05159] [PMID: 16957735]