Recent Patents on Mechanical Engineering

Author(s): Ameen Al Njjar*, Kamar Mazloum and Amit Sata

DOI: 10.2174/0122127976307663240326153651

Simulation of the Die and Punch Behavior During the Compaction Process of Alumina-Based Matrix Composite Using Finite Element Analysis

Page: [365 - 379] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Compaction in the powder metallurgy process typically involves using a die and punch, applying high pressure to mixed powder to achieve product quality, such as geometry, density, and porosity. This step is critical in the powder metallurgy process.

Objective: This study aims to systematically design and manufacture a die and punch for compacting an Alumina-based matrix composite. Specimens were selected according to ASTM C 1421-10 guidelines, and the die and punch were constructed using AISI D3 tool steel alloy.

Methods: To ensure satisfactory compaction, the design underwent virtual testing using Finite Element Analysis (FEA) with compaction loads ranging from 2.5 to 20 tons in 2.5-ton increments. The simulation results were validated through experimental testing.

Results: The die parts were analyzed for three-dimensional stress and deformation during compaction. Maximum stress distribution was observed in the Alumina powder, followed by the punch, plate, and die. Additionally, compaction behavior and density tests confirmed that a compaction pressure of 548 MPa or more results in high relative density in the Alumina-based matrix composite powder during the compaction process.

Conclusion: Both simulation and experimental results indicate that a compaction pressure of 548 MPa or more is necessary to achieve satisfactory compaction of the Alumina-based matrix composite. These findings offer practical implications for optimizing the powder metallurgy compaction process and reducing costs.

[1]
Pritam, S.G. Principles of powder metallurgy; S. K. Kataria & Sons: New Delhi, 2015.
[2]
Angelo, P.C.; Subramanian, R.; Ravisankar, B. Powder metallurgy: Science, technology and applications; PHI Learning Pvt. Ltd.: New Delhi, 2022, p. 312.
[3]
Suryanarayana, C.; Al-Aqeeli, N. Mechanically alloyed nanocomposites. Prog. Mater. Sci., 2013, 58(4), 383-502.
[http://dx.doi.org/10.1016/j.pmatsci.2012.10.001]
[4]
Guo, W.; Liu, B.; Liu, Y. Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloys Compd., 2019, 776, 428-436.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.230]
[5]
Qian, M.; Yang, Y.F.; Yan, M.; Luo, S.D. Design of low cost high performance powder metallurgy titanium alloys: Some basic considerations. Key Eng. Mater., 2012, 520, 24-29.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.520.24]
[6]
Upadhyaya, G.S. Powder metallurgy technology; Cambridge Int Science Publishing: United Kingdom, 1997, p. 158.
[7]
Manohar, G.; Pandey, K.M.; Maity, S.R. Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram. Int., 2021, 47(11), 15147-15154.
[http://dx.doi.org/10.1016/j.ceramint.2021.02.073]
[8]
Tamizharasan, T.; Senthil Kumar, N. Optimization of cutting inserts geometry using DEFORM-3D: Numerical simulation and experimental validation. Int. J. Simul. Model., 2012, 11(2), 65-76.
[http://dx.doi.org/10.2507/IJSIMM11(2)1.200]
[9]
An, X.; Xing, Z.; Jia, C. Cold compaction of copper powders under mechanical vibration and uniaxial compression. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2014, 45(4), 2171-2179.
[http://dx.doi.org/10.1007/s11661-013-2160-6]
[10]
Michrafy, A.; Haas, S.; Kadiri, M.S.; Sommer, K.; Dodds, J.A. The effects of ambient temperature on the compaction of pharmaceutical powders. Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2006, 220(1), 1-6.
[http://dx.doi.org/10.1243/095440805X73636]
[11]
Gagne, M.; Thomas, Y.; Lefebvre, L.P. Effect of compaction temperature on the lubricant distribution in powder metal parts. Advances in Powder Metallurgy and Particulate Materials, 1998, 3, 11-39.
[12]
Srinivasababu, N. Manufacturing dies and punches for preparation of powder metallurgical mechanical test specimens. Mater. Today Proc., 2017, 4(9), 10088-10092.
[http://dx.doi.org/10.1016/j.matpr.2017.06.326]
[13]
Attia, U.M. Cold-isostatic pressing of metal powders: A review of the technology and recent developments. Crit. Rev. Solid State Mater. Sci., 2021, 46(6), 587-610.
[http://dx.doi.org/10.1080/10408436.2021.1886043]
[14]
Xue, Y.; Lang, L.H.; Bu, G.L.; Li, L. Densification modeling of titanium alloy powder during hot isostatic pressing. Sci. Sinter., 2011, 43(3), 247-260.
[http://dx.doi.org/10.2298/SOS1103247X]
[15]
Zhao, J.; Yuan, X.; Zhou, Y. Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro- nano-composite ceramic tool. Int. J. Refract. Hard Met., 2010, 28(3), 330-337.
[http://dx.doi.org/10.1016/j.ijrmhm.2009.11.007]
[16]
Cheng, M.; Liu, H.; Zhao, B.; Huang, C.; Yao, P.; Wang, B. Mechanical properties of two types of Al2O3/TiC ceramic cutting tool material at room and elevated temperatures. Ceram. Int., 2017, 43(16), 13869-13874.
[http://dx.doi.org/10.1016/j.ceramint.2017.07.110]
[17]
Yin, Z.; Huang, C.; Zou, B.; Liu, H.; Zhu, H.; Wang, J. High temperature mechanical properties of Al2O3/TiC micro–nano-composite ceramic tool materials. Ceram. Int., 2013, 39(8), 8877-8883.
[http://dx.doi.org/10.1016/j.ceramint.2013.04.081]
[18]
Fei, Y.H.; Huang, C.Z.; Liu, H.L.; Zou, B. Mechanical properties of Al2O3–TiC–TiN ceramic tool materials. Ceram. Int., 2014, 40(7), 10205-10209.
[http://dx.doi.org/10.1016/j.ceramint.2014.03.056]
[19]
Wang, X.; Zhao, J.; Cui, E.; Song, S.; Liu, H.; Song, W. Microstructure, mechanical properties and toughening mechanisms of graphene reinforced Al2O3-WC-TiC composite ceramic tool material. Ceram. Int., 2019, 45(8), 10321-10329.
[http://dx.doi.org/10.1016/j.ceramint.2019.02.087]
[20]
Sun, Z.; Zhao, J.; Wang, X.; Cui, E.; Yu, H. Reinforcing mechanisms of graphene and nano-TiC in Al2O3-based ceramic-tool materials. Nanomaterials (Basel), 2020, 10(9), 1815.
[http://dx.doi.org/10.3390/nano10091815] [PMID: 32932947]
[21]
Wang, D.; Bai, Y.; Xue, C.; Cao, Y.; Yan, Z. Optimization of sintering parameters for fabrication of Al2O3/TiN/TiC micro-nano-composite ceramic tool material based on microstructure evolution simulation. Ceram. Int., 2021, 47(4), 5776-5785.
[http://dx.doi.org/10.1016/j.ceramint.2020.10.164]
[22]
Cui, H.; Chen, Z.; Xiao, G. Mechanical Properties and Microstructures of Al2O3/TiC/TiB2 Ceramic Tool Material. Crystals (Basel), 2021, 11(6), 637.
[http://dx.doi.org/10.3390/cryst11060637]
[23]
Chai, J.; Zhu, Y.; Gao, X. Effects of residual stress and intragranular particles on mechanical properties of hot-pressed Al2O3/SiC ceramic composites. Ceram. Int., 2022, 48(16), 23258-23265.
[http://dx.doi.org/10.1016/j.ceramint.2022.04.310]
[24]
Reiterer, M.; Kraft, T.; Janosovits, U.; Riedel, H. Finite element simulation of cold isostatic pressing and sintering of SiC components. Ceram. Int., 2004, 30(2), 177-183.
[http://dx.doi.org/10.1016/S0272-8842(03)00086-5]
[25]
Kim, D.; Park, K.; Kim, K. Cold compaction behavior of nano and micro aluminum powder under high pressure. Composites Research, 2019, 32(3), 141-147.
[26]
Kim, K.T.; Cho, J.H. A densification model for mixed metal powder under cold compaction. Int. J. Mech. Sci., 2001, 43(12), 2929-2946.
[http://dx.doi.org/10.1016/S0020-7403(01)00062-5]
[27]
An, X.; Zhang, Y.; Zhang, Y.; Yang, S. Finite element modeling on the compaction of copper powder under different conditions. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2015, 46(8), 3744-3752.
[http://dx.doi.org/10.1007/s11661-015-2929-x]
[28]
Zhou, M.; Huang, S.; Hu, J. Experiment and finite element analysis of compaction densification mechanism of Ag-Cu-Sn-In mixed metal powder. Powder Technol., 2017, 313, 68-81.
[http://dx.doi.org/10.1016/j.powtec.2017.03.015]
[29]
Atrian, A.; Majzoobi, G.H.; Markert, B.; Nourbakhsh, S.H. A novel approach to calibrate the Drucker–Prager Cap model for Al7075 powder. Arch. Appl. Mech., 2018, 88(10), 1859-1876.
[http://dx.doi.org/10.1007/s00419-018-1410-x]
[30]
Ghazi, S.S.; Mashloosh, K.M. Influence of heat treatment on resistance of wear and mechanical properties of die steel kind D3. Am J Sci Ind Res, 2015, 5(2), 33-40.
[31]
Singh, R.B.; Kumar, D. Heat treatment of tool steel D3 and effects on mechanical properties. Int. J. Recent Sci. Res., 2019, 10(V), 32540-32545.
[32]
Sharma, A.K.; Singh, R.; Tiwari, A.K.; Sharma, A.K. Design, fabrication and analysis of compaction die for powder processing. IOP Conf Ser: Mater Sci Eng, 2020, 992, 012005.
[http://dx.doi.org/10.1088/1757-899X/992/1/012005]
[33]
Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature1; Annual Book of Standards: Philadelphia, 1999.
[34]
Venkatesh, V.S.; Deoghare, A.B. Effect of boron carbide and Kaoline reinforcements on the microstructural and mechanical characteristics of aluminium hybrid metal matrix composite fabricated through powder metallurgy technique. Adv Mater Proc Technol, 2022, 8(Suppl. 2), 1-22.
[http://dx.doi.org/10.1080/2374068X.2021.1945314]
[35]
Manohar, G.; Pandey, K.M.; Maity, S.R. Effect of processing parameters on mechanical properties of Al7175/Boron Carbide (B4C) composite fabricated by powder metallurgy techniques. Adv. Sci. Technol., 2021, 105, 8-16.
[http://dx.doi.org/10.4028/www.scientific.net/AST.105.8]
[36]
Eskandari, A.; Aminzare, M.; Razavi hesabi, Z; Aboutalebi, SH; Sadrnezhaad, SK. Effect of high energy ball milling on compressibility and sintering behavior of alumina nanoparticles. Ceram. Int., 2012, 38(4), 2627-2632.
[http://dx.doi.org/10.1016/j.ceramint.2011.12.012]