Mini-Reviews in Medicinal Chemistry

Author(s): Rakesh Sahu* and Kamal Shah*

DOI: 10.2174/0113895575302197240408121537

Schiff Bases: A Captivating Scaffold with Potential Anticonvulsant Activity

Page: [1632 - 1650] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

One of the most important organic compounds, also known as a Schiff base, imine, or azomethine, has been associated with several biological processes. The group is a component of both natural or synthetic chemicals and functions as both a precursor and an intermediary in the synthesis of therapeutically active substances. The review highlights the various non-metal Schiff bases' structure-activity relationship (SAR) studies, general model, docking, and design approach for anticonvulsant actions. Schiff bases serve as linkers in numerous synthetic compounds with a variety of activities, according to the findings of several investigations. As a result, the current review will give readers a thorough understanding of the key ideas put forth by different researchers regarding the anticonvulsant properties of Schiff bases. It will serve as a valuable information source for those planning to synthesize new anticonvulsant molecules that contain Schiff bases as pharmacophores or biologically active moieties.

Graphical Abstract

[1]
Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: A short survey on an evergreen chemistry tool. Molecules, 2013, 18(10), 12264-12289.
[http://dx.doi.org/10.3390/molecules181012264] [PMID: 24108395]
[2]
Hameed, A.; al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K.M. Schiff bases in medicinal chemistry: A patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(1), 63-79.
[http://dx.doi.org/10.1080/13543776.2017.1252752] [PMID: 27774821]
[3]
Murtaza, G.; Mumtaz, A.; Khan, F.A.; Ahmad, S.; Azhar, S.; Khan, S.A.; Najam-Ul-Haq, M.; Atif, M.; Khan, S.A.; Maalik, A.; Azhar, S.; Murtaza, G. Recent pharmacological advancements in schiff bases: A review. Acta Pol. Pharm., 2014, 71(4), 531-535.
[PMID: 25272879]
[4]
Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem., 2013, 21(13), 3648-3666.
[http://dx.doi.org/10.1016/j.bmc.2013.04.037] [PMID: 23673213]
[5]
Demirci, S.; Doğan, A.; Başak, N.; Telci, D.; Dede, B.; Orhan, C.; Tuzcu, M.; Şahin, K.; Şahin, N.; Özercan, İ.H.; Şahin, F. A Schiff base derivative for effective treatment of diethylnitrosamine-induced liver cancer in vivo. Anticancer Drugs, 2015, 26(5), 555-564.
[http://dx.doi.org/10.1097/CAD.0000000000000221] [PMID: 25714251]
[6]
da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[7]
de Fátima, Â.; Pereira, C.P.; Olímpio, C.R.S.D.G.; de Freitas Oliveira, B.G.; Franco, L.L.; da Silva, P.H.C. Schiff bases and their metal complexes as urease inhibitors – A brief review. J. Adv. Res., 2018, 13, 113-126.
[http://dx.doi.org/10.1016/j.jare.2018.03.007] [PMID: 30094086]
[8]
Kumar, M.; Padmini, T.; Ponnuvel, K. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol. J. Saudi Chem. Soc., 2017, 21, S322-S328.
[http://dx.doi.org/10.1016/j.jscs.2014.03.006]
[9]
Teran, R.; Guevara, R.; Mora, J.; Dobronski, L.; Barreiro-Costa, O.; Beske, T.; Pérez-Barrera, J.; Araya-Maturana, R.; Rojas-Silva, P.; Poveda, A.; Heredia-Moya, J. Characterization of antimicrobial, antioxidant, and leishmanicidal activities of Schiff base derivatives of 4-aminoantipyrine. Molecules, 2019, 24(15), 2696.
[http://dx.doi.org/10.3390/molecules24152696] [PMID: 31344947]
[10]
Alafeefy, A.M.; Bakht, M.A.; Ganaie, M.A.; Ansarie, M.N.; El-Sayed, N.N.; Awaad, A.S. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorg. Med. Chem. Lett., 2015, 25(2), 179-183.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.088] [PMID: 25522819]
[11]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 893512.
[12]
Pandey, A.; Rajavel, R.; Chandraker, S.; Dash, D. Synthesis of Schiff bases of 2-amino-5-aryl-1, 3, 4-thiadiazole and its analgesic, anti-inflammatory and anti-bacterial activity. E-J. Chem., 2012, 9(4), 2524-2531.
[http://dx.doi.org/10.1155/2012/145028]
[13]
Zehra, S.; Shavez Khan, M.; Ahmad, I.; Arjmand, F. New tailored substituted benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. J. Biomol. Struct. Dyn., 2019, 37(7), 1863-1879.
[http://dx.doi.org/10.1080/07391102.2018.1467794] [PMID: 29676660]
[14]
Şahin, S.; Dege, N. Synthesis, characterization, X-ray, HOMO-LUMO, MEP, FT-IR, NLO, Hirshfeld surface, ADMET, boiled-egg model properties and molecular docking studies with human cyclophilin D (CypD) of a Schiff base compound: (E)-1-(5-nitro-2-(piperidin-1-yl)phenyl)-N-(3-nitrophenyl)methanimine. Polyhedron, 2021, 205, 115320.
[http://dx.doi.org/10.1016/j.poly.2021.115320]
[15]
Yadav, G.; Mani, J.V. Green synthesis of Schiff bases by using natural acid catalysts. Int. J. Sci. Res., 2015, 4(2), 121-127.
[16]
Al Zoubi, W. Biological activities of Schiff bases and their complexes: A review of recent works. Int. J. Org. Chem., 2013, 3(3), 73-95.
[17]
Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Bonomo, M.G.; Franchini, C.; Sinicropi, M.S. Schiff bases: Interesting scaffolds with promising antitumoral properties. Appl. Sci., 2021, 11(4), 1877.
[http://dx.doi.org/10.3390/app11041877]
[18]
Catalano, A.; Iacopetta, D.; Pellegrino, M.; Aquaro, S.; Franchini, C.; Sinicropi, M.S. Diarylureas: Repositioning from antitumor to antimicrobials or multi-target agents against new pandemics. Antibiotics, 2021, 10(1), 92.
[http://dx.doi.org/10.3390/antibiotics10010092] [PMID: 33477901]
[19]
Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585.
[http://dx.doi.org/10.1016/j.bmc.2020.115585] [PMID: 32631563]
[20]
Keri, R.S.; Budagumpi, S.; Balappa Somappa, S. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure–activity relationship. J. Clin. Pharm. Ther., 2022, 47(7), 915-931.
[http://dx.doi.org/10.1111/jcpt.13644] [PMID: 35288962]
[21]
Abuelizz, H.A.; Dib, R.E.; Marzouk, M.; Anouar, E.H.; A Maklad, Y.; N Attia, H.; Al-Salahi, R. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules, 2017, 22(7), 1094.
[http://dx.doi.org/10.3390/molecules22071094] [PMID: 28665338]
[22]
Kumar, A. Salahuddin; Kumar, R.; Sahu, R.; Mishra, S.; Singh, C.; Tiglani, D. Anti-diabetic potentials of thiazolidinedione analogues with efficient synthetic procedures: A review of literature. Mini Rev. Org. Chem., 2022, 19(1), 30-51.
[http://dx.doi.org/10.2174/1570193X18666210224153849]
[23]
Osman, H.M.; Elsaman, T.; Yousef, B.A.; Elhadi, E.; Ahmed, A.A.E.; Eltayib, E.M.; Mohamed, M.S.; Mohamed, M.A. Schiff bases of isatin and adamantane-1-carbohydrazide: Synthesis, characterization and anticonvulsant activity. J. Chem., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6659156]
[24]
Nilkanth, P.R.; Ghorai, S.K.; Sathiyanarayanan, A.; Dhawale, K.; Ahamad, T.; Gawande, M.B.; Shelke, S.N. Synthesis and evaluation of anticonvulsant activity of some schiff bases of 7‐Amino‐1,3‐dihydro‐2 H ‐1,4‐benzodiazepin‐2‐one. Chem. Biodivers., 2020, 17(9), e2000342.
[http://dx.doi.org/10.1002/cbdv.202000342] [PMID: 32597554]
[25]
Verma, M.; Pandeya, S.N.; Singh, K.N.; Stables, J.P. Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharm., 2004, 54(1), 49-56.
[PMID: 15050044]
[26]
Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different Schiff bases-structure, importance and classification. Molecules, 2022, 27(3), 787.
[http://dx.doi.org/10.3390/molecules27030787] [PMID: 35164049]
[27]
Ashoor, L.S.; Mohaisen, I.K.; Al-Shemary, R.K. A review on versatile applications of transition metal complexes incorporating schiff bases from amoxicillin and cephalexin. EurAsian J. BioSci., 2020, 14(2), 7541-7550.
[28]
Adesina, AD Synthesis of schiff bases by non-conventional methods. In: In Schiff Base in Organic, Inorganic and Physical Chemistry; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.108688]
[29]
Fontana, R.; Marconi, P.C.R.; Caputo, A.; Gavalyan, V.B. Novel chitosan-based Schiff base compounds: Chemical characterization and antimicrobial activity. Molecules, 2022, 27(9), 2740.
[http://dx.doi.org/10.3390/molecules27092740] [PMID: 35566088]
[30]
Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics, 2022, 11(2), 191.
[http://dx.doi.org/10.3390/antibiotics11020191] [PMID: 35203793]
[31]
Barbosa, H.; Attjioui, M.; Ferreira, A.; Dockal, E.; El Gueddari, N.; Moerschbacher, B.; Cavalheiro, É. Synthesis, characterization and biological activities of biopolymeric schiff bases prepared with chitosan and salicylaldehydes and their Pd (II) and Pt (II) complexes. Molecules, 2017, 22(11), 1987.
[http://dx.doi.org/10.3390/molecules22111987] [PMID: 29144424]
[32]
Haj, N.Q.; Mohammed, M.O.; Mohammood, L.E. Synthesis and biological evaluation of three new chitosan Schiff base derivatives. ACS Omega, 2020, 5(23), 13948-13954.
[http://dx.doi.org/10.1021/acsomega.0c01342] [PMID: 32566861]
[33]
Danon, J.J.; Reekie, T.A.; Kassiou, M. Challenges and opportunities in central nervous system drug discovery. Trends Chem., 2019, 1(6), 612-624.
[http://dx.doi.org/10.1016/j.trechm.2019.04.009]
[34]
Sirven, J.I. Epilepsy: A spectrum disorder. Cold Spring Harb. Perspect. Med., 2015, 5(9), a022848.
[http://dx.doi.org/10.1101/cshperspect.a022848] [PMID: 26328931]
[35]
Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med., 2015, 5(6), a022426.
[http://dx.doi.org/10.1101/cshperspect.a022426] [PMID: 26033084]
[36]
Epilepsy. Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy March 24, 2023
[37]
Kabel, A.; Algethami, S.; Algethami, B.; Alzahrani, A.; Almutairi, S.; Almutairi, A. Knowledge, perceptions, and attitudes of students of health-related science colleges towards epilepsy in Taif, Saudi Arabia. J. Family Med. Prim. Care, 2020, 9(5), 2394-2399.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_299_20] [PMID: 32754508]
[38]
Kaculini, C.M.; Tate-Looney, A.J.; Seifi, A. The history of epilepsy: From ancient mystery to modern misconception. Cureus, 2021, 13(3), e13953.
[http://dx.doi.org/10.7759/cureus.13953] [PMID: 33880289]
[39]
Siuly, S.; Zhang, Y. Medical big data: Neurological diseases diagnosis through medical data analysis. Data Sci. Eng., 2016, 1(2), 54-64.
[http://dx.doi.org/10.1007/s41019-016-0011-3]
[40]
Espinosa-Jovel, C.; Toledano, R.; Aledo-Serrano, Á.; García-Morales, I.; Gil-Nagel, A. Epidemiological profile of epilepsy in low income populations. Seizure, 2018, 56, 67-72.
[http://dx.doi.org/10.1016/j.seizure.2018.02.002] [PMID: 29453113]
[41]
Theodore, W.H.; Spencer, S.S.; Wiebe, S.; Langfitt, J.T.; Ali, A.; Shafer, P.O.; Berg, A.T.; Vickrey, B.G. Epilepsy in North America: A report prepared under the auspices of the global campaign against epilepsy, the international bureau for epilepsy, the international league against epilepsy, and the world health organization. Epilepsia, 2006, 47(10), 1700-1722.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00633.x] [PMID: 17054693]
[42]
Feigin, V.L.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abyu, G.Y.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet Neurol., 2017, 16(11), 877-897.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[43]
Gururaj, G.; Satishchandra, P.; Amudhan, S. Epilepsy in India I: Epidemiology and public health. Ann. Indian Acad. Neurol., 2015, 18(3), 263-277.
[http://dx.doi.org/10.4103/0972-2327.160093] [PMID: 26425001]
[44]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[45]
Levira, F.; Thurman, D.J.; Sander, J.W.; Hauser, W.A.; Hesdorffer, D.C.; Masanja, H.; Odermatt, P.; Logroscino, G.; Newton, C.R. Premature mortality of epilepsy in low‐ and middle‐income countries: A systematic review from the mortality task force of the international league against epilepsy. Epilepsia, 2017, 58(1), 6-16.
[http://dx.doi.org/10.1111/epi.13603] [PMID: 27988968]
[46]
Ghamari, Z.T.; Habibabadi, J.M.; Palizban, A.A. Evidence-based pharmacotherapy of epilepsy. Arch. Neurosci., 2015, 2, e18468.
[http://dx.doi.org/10.33588/rn.35S1.2002188]
[47]
Goldenberg, M.M. Overview of drugs used for epilepsy and seizures: Etiology, diagnosis, and treatment. P&T, 2010, 35(7), 392-415.
[PMID: 20689626]
[48]
Talati, R.; Scholle, J.M.; Phung, O.J.; Baker, W.L.; Baker, E.L.; Ashaye, A.; Kluger, J.; Quercia, R.; Mather, J.; Giovenale, S.; Coleman, C.I. Effectiveness and Safety of Antiepileptic Medications in Patients With Epilepsy; Agency for Healthcare Research and Quality (US), : Rockville (MD),, 2011.
[49]
Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776.
[http://dx.doi.org/10.1038/nrd4126] [PMID: 24052047]
[50]
Zamponi, G.W.; Lory, P.; Perez-Reyes, E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch., 2010, 460(2), 395-403.
[http://dx.doi.org/10.1007/s00424-009-0772-x] [PMID: 20091047]
[51]
Raimondo, J.V.; Burman, R.J.; Katz, A.A.; Akerman, C.J. Ion dynamics during seizures. Front. Cell. Neurosci., 2015, 9, 419.
[http://dx.doi.org/10.3389/fncel.2015.00419] [PMID: 26539081]
[52]
Meldrum, B.S. Neurotransmission in epilepsy. Epilepsia, 1995, 36(s1)(Suppl. 1), 30-35.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb01649.x] [PMID: 23057108]
[53]
Sills, G.J. Mechanisms of action of antiepileptic drugs; Epilepsy, 2011, pp. 295-303.
[54]
Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966.
[http://dx.doi.org/10.1016/j.neuropharm.2020.107966] [PMID: 32120063]
[55]
Lasoń, W.; Chlebicka, M.; Rejdak, K. Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacol. Rep., 2013, 65(4), 787-801.
[http://dx.doi.org/10.1016/S1734-1140(13)71060-0] [PMID: 24145073]
[56]
Powell, K.L.; Cain, S.M.; Snutch, T.P.; O’Brien, T.J. Low threshold T ‐type calcium channels as targets for novel epilepsy treatments. Br. J. Clin. Pharmacol., 2014, 77(5), 729-739.
[http://dx.doi.org/10.1111/bcp.12205] [PMID: 23834404]
[57]
Tringham, E.; Powell, K.L.; Cain, S.M.; Kuplast, K.; Mezeyova, J.; Weerapura, M.; Eduljee, C.; Jiang, X.; Smith, P.; Morrison, J.L.; Jones, N.C.; Braine, E.; Rind, G.; Fee-Maki, M.; Parker, D.; Pajouhesh, H.; Parmar, M.; O’Brien, T.J.; Snutch, T.P. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci. Transl. Med., 2012, 4(121), 121ra19.
[http://dx.doi.org/10.1126/scitranslmed.3003120] [PMID: 22344687]
[58]
Tescarollo, F.C.; Rombo, D.M.; DeLiberto, L.K.; Fedele, D.E.; Alharfoush, E.; Tomé, Â.R.; Cunha, R.A.; Sebastião, A.M.; Boison, D. Role of adenosine in epilepsy and seizures. J. Caffeine Adenosine Res., 2020, 10(2), 45-60.
[http://dx.doi.org/10.1089/caff.2019.0022] [PMID: 32566903]
[59]
Pal, R.; Singh, K.; Khan, S.A.; Chawla, P.; Kumar, B.; Akhtar, M.J. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur. J. Med. Chem., 2021, 226, 113890.
[http://dx.doi.org/10.1016/j.ejmech.2021.113890] [PMID: 34628237]
[60]
Dantrolene. Available from: https://go.drugbank.com/drugs/DB01219 [accessed on 27/07/2023].
[61]
Nelson, E.A.; Walker, S.R.; Kepich, A.; Gashin, L.B.; Hideshima, T.; Ikeda, H.; Chauhan, D.; Anderson, K.C.; Frank, D.A. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood, 2008, 112(13), 5095-5102.
[http://dx.doi.org/10.1182/blood-2007-12-129718] [PMID: 18824601]
[62]
Nifuroxazide. Available from: https://go.drugbank.com/drugs/DB13855accessed on 27/07/2023
[63]
Amithiozone. Available from: https://go.drugbank.com/drugs/DB12829accessed on 27/07/2023.
[64]
Furazolidone. Available from: https://en.wikipedia.org/wiki/Furazolidone accessed on 27/07/2023.
[65]
Nitrofurantoin. Available from: https://go.drugbank.com/drugs/DB00698accessed on 27/07/2023.
[66]
Inxight Drugs. Available from: https://drugs.ncats.io/drug/C7H9M9492Jaccessed on 27/07/2023.
[67]
Oxiconazole. Available from: https://go.drugbank.com/drugs/DB00239accessed on 27/07/2023.
[68]
Benzamil. Available from: https://en.wikipedia.org/wiki/Benzamilaccessed on 27/07/2023.
[69]
Amiloride. Available from: https://en.wikipedia.org/wiki/Amilorideaccessed on 27/07/2023.
[70]
Methazolamide. Available from: https://go.drugbank.com/drugs/DB00703accessed on 27/07/2023.
[71]
Methisazone. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Methisazoneaccessed on 27/07/2023.
[72]
Azimilide. Available from: https://go.drugbank.com/drugs/DB04957accessed on 27/07/2023.
[73]
Osolodkin, D.I.; Chupakhin, V.I.; Palyulin, V.A.; Zefirov, N.S. Molecular modeling of ligand–receptor interactions in GABAC receptor. J. Mol. Graph. Model., 2009, 27(7), 813-821.
[http://dx.doi.org/10.1016/j.jmgm.2008.12.004] [PMID: 19167917]
[74]
Smith, A.J.; Simpson, P.B. Methodological approaches for the study of GABA A receptor pharmacology and functional responses. Anal. Bioanal. Chem., 2003, 377(5), 843-851.
[http://dx.doi.org/10.1007/s00216-003-2172-y] [PMID: 12937886]
[75]
Krogsgaard-Larsen, P. gamma.-Aminobutyric acid agonists, antagonists, and uptake inhibitors. Design and therapeutic aspects. J. Med. Chem., 1981, 24(12), 1377-1383.
[http://dx.doi.org/10.1021/jm00144a001] [PMID: 6118436]
[76]
Sahu, M.; Siddiqui, N.; Sharma, V.; Wakode, S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg. Chem., 2018, 77, 56-67.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.031] [PMID: 29331765]
[77]
Trevelyan, A.J.; Schevon, C.A. How inhibition influences seizure propagation. Neuropharmacology, 2013, 69, 45-54.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.015] [PMID: 22722026]
[78]
Lerche, H.; Shah, M.; Beck, H.; Noebels, J.; Johnston, D.; Vincent, A. Ion channels in genetic and acquired forms of epilepsy. J. Physiol., 2013, 591(4), 753-764.
[http://dx.doi.org/10.1113/jphysiol.2012.240606] [PMID: 23090947]
[79]
Khazipov, R. GABAergic synchronization in Epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022764.
[http://dx.doi.org/10.1101/cshperspect.a022764] [PMID: 26747834]
[80]
Yamsani, N.; Sundararajan, R. Design, in-silico studies, synthesis, characterization, and anticonvulsant activities of novel thiazolidin-4-one substituted thiazole derivatives. Biointerface Res. Appl. Chem., 2022, 13(4), 366.
[http://dx.doi.org/10.33263/BRIAC134.366]
[81]
Jaisal, P.; Fatima, G.N.; Vishwakarma, S.K.; Kumar, V.; Pandey, S.; Saraf, S.K. Novel 2-aminopyrimidine Schiff bases as possible GABA-AT inhibitors: molecular docking, MAOS, and pharmacological screening. Med. Chem. Res., 2022, 31(10), 1818-1829.
[http://dx.doi.org/10.1007/s00044-022-02946-3]
[82]
Srilakshmi, S.; Sundararajan, R. Design, in-silico studies, synthesis, characterization, and anticonvulsant activities of novel thiazole substituted oxazole derivatives. Rasayan J. Chem., 2022, 15(1), 711-725.
[http://dx.doi.org/10.31788/RJC.2022.1516762]
[83]
El-Helby, A.G.A.; Ayyad, R.R.A.; Zayed, M.F.; Abulkhair, H.S.; Elkady, H.; El-Adl, K. Design, synthesis, in silico ADMET profile and GABA‐A docking of novel phthalazines as potent anticonvulsants. Arch. Pharm., 2019, 352(5), 1800387.
[http://dx.doi.org/10.1002/ardp.201800387] [PMID: 30989729]
[84]
Angelova, V.T.; Voynikov, Y.; Andreeva-Gateva, P.; Surcheva, S.; Vassilev, N.; Pencheva, T.; Tchekalarova, J. In vitro and in silico evaluation of chromene based aroyl hydrazones as anticonvulsant agents. Med. Chem. Res., 2017, 26(9), 1884-1896.
[http://dx.doi.org/10.1007/s00044-017-1902-1]
[85]
Chen, N.H.; Reith, M.E.A.; Quick, M.W. Synaptic uptake and beyond: The sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch., 2004, 447(5), 519-531.
[http://dx.doi.org/10.1007/s00424-003-1064-5] [PMID: 12719981]
[86]
Quandt, G.; Höfner, G.; Wanner, K.T. Synthesis and evaluation of N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic residue attached to a vinyl ether spacer as potential GABA uptake inhibitors. Bioorg. Med. Chem., 2013, 21(11), 3363-3378.
[http://dx.doi.org/10.1016/j.bmc.2013.02.056] [PMID: 23598250]
[87]
Thompson, S.M.; Gähwiler, B.H. Effects of the GABA uptake inhibitor tiagabine on inhibitory synaptic potentials in rat hippocampal slice cultures. J. Neurophysiol., 1992, 67(6), 1698-1701.
[http://dx.doi.org/10.1152/jn.1992.67.6.1698] [PMID: 1629773]
[88]
Suzdak, PD; Jansen, JA A review of the preclinical pharmacology of tiagabine: A potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia, 1995, 36(6), 612-626.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb02576.x]
[89]
Seth, A.; Sharma, P.A.; Tripathi, A.; Choubey, P.K.; Srivastava, P.; Tripathi, P.N.; Shrivastava, S.K. Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med. Chem. Res., 2018, 27(4), 1206-1225.
[http://dx.doi.org/10.1007/s00044-018-2141-9]
[90]
Ciccone, L.; Cerri, C.; Nencetti, S.; Orlandini, E. Carbonic anhydrase inhibitors and epilepsy: State of the art and future perspectives. Molecules, 2021, 26(21), 6380.
[http://dx.doi.org/10.3390/molecules26216380] [PMID: 34770789]
[91]
Aspatwar, A.; Peltola, J.; Parkkila, S. Targeting carbonic anhydrase isozymes in the treatment of neurological disorders. In: The Carbonic Anhydrases: Current and Emerging Therapeutic Targets; Tampere University Research, 2021; pp. 103-120.
[http://dx.doi.org/10.1007/978-3-030-79511-5_5]
[92]
Ruusuvuori, E.; Kaila, K. Carbonic anhydrases and brain pH in the control of neuronal excitability. Subcell. Biochem., 2014, 75, 271-290.
[http://dx.doi.org/10.1007/978-94-007-7359-2_14]
[93]
Occhipinti, R.; Boron, W.F. Role of carbonic anhydrases and inhibitors in acid–base physiology: Insights from mathematical modeling. Int. J. Mol. Sci., 2019, 20(15), 3841.
[http://dx.doi.org/10.3390/ijms20153841] [PMID: 31390837]
[94]
Agnati, L.F.; Tinner, B.; Staines, W.A.; Väänänen, K.; Fuxe, K. On the cellular localization and distribution of carbonic anhydrase II immunoreactivity in the rat brain. Brain Res., 1995, 676(1), 10-24.
[http://dx.doi.org/10.1016/0006-8993(95)00026-M] [PMID: 7796160]
[95]
Parkkila, S. An overview of the distribution and function of carbonic anhydrase in mammals. In: The Carbonic Anhydrases: New Horizons; Chegwidden, R., Ed.; Birkauser Verlag: Basel, Switzerland, 2000; pp. 79-93.
[http://dx.doi.org/10.1007/978-3-0348-8446-4_4]
[96]
Ozsoy, H.Z. Anticonvulsant effects of carbonic anhydrase inhibitors: The enigmatic link between carbonic anhydrases and electrical activity of the brain. Neurochem. Res., 2021, 46(11), 2783-2799.
[http://dx.doi.org/10.1007/s11064-021-03390-2] [PMID: 34226984]
[97]
Mishra, C.B.; Kumari, S.; Angeli, A.; Bua, S.; Buonanno, M.; Monti, S.M.; Tiwari, M.; Supuran, C.T. Discovery of potent anti-convulsant carbonic anhydrase inhibitors: Design, synthesis, in vitro and in vivo appraisal. Eur. J. Med. Chem., 2018, 156, 430-443.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.019] [PMID: 30015076]
[98]
Murtaza, S.; Akhtar, M.S.; Aslam, A.; Riaz, T.; Kousar, N. Schiff bases of 2, 4-dihydroxybenzaldehyde as potential anticonvulsant compounds; in vivo and docking studies. Acta Pol. Pharm., 2017, 74(6), 1717-1728.
[99]
Podell, M. Epilepsy and seizure classification: A lesson from Leonardo; Wiley Online Library, 1999.
[100]
Jefferys, J.G.R. Models and mechanisms of experimental epilepsies. Epilepsia, 2003, 44(Suppl. 12), 44-50.
[http://dx.doi.org/10.1111/j.0013-9580.2003.12004.x] [PMID: 14641560]
[101]
Hodgkin, A.L.; Huxley, A.F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol., 1952, 116(4), 497-506.
[http://dx.doi.org/10.1113/jphysiol.1952.sp004719] [PMID: 14946715]
[102]
Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4), 500-544.
[http://dx.doi.org/10.1113/jphysiol.1952.sp004764] [PMID: 12991237]
[103]
Shabana, K. Salahuddin; Mazumder, A.; Singh, H.; Kumar, R.; Tyagi, S.; Datt, V.; Shankar Sharma, A.; Shahar Yar, M.; Jawed Ahsan, M.; Kumar Yadav, R. Synthesis, characterization, in silico and in vivo evaluation of benzimidazole‐bearing quinoline schiff bases as new anticonvulsant agents. ChemistrySelect, 2023, 8(21), e202300209.
[http://dx.doi.org/10.1002/slct.202300209]
[104]
Emami, S.; Valipour, M.; Kazemi Komishani, F.; Sadati-Ashrafi, F.; Rasoulian, M.; Ghasemian, M.; Tajbakhsh, M.; Honarchian Masihi, P.; Shakiba, A.; Irannejad, H.; Ahangar, N. Synthesis, in silico, in vitro and in vivo evaluations of isatin aroylhydrazones as highly potent anticonvulsant agents. Bioorg. Chem., 2021, 112, 104943.
[http://dx.doi.org/10.1016/j.bioorg.2021.104943] [PMID: 33964578]
[105]
Deshmukh, R.; Thakur, A.S.; Jha, A.K.; Kumar, S.P. Synthesis and anticonvulsant activity of some novel semicarbazone containing benzoxazole: Pharmacophore model study. Curr. Bioact. Compd., 2018, 14(2), 153-162.
[http://dx.doi.org/10.2174/1573407213666170125125138]
[106]
Danbolt, N.C. Glutamate uptake. Prog. Neurobiol., 2001, 65(1), 1-105.
[http://dx.doi.org/10.1016/S0301-0082(00)00067-8] [PMID: 11369436]
[107]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[108]
Lodge, D. The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 2009, 56(1), 6-21.
[http://dx.doi.org/10.1016/j.neuropharm.2008.08.006] [PMID: 18765242]
[109]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[110]
Sveinbjornsdottir, S.; Sander, J.W.A.S.; Upton, D.; Thompson, P.J.; Patsalos, P.N.; Hirt, D.; Emre, M.; Lowe, D.; Duncan, J.S. The excitatory amino acid antagonist d-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res., 1993, 16(2), 165-174.
[http://dx.doi.org/10.1016/0920-1211(93)90031-2] [PMID: 8269915]
[111]
Troupin, AS New anticonvulsant drugs. Curr. probl. epilep., 1986, 4, 91-201.
[112]
Saravanan, G.; Panneerselvam, T.; Alagarsamy, V.; Kunjiappan, S.; Parasuraman, P.; Murugan, I.; Dinesh Kumar, P. Design, graph theoretical analysis, density functionality theories, In silico modeling, synthesis, characterization and biological activities of novel thiazole fused quinazolinone derivatives. Drug Dev. Res., 2018, 79(6), 260-274.
[http://dx.doi.org/10.1002/ddr.21460] [PMID: 30244475]
[113]
Loacker, S.; Sayyah, M.; Wittmann, W.; Herzog, H.; Schwarzer, C. Endogenous dynorphin in epileptogenesis and epilepsy: Anticonvulsant net effect via kappa opioid receptors. Brain, 2007, 130(4), 1017-1028.
[http://dx.doi.org/10.1093/brain/awl384] [PMID: 17347252]
[114]
Tchekalarova, J.; Todorov, P.; Rangelov, M.; Stoyanova, T.; Todorova, N. Additive anticonvulsant profile and molecular docking analysis of 5,5′-diphenylhydantoin schiff bases and phenytoin. Biomedicines, 2023, 11(11), 2912.
[http://dx.doi.org/10.3390/biomedicines11112912] [PMID: 38001914]
[115]
Tiglani, D. Synthesis anticonvulsant and cytotoxic evaluation of benzimidazole-quinoline hybrids schiff base analogs. Polycycl. Aromat. Compd., 2023, 1-21.
[116]
Iqbal, T.; Khan, M.A.; Ahmad, I.; Khan, F.M. Design, synthesis and biological activities of 5Hdibenzo[ b,f]azepine-5-carboxamide derivatives; Targeted hippocampal trypsin inhibition as a novel approach to treat epileptogenesis. Trop. J. Pharm. Res., 2022, 21(2), 303-312.
[http://dx.doi.org/10.4314/tjpr.v21i2.13]
[117]
Lingappa, M.; Guruswamy, V.; Bantal, V. Synthesis and characterization of 4-amino-4H-1,2,4-triazole derivatives: Anticonvulsant activity. Curr. Chem. Let., 2021, 10(1), 33-42.
[http://dx.doi.org/10.5267/j.ccl.2020.7.002]
[118]
Fayed, E.A.; Ragab, A.; Ezz Eldin, R.R.; Bayoumi, A.H.; Ammar, Y.A. in vivo screening and toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents. Bioorg. Chem., 2021, 116, 105300.
[http://dx.doi.org/10.1016/j.bioorg.2021.105300] [PMID: 34525393]
[119]
Chaudhri, V.K.; Pathak, D.; Hussain, Z. Synthesis, preliminary anticonvulsant and toxicity screening of substituted {1-[4-Methyl-2-substitutedphenyl-2, 5-dihydro-1, 5-benzothiazepin-3-yl]-ethylidene}-hydrazine. J. Appl. Pharm. Sci., 2021, 11(10), 16-23.
[120]
Aliabadi, A.; Khajouei, M.R.; Mohammadi-Farani, A.; Moradi, A. Synthesis and evaluation of anticonvulsant activity of (Z)-4-(2-oxoindolin-3-ylideneamino)-N-phenylbenzamide derivatives in mice. Res. Pharm. Sci., 2018, 13(3), 262-272.
[http://dx.doi.org/10.4103/1735-5362.228956] [PMID: 29853935]
[121]
Łączkowski, K.Z.; Landowska, K.; Biernasiuk, A.; Sałat, K.; Furgała, A.; Plech, T.; Malm, A. Synthesis, biological evaluation and molecular docking studies of novel quinuclidinone derivatives as potential antimicrobial and anticonvulsant agents. Med. Chem. Res., 2017, 26(9), 2088-2104.
[http://dx.doi.org/10.1007/s00044-017-1904-z]