Electroacupuncture Inhibits Neural Ferroptosis in Rat Model of Traumatic Brain Injury via Activating System Xc/GSH/GPX4 Axis

Page: [86 - 100] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Ferroptosis is an iron-dependent regulating programmed cell death discovered recently that has been receiving much attention in traumatic brain injury (TBI). xCT, a major functional subunit of Cystine/glutamic acid reverse transporter (System Xc), promotes cystine intake and glutathione biosynthesis, thereby protecting against oxidative stress and ferroptosis.

Objective: The intention of this research was to verify the hypothesis that electroacupuncture (EA) exerted an anti-ferroptosis effect via an increase in the expression of xCT and activation of the System Xc/GSH/GPX4 axis in cortical neurons of TBI rats.

Methods: After the TBI rat model was prepared, animals received EA treatment at GV20, GV26, ST36 and PC6, for 15 min. The xCT inhibitor Sulfasalazine (SSZ) was administered 2h prior to model being prepared. The degree of neurological impairment was evaluated by means of TUNEL staining and the modified neurological severity score (mNSS). Specific indicators of ferroptosis (Ultrastructure of mitochondria, Iron and ROS) were detected by transmission electron microscopy (TEM), Prussian blue staining (Perls stain) and flow cytometry (FCM), respectively. GSH synthesis and metabolism-related factors in the content of the cerebral cortex were detected by an assay kit. Real-time quantitative PCR (RT-QPCR), Western blot (WB), and immunofluorescence (IF) were used for detecting the expression of System Xc/GSH/GPX4 axisrelated proteins in injured cerebral cortex tissues.

Results: EA successfully relieved nerve damage within 7 days after TBI, significantly inhibited neuronal ferroptosis, upregulated the expression of xCT and System Xc/GSH/GPX4 axis forward protein and promoted glutathione (GSH) synthesis and metabolism in the injured area of the cerebral cortex. However, aggravation of nerve damage and increased ferroptosis effect were found in TBI rats injected with xCT inhibitors.

Conclusions: EA inhibits neuronal ferroptosis by up-regulated xCT expression and by activating System Xc/GSH/GPX4 axis after TBI, confirming the relevant theories regarding the EA effect in treating TBI and providing theoretical support for clinical practice.

[1]
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142: 45-67.
[http://dx.doi.org/10.1016/j.pneurobio.2016.05.002] [PMID: 27166858]
[2]
Kaur P, Sharma S. Recent advances in pathophysiology of traumatic brain injury. Curr Neuropharmacol 2018; 16(8): 1224-38.
[http://dx.doi.org/10.2174/1570159X15666170613083606] [PMID: 28606040]
[3]
Khellaf A, Khan DZ, Helmy A. Recent advances in traumatic brain injury. J Neurol 2019; 266(11): 2878-89.
[http://dx.doi.org/10.1007/s00415-019-09541-4] [PMID: 31563989]
[4]
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma 2015; 32(23): 1861-82.
[http://dx.doi.org/10.1089/neu.2014.3680] [PMID: 25490251]
[5]
Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J. Neuroimmunology of traumatic brain injury: Time for a paradigm shift. Neuron 2017; 95(6): 1246-65.
[http://dx.doi.org/10.1016/j.neuron.2017.07.010] [PMID: 28910616]
[6]
Stoica BA, Faden AI. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 2010; 7(1): 3-12.
[http://dx.doi.org/10.1016/j.nurt.2009.10.023] [PMID: 20129492]
[7]
Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 2018; 124: 493-503.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.031] [PMID: 29964171]
[8]
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol Psychiatry 2019; 24(7): 995-1012.
[http://dx.doi.org/10.1038/s41380-018-0239-6] [PMID: 30214042]
[9]
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137(5): 731-55.
[http://dx.doi.org/10.1007/s00401-018-1944-6] [PMID: 30535946]
[10]
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14(3): 133-50.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[11]
Ng SY, Lee AYW. Traumatic brain injuries: Pathophysiology and potential therapeutic targets. Front Cell Neurosci 2019; 13: 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[12]
Stocchetti N, Carbonara M, Citerio G, et al. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol 2017; 16(6): 452-64.
[http://dx.doi.org/10.1016/S1474-4422(17)30118-7] [PMID: 28504109]
[13]
Xie BS, Wang YQ, Lin Y, et al. Inhibition of ferroptosis attenuates tissue damage and improves long‐term outcomes after traumatic brain injury in mice. CNS Neurosci Ther 2019; 25(4): 465-75.
[http://dx.doi.org/10.1111/cns.13069] [PMID: 30264934]
[14]
Yao MY, Liu T, Zhang L, Wang MJ, Yang Y, Gao J. Role of ferroptosis in neurological diseases. Neurosci Lett 2021; 747: 135614.
[http://dx.doi.org/10.1016/j.neulet.2020.135614] [PMID: 33485988]
[15]
Shen L, Lin D, Li X, et al. Ferroptosis in acute central nervous system injuries: The future direction? Front Cell Dev Biol 2020; 8: 594.
[http://dx.doi.org/10.3389/fcell.2020.00594] [PMID: 32760721]
[16]
Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol 2017; 12: 8-17.
[http://dx.doi.org/10.1016/j.redox.2017.01.021] [PMID: 28212525]
[17]
Li G, Li X, Dong J, Han Y. Electroacupuncture ameliorates cerebral ischemic injury by inhibiting ferroptosis. Front Neurol 2021; 12: 619043.
[http://dx.doi.org/10.3389/fneur.2021.619043] [PMID: 33763013]
[18]
Xiao X, Jiang Y, Liang W, et al. miR-212-5p attenuates ferroptotic neuronal death after traumatic brain injury by targeting Ptgs2. Mol Brain 2019; 12(1): 78.
[http://dx.doi.org/10.1186/s13041-019-0501-0] [PMID: 31533781]
[19]
Wu J, Tuo Q, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci 2018; 66(2): 197-206.
[http://dx.doi.org/10.1007/s12031-018-1155-6] [PMID: 30145632]
[20]
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci 2016; 73(11-12): 2195-209.
[http://dx.doi.org/10.1007/s00018-016-2194-1] [PMID: 27048822]
[21]
Lazzarino G, Amorini AM, Barnes NM, et al. Low molecular weight dextran sulfate (ILB ®) administration restores brain energy metabolism following severe traumatic brain injury in the rat. Antioxidants 2020; 9(9): 850.
[http://dx.doi.org/10.3390/antiox9090850] [PMID: 32927770]
[22]
Krämer T, Grob T, Menzel L, et al. Dimethyl fumarate treatment after traumatic brain injury prevents depletion of antioxidative brain glutathione and confers neuroprotection. J Neurochem 2017; 143(5): 523-33.
[http://dx.doi.org/10.1111/jnc.14220] [PMID: 28921587]
[23]
von Mässenhausen A, Zamora Gonzalez N, Maremonti F, et al. Dexamethasone sensitizes to ferroptosis by glucocorticoid receptor–induced dipeptidase-1 expression and glutathione depletion. Sci Adv 2022; 8(5): eabl8920.
[http://dx.doi.org/10.1126/sciadv.abl8920] [PMID: 35108055]
[24]
Song Q, Peng S, Che F, Zhu X. Artesunate induces ferroptosis via modulation of p38 and ERK signaling pathway in glioblastoma cells. J Pharmacol Sci 2022; 148(3): 300-6.
[http://dx.doi.org/10.1016/j.jphs.2022.01.007] [PMID: 35177209]
[25]
Gout PW, Buckley AR, Simms CR, Bruchovsky N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc − cystine transporter: a new action for an old drug. Leukemia 2001; 15(10): 1633-40.
[http://dx.doi.org/10.1038/sj.leu.2402238] [PMID: 11587223]
[26]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[27]
Matsumoto-Miyazaki J, Asano Y, Yonezawa S, et al. Acupuncture increases the excitability of the cortico-spinal system in patients with chronic disorders of consciousness following traumatic brain injury. J Altern Complement Med 2016; 22(11): 887-94.
[http://dx.doi.org/10.1089/acm.2014.0356] [PMID: 27662495]
[28]
Guo ZQ, Huang Y, Jiang H, Wang WB. Randomized clinical trials of early acupuncture treatment of limb paralysis in traumatic brain injury patients and its mechanism. Zhen Ci Yan Jiu 2019; 44(8): 589-93.
[PMID: 31475493]
[29]
Zhu M, Lin J, Qing P, et al. Manual acupuncture relieves microglia-mediated neuroinflammation in a rat model of traumatic brain injury by inhibiting the RhoA/ROCK2 pathway. Acupunct Med 2020; 38(6): 426-34.
[http://dx.doi.org/10.1177/0964528420912248] [PMID: 32310010]
[30]
Li N, Wang R, Guo J, et al. Effects of electroacupuncture on expression of inflammatory factors and neural function in rats with traumatic brain injury. Shaanxi journal of traditional. Chin Med 2021; 42(10): 1358-62.
[31]
Gu T, Wang RH, Wu T, et al. Effect of electroacupuncture on neuronal apoptosis in rats with traumatic brain injury based on PI3K/Akt signaling pathway. Zhongguo Zhenjiu 2020; 40(8): 851-6.
[32]
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J 2022; 289(22): 7038-50.
[http://dx.doi.org/10.1111/febs.16059] [PMID: 34092035]
[33]
Cavalli L, Briscese L, Cavalli T, Andre P, Carboncini MC. Role of acupuncture in the management of severe acquired brain injuries (sABIs). Evid Based Complement Alternat Med 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/8107508] [PMID: 30298094]
[34]
Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 1981; 211(1): 67-77.
[http://dx.doi.org/10.1016/0006-8993(81)90067-6] [PMID: 7225844]
[35]
Evonuk KS, Baker BJ, Doyle RE, et al. Inhibition of system xc−transporter attenuates autoimmune inflammatory demyelination. J Immunol 2015; 195(2): 450-63.
[http://dx.doi.org/10.4049/jimmunol.1401108] [PMID: 26071560]
[36]
Zhang D, Jin B, Ondrejcak T, Rowan MJ. Opposite in vivo effects of agents that stimulate or inhibit the glutamate/cysteine exchanger system on the inhibition of hippocampal LTP by Aß. Hippocampus 2016; 26(12): 1655-65.
[http://dx.doi.org/10.1002/hipo.22667] [PMID: 27701797]
[37]
Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32(4): 1005-11.
[http://dx.doi.org/10.1161/01.STR.32.4.1005] [PMID: 11283404]
[38]
Johnson LW, Diaz I. Exploring the social determinants of health and health disparities in traumatic brain injury: A scoping review. Brain Sci 2023; 13(5): 707.
[http://dx.doi.org/10.3390/brainsci13050707] [PMID: 37239178]
[39]
Coronado VG, Xu L, Basavaraju SV, et al. Surveillance for traumatic brain injury-related deaths-United States, 1997-2007. MMWR Surveill Summ 2011; 60(5): 1-32.
[PMID: 21544045]
[40]
Fernández-Gajardo R, Matamala JM, Carrasco R, Gutiérrez R, Melo R, Rodrigo R. Novel therapeutic strategies for traumatic brain injury: acute antioxidant reinforcement. CNS Drugs 2014; 28(3): 229-48.
[http://dx.doi.org/10.1007/s40263-013-0138-y] [PMID: 24532027]
[41]
Du W, Hu H, Zhang J, Bao G, Chen R, Quan R. The mechanism of MAPK signal transduction pathway involved with electroacupuncture treatment for different diseases. Evid Based Complement Alternat Med 2019; 2019: 1-10.
[http://dx.doi.org/10.1155/2019/8138017] [PMID: 31467579]
[42]
Liu J, Wang XL, Zi L, Yang CH, Li HP, Li N. Effect of early electroacupuncture intervention on conscious state of patients after traumatic brain injury surgery. Zhongguo Zhenjiu 2020; 40(5): 479-82.
[43]
Xing X, Jiang R, Lei S, et al. Electroacupuncture in treatment of acute gastrointestinal injury in patients with severe traumatic brain injury: A multicenter randomized controlled trial. Chin J Integr Med 2023; 29(8): 721-9.
[http://dx.doi.org/10.1007/s11655-022-3670-0] [PMID: 35508860]
[44]
Eldadah BA, Faden A. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 2000; 17(10): 811-29.
[http://dx.doi.org/10.1089/neu.2000.17.811] [PMID: 11063050]
[45]
Pedersen MØ, Larsen A, Stoltenberg M, Penkowa M. Cell death in the injured brain: Roles of metallothioneins. Prog Histochem Cytochem 2009; 44(1): 1-27.
[http://dx.doi.org/10.1016/j.proghi.2008.10.002] [PMID: 19348909]
[46]
Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RSB. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 2004; 9(1): 66-75.
[http://dx.doi.org/10.1186/cc2950] [PMID: 15693986]
[47]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273-85.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[48]
Gao J, Li Y, Song R. SIRT2 inhibition exacerbates p53-mediated ferroptosis in mice following experimental traumatic brain injury. Neuroreport 2021; 32(12): 1001-8.
[http://dx.doi.org/10.1097/WNR.0000000000001679] [PMID: 34102645]
[49]
Magtanong L, Dixon SJ. Ferroptosis and brain injury. Dev Neurosci 2018; 40(5-6): 382-95.
[http://dx.doi.org/10.1159/000496922] [PMID: 30820017]
[50]
Li Q, Weiland A, Chen X, et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: Coexistence of ferroptosis, autophagy, and necrosis. Front Neurol 2018; 9: 581.
[http://dx.doi.org/10.3389/fneur.2018.00581] [PMID: 30065697]
[51]
Zhang H, Ostrowski R, Jiang D, et al. Hepcidin promoted ferroptosis through iron metabolism which is associated with DMT1 signaling activation in early brain injury following subarachnoid hemorrhage. Oxid Med Cell Longev 2021; 2021: 1-19.
[http://dx.doi.org/10.1155/2021/9800794] [PMID: 34987706]
[52]
Lin JH, Yang KT, Lee WS, et al. Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev 2022; 2022: 1-14.
[http://dx.doi.org/10.1155/2022/9523491] [PMID: 35082973]
[53]
Hui Z, Wang S, Li J, Wang J, Zhang Z. Compound Tongluo Decoction inhibits endoplasmic reticulum stress-induced ferroptosis and promoted angiogenesis by activating the Sonic Hedgehog pathway in cerebral infarction. J Ethnopharmacol 2022; 283: 114634.
[http://dx.doi.org/10.1016/j.jep.2021.114634] [PMID: 34536518]
[54]
Qin D, Wang J, Le A, Wang TJ, Chen X, Wang J. Traumatic brain injury: Ultrastructural features in neuronal ferroptosis, glial cell activation and polarization, and blood–brain barrier breakdown. Cells 2021; 10(5): 1009.
[http://dx.doi.org/10.3390/cells10051009] [PMID: 33923370]
[55]
Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol 2020; 8: 586578.
[http://dx.doi.org/10.3389/fcell.2020.586578] [PMID: 33043019]
[56]
Tang D, Kroemer G. Ferroptosis. Curr Biol 2020; 30(21): R1292-7.
[http://dx.doi.org/10.1016/j.cub.2020.09.068] [PMID: 33142092]
[57]
Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ 2021; 28(4): 1135-48.
[http://dx.doi.org/10.1038/s41418-020-00728-1] [PMID: 33462411]
[58]
Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P, Methner A. Mechanisms of oxidative glutamate toxicity: the glutamate/cystine antiporter system xc- as a neuroprotective drug target. CNS Neurol Disord Drug Targets 2010; 9(3): 373-82.
[http://dx.doi.org/10.2174/187152710791292567] [PMID: 20053169]
[59]
Liu L, Liu R, Liu Y, et al. Cystine‐glutamate antiporter xCT as a therapeutic target for cancer. Cell Biochem Funct 2021; 39(2): 174-9.
[http://dx.doi.org/10.1002/cbf.3581] [PMID: 32749001]
[60]
Tu H, Tang LJ, Luo XJ, Ai KL, Peng J. Insights into the novel function of system Xc- in regulated cell death. Eur Rev Med Pharmacol Sci 2021; 25(3): 1650-62.
[PMID: 33629335]
[61]
Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 2016; 403: 143-70.
[http://dx.doi.org/10.1007/82_2016_508] [PMID: 28204974]
[62]
Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal 2018; 29(1): 61-74.
[http://dx.doi.org/10.1089/ars.2017.7115] [PMID: 28462584]
[63]
Yang WS, SriRamaratnam R, Welsch ME. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156(1-2): 317-31.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]