Effects of Dietary Restriction on PGC-1α Regulation in the Development of Age-associated Diseases

Page: [189 - 195] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Ageing is the most significant risk factor for a number of non-communicable diseases, manifesting as cognitive, metabolic, and cardiovascular diseases. Although multifactorial, mitochondrial dysfunction and oxidative stress have been proposed to be the driving forces of ageing. Peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) is a transcriptional coactivator central to various metabolic functions, of which mitochondrial biogenesis is the most prominent function. Inducible by various stimuli, including nutrient limitations, PGC-1α is a molecule of interest in the maintenance of mitochondrial function and, therefore, the prevention of degenerative diseases. This review involves a literature search for articles retrieved from PubMed using PGC-1α, ageing, and dietary restriction as keywords. Dietary restriction has been shown to promote tissue-specific PGC-1α expression. Both dietary restriction and PGC-1α upregulation have been shown to prolong the lifespans of both lower and higher-level organisms; the incidence of non-communicable diseases also decreased in fasting mammals. In conclusion, dietary interventions may delay ageing by regulating healthy mitochondria in various organs, presenting the possibility of a new primary prevention for many age-related diseases.

Graphical Abstract

[1]
Rodríguez-Rodero S, Fernández-Morera JL, Menéndez-Torre E, Calvanese V, Fernández AF, Fraga MF. Aging genetics and aging. Aging Dis 2011; 2(3): 186-95.
[PMID: 22396873]
[2]
Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012; 22(17): R741-52.
[http://dx.doi.org/10.1016/j.cub.2012.07.024] [PMID: 22975005]
[3]
Wenz T. Mitochondria and PGC-1α in aging and age-associated diseases. J Aging Res 2011; 2011: 1-12.
[http://dx.doi.org/10.4061/2011/810619] [PMID: 21629705]
[4]
Harman D. Origin and evolution of the free radical theory of aging: A brief personal history, 1954–2009. Biogerontology 2009; 10(6): 773-81.
[http://dx.doi.org/10.1007/s10522-009-9234-2] [PMID: 19466577]
[5]
Amarya S, Singh K, Sabharwal M. Ageing process and physiological changes. Gerontology. InTech 2018.
[http://dx.doi.org/10.5772/intechopen.76249]
[6]
Sweeney G, Song J. The association between PGC-1α and Alzheimer’s disease. Anat Cell Biol 2016; 49(1): 1-6.
[http://dx.doi.org/10.5115/acb.2016.49.1.1] [PMID: 27051562]
[7]
Halter JB, Musi N, McFarland Horne F, et al. Diabetes and cardiovascular disease in older adults: Current status and future directions. Diabetes 2014; 63(8): 2578-89.
[http://dx.doi.org/10.2337/db14-0020] [PMID: 25060886]
[8]
Ruas JL, White JP, Rao RR, et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 2012; 151(6): 1319-31.
[http://dx.doi.org/10.1016/j.cell.2012.10.050] [PMID: 23217713]
[9]
Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 2012; 110(8): 1109-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246140] [PMID: 22499901]
[10]
Liang H, Ward WF. PGC-1α: A key regulator of energy metabolism. Adv Physiol Educ 2006; 30(4): 145-51.
[http://dx.doi.org/10.1152/advan.00052.2006] [PMID: 17108241]
[11]
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1 α): Transcriptional coactivator and metabolic regulator. Endocr Rev 2003; 24(1): 78-90.
[http://dx.doi.org/10.1210/er.2002-0012] [PMID: 12588810]
[12]
Antarianto RD, Kadharusman MM, Wijaya S, Hardiny NS. The impact of prolonged and intermittent fasting on PGC-1α, Oct-4, and CK-19 liver gene expression. Curr Aging Sci 2023; 16(1): 49-55.
[http://dx.doi.org/10.2174/1874609815666220627155337] [PMID: 35762557]
[13]
Kang C, Ji LL. Role of PGC-1α in muscle function and aging. J Sport Health Sci 2013; 2(2): 81-6.
[http://dx.doi.org/10.1016/j.jshs.2013.03.005]
[14]
Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 2008; 93(4): 1433-41.
[http://dx.doi.org/10.1210/jc.2007-1701] [PMID: 18211970]
[15]
Finck BN, Kelly DP. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116(3): 615-22.
[http://dx.doi.org/10.1172/JCI27794] [PMID: 16511594]
[16]
Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science 2010; 328(5976): 321-6.
[http://dx.doi.org/10.1126/science.1172539] [PMID: 20395504]
[17]
Li L, Sawashita J, Ding X, Yang M, Xu Z, Miyahara H. Caloric restriction reduces the systemic progression of mouse AApoAII amyloidosis. PLoS ONE 2017; 12(2): e0172402.
[http://dx.doi.org/10.1371/journal.pone.0172402]
[18]
Wang J, Ho L, Qin W, et al. Caloric restriction attenuates β‐amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2005; 19(6): 1-18.
[http://dx.doi.org/10.1096/fj.04-3182fje] [PMID: 15650008]
[19]
Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937): 201-4.
[http://dx.doi.org/10.1126/science.1173635] [PMID: 19590001]
[20]
Baker DJ, Betik AC, Krause DJ, Hepple RT. No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: Effects are independent of mitochondrial DNA integrity. J Gerontol A Biol Sci Med Sci 2006; 61(7): 675-84.
[http://dx.doi.org/10.1093/gerona/61.7.675] [PMID: 16870628]
[21]
Pugh TD, Conklin MW, Evans TD, et al. A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys. Aging Cell 2013; 12(4): 672-81.
[http://dx.doi.org/10.1111/acel.12091] [PMID: 23607901]
[22]
Waldman M, Cohen K, Yadin D, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α’. Cardiovasc Diabetol 2018; 17(1): 111.
[http://dx.doi.org/10.1186/s12933-018-0754-4] [PMID: 30071860]
[23]
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator–activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 2000; 106(7): 847-56.
[http://dx.doi.org/10.1172/JCI10268] [PMID: 11018072]
[24]
Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011; 93(4): 884S-90S.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[25]
Riehle C, Abel ED. PGC-1 proteins and heart failure. Trends Cardiovasc Med 2012; 22(4): 98-105.
[http://dx.doi.org/10.1016/j.tcm.2012.07.003] [PMID: 22939990]
[26]
Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 2007; 21(7): 770-83.
[http://dx.doi.org/10.1101/gad.1525107] [PMID: 17403779]
[27]
Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98(1): 115-24.
[http://dx.doi.org/10.1016/S0092-8674(00)80611-X] [PMID: 10412986]
[28]
Puigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 1999; 286(5443): 1368-71.
[http://dx.doi.org/10.1126/science.286.5443.1368] [PMID: 10558993]
[29]
Rowe GC, Jiang A, Arany Z. PGC-1 coactivators in cardiac development and disease. Circ Res 2010; 107(7): 825-38.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223818] [PMID: 20884884]
[30]
Arany Z, He H, Lin J, et al. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 2005; 1(4): 259-71.
[http://dx.doi.org/10.1016/j.cmet.2005.03.002] [PMID: 16054070]
[31]
Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci USA 2006; 103(26): 10086-91.
[http://dx.doi.org/10.1073/pnas.0603615103] [PMID: 16775082]
[32]
Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002; 418(6899): 797-801.
[http://dx.doi.org/10.1038/nature00904] [PMID: 12181572]
[33]
Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC‐1. FASEB J 2002; 16(14): 1879-86.
[http://dx.doi.org/10.1096/fj.02-0367com] [PMID: 12468452]
[34]
Goto M, Terada S, Kato M, et al. cDNA Cloning and mRNA analysis of PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 2000; 274(2): 350-4.
[http://dx.doi.org/10.1006/bbrc.2000.3134] [PMID: 10913342]
[35]
Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC-1α mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 2004; 96(1): 189-94.
[http://dx.doi.org/10.1152/japplphysiol.00765.2003] [PMID: 12972445]
[36]
Leone TC, Lehman JJ, Finck BN, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3(4): e101.
[http://dx.doi.org/10.1371/journal.pbio.0030101] [PMID: 15760270]
[37]
Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 2003; 100(4): 1711-6.
[http://dx.doi.org/10.1073/pnas.0337639100] [PMID: 12578979]
[38]
Brandhorst S, Choi IY, Wei M, et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab 2015; 22(1): 86-99.
[http://dx.doi.org/10.1016/j.cmet.2015.05.012] [PMID: 26094889]
[39]
Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413(6852): 179-83.
[http://dx.doi.org/10.1038/35093131] [PMID: 11557984]
[40]
Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 2003; 423(6939): 550-5.
[http://dx.doi.org/10.1038/nature01667] [PMID: 12754525]
[41]
König B, Rauer C, Rosenbaum S, Brandsch C, Eder K, Stangl GI. Fasting upregulates PPAR target genes in brain and influences pituitary hormone expression in a PPAR dependent manner. PPAR Res 2009; 2009: 1-9.
[http://dx.doi.org/10.1155/2009/801609] [PMID: 20011657]