[14]
J. Yousif, "Neural computing based part of speech tagger for Arabic language: A review study", Int. J. Comp. Appl. Sci. IJOCAAS, vol. 5, no. 1, 2018.
[18]
J.H. Yousif, and T. Sembok, "Arabic part-of-speech tagger based neural networks", In proceedings of International Arab Conference on Information Technology, 2022, pp. 22-24
[19]
A.D.A. Garcez, and L.C. Lamb, "Neurosymbolic AI: The 3rd wave", Artif. Intell. Rev., pp. 1-20, 2023.
[20]
A. Sheth, K. Roy, and M. Gaur, "Neurosymbolic ai-why, what, and how", arXiv:2305.00813, 2023.
[30]
L. Budach, M. Feuerpfeil, N. Ihde, A. Nathansen, N. Noack, H. Patzlaff, F. Naumann, and H. Harmouch, "The effects of data quality on machine learning performance", arXiv:2207.14529, 2022.
[32]
S. Liu, Q. Lin, and J. Li, "A survey on learnable evolutionary algorithms for scalable multiobjective optimization", IEEE Transactions on Evolutionary Computation. , vol. 27, no. 6, 2023, pp. 1941-1961, .
[33]
T. Li, and C. Merkel, "Model extraction and adversarial attacks on neural networks using switching power information", In International Conference on Artificial Neural Networks, vol. 30. no. Part I, 2021, pp. 91-101
[38]
W. Alkishri, and M. Al-Bahri, Deepfake image detection methods using discrete fourier transform analysis and convolutional neural network.Journal of Jilin University., Online Open Access, 2023.
[39]
Y. Khamis, and J.H. Yousif, "Deep learning feedforward neural network in predicting model of environmental risk factors in the sohar region", In: Arti. Intel. & Robo. Devel. J., 2022, pp. 1-201.
[41]
J.H. Yousif, and T. Sembok, "Design and implement an automatic neural tagger based arabic language for nlp applications", Asian J. Info. Techno., vol. 5, no. 7, pp. 784-789, 2006.
[49]
V. Pomazan, I. Tvoroshenko, and V. Gorokhovatskyi, "Development of an application for recognizing emotions using convolutional neural networks", IJAISR, vol. 7, no. 7, pp. 25-36, 2023.
[66]
A. Shah, M. Shah, A. Pandya, R. Sushra, R. Sushra, M. Mehta, K. Patel, and K. Patel, "A comprehensive study on skin cancer detection using artificial neural network (ANN) and convolutional neural network", Clin. eHeal., vol. 6, pp. 76-84, 2023.
[69]
H. Chen, R. Tao, Y. Fan, Y. Wang, J. Wang, B. Schiele, X. Xie, B. Raj, and M. Savvides, "Softmatch: Addressing the quantity-quality trade-off in semi-supervised learning", arXiv:2301.10921, 2023.
[70]
K. Abdalgader, and J.H. Yousif, "Agricultural irrigation control using sensor-enabled architecture", Trans. Internet Inf. Syst., vol. 16, no. 10, 2022.
[71]
O. Besbes, W. Ma, and O. Mouchtaki, "Quality vs. quantity of data in contextual decision-making: Exact analysis under newsvendor loss", arXiv:2302.08424, 2023.
[73]
S. Lakra, T.V. Prasad, and G. Ramakrishna, " The future of neural networks", arXiv:1209.4855, 2012.
[75]
R.J. Howlett, Radial basis function networks 1.In: Recent developments in theory and applications., vol. 66. Studies in Fuzziness and Soft Computing, 2001.
[76]
E.A. Lim, W.H. Tan, and A.K. Junoh, "An improved radial basis function networks based on quantum evolutionary algorithm for training nonlinear datasets", Intern. J. Art. Intel., vol. 8, no. 2, p. 120, 2019.
[78]
L. Deng, G. Hinton, and B. Kingsbury, New types of deep neural network learning for speech recognition and related applications: An overview.In 2013 IEEE international conference on acoustics, speech and signal processing, year., 2013, pp. 8599-8603. IEEE
[79]
J.H. Yousif, and T. Sembok, "Recurrent neural approach based Arabic part-of-speech tagging", proceedings of International Conference on Computer and Communication Engineering (ICCCE’06), vol. 2, pp. 9-11, 2006.
[82]
I. Sutskever, J. Martens, and G.E. Hinton, "Generating text with recurrent neural networks", Proceedings of the 28th international conference on machine learning (ICML-11) year, pp. 1017-1024, 2011.
[90]
H. Yonaba, F. Anctil, and V. Anctil, "Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting", J. Hydrol. Eng., vol. 15, no. 4, pp. 275-283, 2010.
[95]
H. Ramchoun, Y. Ghanou, M. Ettaouil, and M.A. Janati Idrissi, "Multilayer perceptron: Architecture optimization and training", Intern. J. Int. Mult. Art. Intel., vol. 4, pp. 1-30, 2016.
[96]
J. Heaton, Introduction to neural networks with Java., Heaton Research, Inc, 2008.
[101]
Y. Bai, "RELU-function and derived function review", In: SHS Web of Conferences vol. 144. EDP Sciences., p. 02006, 2022.
[102]
F. Alahmari, A. Naim, and H. Alqahtani, E-Learning modeling technique and convolution neural networks in online education. In IoT-enabled Convolutional Neural Networks: Techniques and Applications., River Publishers, 2023, pp. 261-295.
[106]
F. Shao, and Z. Shen, "How can artificial neural networks approximate the brain", Front. Psychol., vol. 13, pp. 1-970, 2023.
[107]
José Salvador, João Oliveira, and Maurício Breternitz, "Reinforcement learning", A lit. rev., vol. 2020, pp. 1-36, 2020.