Current Radiopharmaceuticals

Author(s): Shatrudhan Prajapati, Shikha Yadav* and Javed Khan

DOI: 10.2174/0118744710283369240328082442

DownloadDownload PDF Flyer Cite As
Theranostic and Combined Approaches Exploiting Multifunctional Gold Nanoclusters in Tumoral Ecosystems: A Paradigm Shift in Precision Oncology

Page: [330 - 340] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Malignant tumors pose a significant threat to human life and well-being because of their rising occurrence and size. The current treatment methods and diagnostic techniques employed in clinical practice are inadequate for effectively treating tumors. Fluorescence, photothermal effects, radiosensitization, and biocompatibility are only a few instances of the unique photonic and physicochemical properties exhibited. Gold nanoclusters (AuNCs) are nanomaterials that possess modest dimensions, typically measuring approximately 3 nm, and are composed of a limited number of particles. AuNCs have three primary functions in practical applications: serving as imaging agents, drug transporters, and therapeutic agents. This article discusses nanosystems. The text emphasizes the promise of AuNCs for tumor theranostic and combination treatment while also acknowledging any existing limitations. Lastly, it is anticipated that the information presented here will serve as a valuable tool for researchers in this sector, resulting in novel perspectives and, ultimately, a wider adoption of AuNCs in pharmaceuticals. This study focuses on the expansion of diagnostic applications in cancer therapy by utilizing AuNC-based devices, made possible by the use of dynamic or passive tumor targeting techniques. The utilization of AuNCs has been thoroughly investigated for their prospective applicability as light-activated and radiation agents. Furthermore, they have been investigated as nanocarriers for transporting anticancer drugs. The medications can either bind to the closure receptor or be linked to the AuNCs through various techniques, showcasing their extensive potential for therapeutic applications.

Keywords: Tumour diagnostics, gold nanoclusters, therapies, photothermal, radiography, nanotechnology, gold nanoparticles.

Graphical Abstract

[1]
Sisi, L.; Junyao, W.; Yuxin, S.; Shuya, H.; Huaxin, T. The recent development of multifunctional gold nanoclusters in tumor theranostic and combination therapy. Pharmaceutics, 2022, 14(11), 2451.
[http://dx.doi.org/10.3390/pharmaceutics14112451] [PMID: 36432642]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Soper, S.A.; Rasooly, A. Cancer: A global concern that demands new detection technologies. Analyst, 2016, 141(2), 367-370.
[http://dx.doi.org/10.1039/C5AN90101D] [PMID: 26688866]
[4]
Zhang, Q.; Yang, M.; Zhu, Y.; Mao, C. Metallic nanoclusters for cancer imaging and therapy. Curr. Med. Chem., 2018, 25(12), 1379-1396.
[http://dx.doi.org/10.2174/0929867324666170331122757] [PMID: 28393695]
[5]
Chen, X.; Zhu, H.; Huang, X.; Wang, P.; Zhang, F.; Li, W.; Chen, G.; Chen, B. Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer. Nanoscale, 2017, 9(6), 2219-2231.
[http://dx.doi.org/10.1039/C6NR07656D] [PMID: 28120979]
[6]
Thambi, T.; Park, J.H.; Lee, D.S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: Recent approaches and future perspectives. Chem. Commun., 2016, 52(55), 8492-8500.
[http://dx.doi.org/10.1039/C6CC02972H] [PMID: 27225824]
[7]
Akgönüllü, S.; Yavuz, H.; Denizli, A. SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta, 2020, 219, 121219.
[http://dx.doi.org/10.1016/j.talanta.2020.121219] [PMID: 32887120]
[8]
Hong, L.; Lu, M.; Dinel, M.P.; Blain, P.; Peng, W.; Gu, H.; Masson, J.F. Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA. Biosens. Bioelectron., 2018, 109(109), 230-236.
[http://dx.doi.org/10.1016/j.bios.2018.03.032] [PMID: 29567568]
[9]
Chakraborty, A.; Das, A.; Raha, S.; Barui, A. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. J. Photochem. Photobiol. B, 2020, 203, 111778.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111778] [PMID: 31931389]
[10]
Chen, Z.; Lu, S.; Zhang, Z.; Huang, X.; Zhao, H.; Wei, J.; Li, F.; Yuan, K.; Su, L.; Xiong, Y. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Mikrochim. Acta, 2022, 189(8), 275.
[http://dx.doi.org/10.1007/s00604-022-05379-2] [PMID: 35829782]
[11]
Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev., 2016, 116(18), 10346-10413.
[http://dx.doi.org/10.1021/acs.chemrev.5b00703] [PMID: 27585252]
[12]
Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: The emerging link between atoms and nanoparticles. Chem. Rev., 2017, 117(12), 8208-8271.
[http://dx.doi.org/10.1021/acs.chemrev.6b00769] [PMID: 28586213]
[13]
Pluchery, O.; Louis, C. Gold nanoparticles for physics, chemistry and biology; Imperial College Press, 2012.
[14]
Tsukuda, T.; Häkkinen, H. Protected metal clusters: From fundamentals to applications; Elsevier, 2015, p. 6.
[15]
Kaur, N.; Aditya, R.N.; Singh, A.; Kuo, T.R. Biomedical applications for gold nanoclusters: Recent developments and future perspectives. Nanoscale Res. Lett., 2018, 13(1), 302.
[http://dx.doi.org/10.1186/s11671-018-2725-9] [PMID: 30259230]
[16]
Cowan, M.J.; Mpourmpakis, G. Structure–property relationships on thiolate-protected gold nanoclusters. Nanoscale Adv., 2019, 1(1), 184-188.
[http://dx.doi.org/10.1039/C8NA00246K] [PMID: 36132447]
[17]
Häkkinen, H. The gold–sulfur interface at the nanoscale. Nat. Chem., 2012, 4(6), 443-455.
[http://dx.doi.org/10.1038/nchem.1352] [PMID: 22614378]
[18]
Sha, Q.; Guan, R.; Su, H.; Zhang, L.; Liu, B.F.; Hu, Z.; Liu, X. Carbohydrate-protein template synthesized high mannose loading gold nanoclusters: A powerful fluorescence probe for sensitive Concanavalin A detection and specific breast cancer cell imaging. Talanta, 2020, 218, 121130.
[http://dx.doi.org/10.1016/j.talanta.2020.121130] [PMID: 32797887]
[19]
Cui, H.; Shao, Z.S.; Song, Z.; Wang, Y.B.; Wang, H.S. Development of gold nanoclusters: From preparation to applications in the field of biomedicine. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(41), 14312-14333.
[http://dx.doi.org/10.1039/D0TC03443F]
[20]
Zhang, X.D.; Chen, J.; Luo, Z.; Wu, D.; Shen, X.; Song, S.S.; Sun, Y.M.; Liu, P.X.; Zhao, J.; Huo, S.; Fan, S.; Fan, F.; Liang, X.J.; Xie, J. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater., 2014, 3(1), 133-141.
[http://dx.doi.org/10.1002/adhm.201300189] [PMID: 23873780]
[21]
Ramesh, B.S.; Giorgakis, E.; Lopez-Davila, V.; Dashtarzheneha, A.K.; Loizidou, M. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters. Nanotechnology, 2016, 27(28), 285101.
[http://dx.doi.org/10.1088/0957-4484/27/28/285101] [PMID: 27255548]
[22]
Wu, H.; Qiao, J.; Hwang, Y.H.; Xu, C.; Yu, T.; Zhang, R.; Cai, H.; Kim, D.P.; Qi, L. Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Talanta, 2019, 200, 547-552.
[http://dx.doi.org/10.1016/j.talanta.2019.03.077] [PMID: 31036221]
[23]
Purohit, R; Singh, S Fluorescent gold nanoclusters for efficient cancer cell targeting. Int J Nanomedicine, 2018, 13(sup 1), 15-17.
[http://dx.doi.org/10.2147/IJN.S125003]
[24]
El-Sayed, N.; Schneider, M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(39), 8952-8971.
[http://dx.doi.org/10.1039/D0TB01610A] [PMID: 32901648]
[25]
Liu, J.M.; Chen, J.T.; Yan, X.P. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem., 2013, 85(6), 3238-3245.
[http://dx.doi.org/10.1021/ac303603f] [PMID: 23413985]
[26]
Han, L.; Xia, J.M.; Hai, X.; Shu, Y.; Chen, X.W.; Wang, J.H. Protein-stabilized gadolinium oxide-gold nanoclusters hybrid for multimodal imaging and drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(8), 6941-6949.
[http://dx.doi.org/10.1021/acsami.7b00246] [PMID: 28177224]
[27]
Hada, A.M.; Craciun, A.M.; Focsan, M.; Borlan, R.; Soritau, O.; Todea, M.; Astilean, S. Folic acid functionalized gold nanoclusters for enabling targeted fluorescence imaging of human ovarian cancer cells. Talanta, 2021, 225, 121960.
[http://dx.doi.org/10.1016/j.talanta.2020.121960] [PMID: 33592715]
[28]
Pan, Y.; Li, Q.; Zhou, Q.; Zhang, W.; Yue, P.; Xu, C.; Qin, X.; Yu, H.; Zhu, M. Cancer cell specific fluorescent methionine protected gold nanoclusters for in-vitro cell imaging studies. Talanta, 2018, 188, 259-265.
[http://dx.doi.org/10.1016/j.talanta.2018.05.079] [PMID: 30029373]
[29]
Li, H.; Cheng, Y.; Liu, Y.; Chen, B. Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells. Talanta, 2016, 158, 118-124.
[http://dx.doi.org/10.1016/j.talanta.2016.05.038] [PMID: 27343585]
[30]
Xie, J.; Liang, R.; Li, Q.; Wang, K.; Hussain, M.; Dong, L.; Shen, C.; Li, H.; Shen, G.; Zhu, J.; Tao, J. Photosensitizer-loaded gold nanocages for immunogenic phototherapy of aggressive melanoma. Acta Biomater., 2022, 142, 264-273.
[http://dx.doi.org/10.1016/j.actbio.2022.01.051] [PMID: 35101580]
[31]
Peng, L.H.; Niu, J.; Zhang, C.Z.; Yu, W.; Wu, J.H.; Shan, Y.H.; Wang, X.R.; Shen, Y.Q.; Mao, Z.W.; Liang, W.Q.; Gao, J.Q. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials, 2014, 35(21), 5605-5618.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.062] [PMID: 24736021]
[32]
Lei, Y.; Tang, L.; Xie, Y.; Xianyu, Y.; Zhang, L.; Wang, P.; Hamada, Y.; Jiang, K.; Zheng, W.; Jiang, X. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun., 2017, 8(1), 15130.
[http://dx.doi.org/10.1038/ncomms15130] [PMID: 28440296]
[33]
Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release, 2018, 278, 127-139.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.005] [PMID: 29630985]
[34]
Liu, R.; Hu, C.; Yang, Y.; Zhang, J.; Gao, H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm. Sin. B, 2019, 9(2), 410-420.
[http://dx.doi.org/10.1016/j.apsb.2018.09.001] [PMID: 30976492]
[35]
Hong, G.; Zou, Z.; Huang, Z.; Deng, H.; Chen, W.; Peng, H. Split-type electrochemiluminescent gene assay platform based on gold nanocluster probe for human papillomavirus diagnosis. Biosens. Bioelectron., 2021, 178, 113044.
[http://dx.doi.org/10.1016/j.bios.2021.113044] [PMID: 33550162]
[36]
Peng, H.P.; Jian, M.L.; Huang, Z.N.; Wang, W.J.; Deng, H.H.; Wu, W.H.; Liu, A.L.; Xia, X.H.; Chen, W. Facile electrochemiluminescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosens. Bioelectron., 2018, 105, 71-76.
[http://dx.doi.org/10.1016/j.bios.2018.01.021] [PMID: 29355781]
[37]
Yu, Q.; Gao, P.; Zhang, K.Y.; Tong, X.; Yang, H.; Liu, S.; Du, J.; Zhao, Q.; Huang, W. Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light Sci. Appl., 2017, 6(12), e17107.
[http://dx.doi.org/10.1038/lsa.2017.107] [PMID: 30167221]
[38]
Yang, Y.; Xing, X.; Zou, T.; Wang, Z.; Zhao, R.; Hong, P.; Peng, S.; Zhang, X.; Wang, Y. A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid. J. Hazard. Mater., 2020, 386, 121958.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121958] [PMID: 31884371]
[39]
Li, Y.; Cao, Y.; Wei, L.; Wang, J.; Zhang, M.; Yang, X.; Wang, W.; Yang, G. The assembly of protein-templated gold nanoclusters for enhanced fluorescence emission and multifunctional applications. Acta Biomater., 2020, 101, 436-443.
[http://dx.doi.org/10.1016/j.actbio.2019.10.035] [PMID: 31672583]
[40]
Matus, M.F.; Häkkinen, H. Atomically precise gold nanoclusters: Towards an optimal biocompatible system from a theoretical–experimental strategy. Small, 2021, 17(27), 2005499.
[http://dx.doi.org/10.1002/smll.202005499] [PMID: 33533179]
[41]
Pigliacelli, C.; Acocella, A.; Díez, I.; Moretti, L.; Dichiarante, V.; Demitri, N.; Jiang, H.; Maiuri, M.; Ras, R.H.A.; Bombelli, F.B.; Cerullo, G.; Zerbetto, F.; Metrangolo, P.; Terraneo, G. High-resolution crystal structure of a 20 kDa superfluorinated gold nanocluster. Nat. Commun., 2022, 13(1), 2607.
[http://dx.doi.org/10.1038/s41467-022-29966-2] [PMID: 35545611]
[42]
Linko, V.; Zhang, H. Nonappa; Kostiainen, M.A.; Ikkala, O. From precision colloidal hybrid materials to advanced functional assemblies. Acc. Chem. Res., 2022, 55(13), 1785-1795.
[http://dx.doi.org/10.1021/acs.accounts.2c00093] [PMID: 35647700]
[43]
Zhou, F.; Feng, B.; Yu, H.; Wang, D.; Wang, T.; Liu, J.; Meng, Q.; Wang, S.; Zhang, P.; Zhang, Z.; Li, Y. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics, 2016, 6(5), 679-687.
[http://dx.doi.org/10.7150/thno.14556] [PMID: 27022415]
[44]
Sonia; Komal; Kukreti, S.; Kaushik, M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta, 2021, 234, 122623.
[http://dx.doi.org/10.1016/j.talanta.2021.122623] [PMID: 34364432]
[45]
Dong, L.; Li, M.; Zhang, S.; Li, J.; Shen, G.; Tu, Y.; Zhu, J.; Tao, J. Cytotoxicity of BSA-stabilized gold nanoclusters: In vitro and in vivo study. Small, 2015, 11(21), 2571-2581.
[http://dx.doi.org/10.1002/smll.201403481] [PMID: 25630756]
[46]
Huang, T.H.; Zhao, F.Z.; Hu, Q.L.; Liu, Q.; Wu, T.C.; Zheng, D.; Kang, T.; Gui, L.C.; Chen, J. Bisphosphine-stabilized gold nanoclusters with the crown/birdcage-shaped Au11 cores: Structures and optical properties. Inorg. Chem., 2020, 59(21), 16027-16034.
[http://dx.doi.org/10.1021/acs.inorgchem.0c02582] [PMID: 33064476]
[47]
Russell, B.A.; Jachimska, B.; Chen, Y. Polyallylamine hydrochloride coating enhances the fluorescence emission of Human Serum Albumin encapsulated gold nanoclusters. J. Photochem. Photobiol. B, 2018, 187, 131-135.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.018] [PMID: 30145463]
[48]
Yang, L.; Lou, X.; Yu, F.; Liu, H. Cross-linking structure-induced strong blue emissive gold nanoclusters for intracellular sensing. Analyst, 2019, 144(8), 2765-2772.
[http://dx.doi.org/10.1039/C9AN00132H] [PMID: 30869682]
[49]
You, J.G.; Tseng, W.L. Peptide-induced aggregation of glutathione-capped gold nanoclusters: A new strategy for designing aggregation-induced enhanced emission probes. Anal. Chim. Acta, 2019, 1078, 101-111.
[http://dx.doi.org/10.1016/j.aca.2019.05.069] [PMID: 31358207]
[50]
Deng, H.H.; Peng, H.P.; Huang, K.Y.; He, S.B.; Yuan, Q.F.; Lin, Z.; Chen, R.T.; Xia, X.H.; Chen, W. Self-referenced ratiometric detection of sulfatase activity with dual-emissive urease-encapsulated gold nanoclusters. ACS Sens., 2019, 4(2), 344-352.
[http://dx.doi.org/10.1021/acssensors.8b01130] [PMID: 30652857]
[51]
Wang, J; Gao, Y; Liu, P; Xu, S; Luo, X Core-shell multifunctional nanomaterial-based all-in-one nanoplatform for simultaneous multilayer imaging of dual types of tumor biomarkers and photothermal therapy. Analytical Chemistry, 2020 Oct 30;92(22), 15169-15178.
[http://dx.doi.org/10.1016/j.talanta.2017.03.107] [PMID: 28501207]
[52]
Li, D.; Liu, Q.; Qi, Q.; Shi, H.; Hsu, E.C.; Chen, W.; Yuan, W.; Wu, Y.; Lin, S.; Zeng, Y.; Xiao, Z.; Xu, L.; Zhang, Y.; Stoyanova, T.; Jia, W.; Cheng, Z. Gold nanoclusters for NIR‐II fluorescence imaging of bones. Small, 2020, 16(43), 2003851.
[http://dx.doi.org/10.1002/smll.202003851] [PMID: 33000882]
[53]
Meng, X.; Pang, X.; Zhang, K.; Gong, C.; Yang, J.; Dong, H.; Zhang, X. Recent advances in near‐infrared‐II fluorescence imaging for deep‐tissue molecular analysis and cancer diagnosis. Small, 2022, 18(31), 2202035.
[http://dx.doi.org/10.1002/smll.202202035] [PMID: 35762403]
[54]
Hada, A.M.; Craciun, A.M.; Focsan, M.; Vulpoi, A.; Borcan, E.L.; Astilean, S. Glutathione-capped gold nanoclusters as near-infrared-emitting efficient contrast agents for confocal fluorescence imaging of tissue-mimicking phantoms. Mikrochim. Acta, 2022, 189(9), 337.
[http://dx.doi.org/10.1007/s00604-022-05440-0] [PMID: 35978146]
[55]
Wu, X.; He, X.; Wang, K.; Xie, C.; Zhou, B.; Qing, Z. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale, 2010, 2(10), 2244-2249.
[http://dx.doi.org/10.1039/c0nr00359j] [PMID: 20835443]
[56]
Xia, F.; Hou, W.; Zhang, C.; Zhi, X.; Cheng, J.; de la Fuente, J.M.; Song, J.; Cui, D. pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater., 2018, 68(68), 308-319.
[http://dx.doi.org/10.1016/j.actbio.2017.12.034] [PMID: 29292171]
[57]
Li, H.; Wang, P.; Deng, Y.; Zeng, M.; Tang, Y.; Zhu, W.H.; Cheng, Y. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials, 2017, 139(139), 30-38.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.030] [PMID: 28582716]
[58]
Sinclair, M.A.; Edwards, R.D.; Goldsack, T.J. Laser radiography. InPPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No. 01CH37251), 2001 Jun 17;Vol. 2, 1422-1424. IEEE.
[http://dx.doi.org/10.1021/acs.analchem.0c03669] [PMID: 33125850]
[59]
Schöckel, L.; Jost, G.; Seidensticker, P.; Lengsfeld, P.; Palkowitsch, P.; Pietsch, H. Developments in X-ray contrast media and the potential impact on computed tomography. Invest. Radiol., 2020, 55(9), 592-597.
[http://dx.doi.org/10.1097/RLI.0000000000000696] [PMID: 32701620]
[60]
Lusic, H.; Grinstaff, M.W. X-ray-computed tomography contrast agents. Chem. Rev., 2013, 113(3), 1641-1666.
[http://dx.doi.org/10.1021/cr200358s] [PMID: 23210836]
[61]
Hainfeld, J.F.; Ridwan, S.M.; Stanishevskiy, Y.; Smilowitz, N.R.; Davis, J.; Smilowitz, H.M. Small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Sci. Rep., 2018, 8(1), 13803.
[http://dx.doi.org/10.1038/s41598-018-31940-2] [PMID: 30218059]
[62]
Luo, D.; Wang, X.; Zeng, S.; Ramamurthy, G.; Burda, C.; Basilion, J.P. Targeted gold nanocluster‐enhanced radiotherapy of prostate cancer. Small, 2019, 15(34), 1900968.
[http://dx.doi.org/10.1002/smll.201900968] [PMID: 31265213]
[63]
Yang, Z.; Li, Z.; Zhao, Y.; Zhao, Y.; Li, X.; He, L.; Zvyagin, A.V.; Yang, B.; Lin, Q.; Ma, X. Lotus seedpod-inspired crosslinking-assembled hydrogels based on gold nanoclusters for synergistic osteosarcoma multimode imaging and therapy. ACS Appl. Mater. Interfaces, 2022, 14(30), 34377-34387.
[http://dx.doi.org/10.1021/acsami.2c06890] [PMID: 35878314]
[64]
Guo, R.; Zhang, L.; Qian, H.; Li, R.; Jiang, X.; Liu, B. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir, 2010 Apr 20;26(8), 5428-5434.
[http://dx.doi.org/10.1002/adhm.202001806] [PMID: 33470542]
[65]
Lee, S.; Lee, C.; Park, S.; Lim, K.; Kim, S.S.; Kim, J.O.; Lee, E.S.; Oh, K.T.; Choi, H.G.; Youn, Y.S. Facile fabrication of highly photothermal-effective albumin-assisted gold nanoclusters for treating breast cancer. Int. J. Pharm., 2018, 553(1-2), 363-374.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.063] [PMID: 30385372]
[66]
Duan, Q.; Yang, M.; Zhang, B.; Li, Y.; Zhang, Y.; Li, X.; Wang, J.; Zhang, W.; Sang, S. Gold nanoclusters modified mesoporous silica coated gold nanorods: Enhanced photothermal properties and fluorescence imaging. J. Photochem. Photobiol. B, 2021, 215, 112111.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.112111] [PMID: 33373860]
[67]
Tan, F.; Yang, Y.; Xie, X.; Wang, L.; Deng, K.; Xia, X.; Yang, X.; Huang, H. Prompting peroxidase-like activity of gold nanorod composites by localized surface plasmon resonance for fast colorimetric detection of prostate specific antigen. Analyst, 2018, 143(20), 5038-5045.
[http://dx.doi.org/10.1039/C8AN00664D] [PMID: 30234206]
[68]
Wang, Z.; He, L.; Che, S.; Xing, H.; Guan, L.; Yang, Z.; Li, X.; Zvyagin, A.V.; Lin, Q.; Qu, W. AuNCs–LHRHa nano-system for FL/CT dual-mode imaging and photothermal therapy of targeted prostate cancer. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(27), 5182-5190.
[http://dx.doi.org/10.1039/D2TB00531J] [PMID: 35723067]
[69]
Li, Y.; Song, W.; Hu, Y.; Xia, Y.; Li, Z.; Lu, Y.; Shen, Y. “Petal-like” size-tunable gold wrapped immunoliposome to enhance tumor deep penetration for multimodal guided two-step strategy. J. Nanobiotechnology, 2021, 19(1), 293.
[http://dx.doi.org/10.1186/s12951-021-01004-1] [PMID: 34579725]
[70]
Liu, Y.; Lv, X.; Liu, H.; Zhou, Z.; Huang, J.; Lei, S.; Cai, S.; Chen, Z.; Guo, Y.; Chen, Z.; Zhou, X.; Nie, L. Porous gold nanoclusterdecorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic/CT tumor imaging. Nanoscale, 2018, 10(8), 3631-3638.
[http://dx.doi.org/10.1039/C7NR08535D] [PMID: 29412212]
[71]
Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D.G.; Duan, X. Hydrotalcite monolayer toward high performance synergistic dual-modal imaging and cancer therapy. Biomaterials, 2018, 165(165), 14-24.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.032] [PMID: 29500979]
[72]
Ma, X.; Ren, X.; Guo, X.; Fu, C.; Wu, Q.; Tan, L.; Li, H.; Zhang, W.; Chen, X.; Zhong, H.; Meng, X. Multifunctional iron-based Metal−Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy. Biomaterials, 2019, 214, 119223.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119223] [PMID: 31174065]
[73]
Dan, Q.; Hu, D.; Ge, Y.; Zhang, S.; Li, S.; Gao, D.; Luo, W.; Ma, T.; Liu, X.; Zheng, H.; Li, Y.; Sheng, Z. Ultrasmall theranostic nanozymes to modulate tumor hypoxia for augmenting photodynamic therapy and radiotherapy. Biomater. Sci., 2020, 8(3), 973-987.
[http://dx.doi.org/10.1039/C9BM01742A] [PMID: 31850404]
[74]
Li, H.; Li, H.; Wan, A. Luminescent gold nanoclusters for in vivo tumor imaging. Analyst, 2020, 145(2), 348-363.
[http://dx.doi.org/10.1039/C9AN01598A] [PMID: 31782418]
[75]
Lakshmi, B.A.; Kim, S. Quercetin mediated gold nanoclusters explored as a dual functional nanomaterial in anticancer and bio-imaging disciplines. Colloids Surf. B Biointerfaces, 2019, 178(178), 230-237.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.054] [PMID: 30870790]
[76]
Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles. Biomater. Sci., 2015, 3(9), 1270-1278.
[http://dx.doi.org/10.1039/C5BM00186B] [PMID: 26236784]
[77]
Jiang, M.; Lin, Y.; Fang, X.; Liu, M.; Ma, L.; Liu, J.; Chen, M.; Yang, Y.; Wang, C. Enhancement of gold-nanocluster-mediated chemotherapeutic efficiency of cisplatin in lung cancer. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(24), 4895-4905.
[http://dx.doi.org/10.1039/D1TB00276G] [PMID: 34095942]
[78]
Jiang, X.; Sun, Y.; Shang, L.; Yang, C.; Kong, L.; Zhang, Z. Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(39), 5972-5982.
[http://dx.doi.org/10.1039/C9TB01546A] [PMID: 31528896]
[79]
Wu, S.; Yang, X.; Luo, F.; Wu, T.; Xu, P.; Zou, M.; Yan, J. Biosynthesis of flower-shaped Au nanoclusters with EGCG and their application for drug delivery. J. Nanobiotechnology, 2018, 16(1), 90.
[http://dx.doi.org/10.1186/s12951-018-0417-3] [PMID: 30424776]
[80]
Upreti, M.; Jyoti, A.; Sethi, P. Tumor microenvironment and nanotherapeutics. Transl. Cancer Res., 2013, 2(4), 309-319.
[PMID: 24634853]
[81]
Ovais, M.; Mukherjee, S.; Pramanik, A.; Das, D.; Mukherjee, A.; Raza, A.; Chen, C. Designing stimuli‐responsive upconversion nanoparticles that exploit the tumor microenvironment. Adv. Mater., 2020, 32(22), 2000055.
[http://dx.doi.org/10.1002/adma.202000055] [PMID: 32227413]
[82]
Fukumura, D.; Jain, R.K. Tumor microenvironment abnormalities: Causes, consequences, and strategies to normalize. J. Cell. Biochem., 2007, 101(4), 937-949.
[http://dx.doi.org/10.1002/jcb.21187] [PMID: 17171643]
[83]
Ribeiro Franco, P.I.; Rodrigues, A.P.; de Menezes, L.B.; Pacheco Miguel, M. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract., 2020, 216(1), 152729.
[http://dx.doi.org/10.1016/j.prp.2019.152729] [PMID: 31735322]
[84]
Suwa, T.; Kobayashi, M.; Nam, J.M.; Harada, H. Tumor microenvironment and radioresistance. Exp. Mol. Med., 2021, 53(6), 1029-1035.
[http://dx.doi.org/10.1038/s12276-021-00640-9] [PMID: 34135469]
[85]
Jin, M.Z.; Jin, W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 166.
[http://dx.doi.org/10.1038/s41392-020-00280-x] [PMID: 32843638]
[86]
Srinivasulu, Y.G.; Mozhi, A.; Goswami, N.; Yao, Q.; Xie, J. Traceable nanocluster–prodrug conjugate for chemo-photodynamic combinatorial therapy of non-small cell lung cancer. ACS Appl. Bio Mater., 2021, 4(4), 3232-3245.
[http://dx.doi.org/10.1021/acsabm.0c01611] [PMID: 35014410]
[87]
Latorre, A.; Latorre, A.; Castellanos, M. Diaz; Lazaro-Carrillo, A.; Aguado, T.; Lecea, M.; Romero-Pérez, S.; Calero, M.; Sanchez-Puelles, J.M.; Villanueva, Á.; Somoza, Á. Multifunctional albumin-stabilized gold nanoclusters for the reduction of cancer stem cells. Cancers (Basel), 2019, 11(7), 969.
[http://dx.doi.org/10.3390/cancers11070969] [PMID: 31295963]
[88]
Sun, H.; Ma, W.; Duan, S.; Huang, J.; Jia, R.; Cheng, H.; Chen, B.; He, X.; Wang, K. An endogenous stimulus detonated nanocluster-bomb for contrast-enhanced cancer imaging and combination therapy. Chem. Sci., 2021, 12(36), 12118-12129.
[http://dx.doi.org/10.1039/D1SC03847H] [PMID: 34667577]
[89]
Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[90]
Broekgaarden, M.; Bulin, A.L.; Porret, E.; Musnier, B.; Chovelon, B.; Ravelet, C.; Sancey, L.; Elleaume, H.; Hainaut, P.; Coll, J.L.; Le Guével, X. Surface functionalization of gold nanoclusters with arginine: A trade-off between microtumor uptake and radiotherapy enhancement. Nanoscale, 2020, 12(13), 6959-6963.
[http://dx.doi.org/10.1039/D0NR01138J] [PMID: 32187249]
[91]
Luo, P.; Zheng, Y.; Qin, Z.; Li, C.; Jiang, H.; Wang, X. Fluorescence light up detection of aluminium ion and imaging in live cells based on the aggregation-induced emission enhancement of thiolated gold nanoclusters. Talanta, 2019, 204(204), 548-554.
[http://dx.doi.org/10.1016/j.talanta.2019.06.052] [PMID: 31357332]
[92]
Nonappa, N. Luminescent gold nanoclusters for bioimaging applications. Beilstein J. Nanotechnol., 2020, 11(11), 533-546.
[http://dx.doi.org/10.3762/bjnano.11.42] [PMID: 32280577]
[93]
Zheng, B.; Wu, Q.; Jiang, Y.; Hou, M.; Zhang, P.; Liu, M.; Zhang, L.; Li, B.; Zhang, C. One-pot synthesis of 68Ga-doped ultrasmall gold nanoclusters for PET/CT imaging of tumors. Mater. Sci. Eng. C, 2021, 128, 112291.
[http://dx.doi.org/10.1016/j.msec.2021.112291] [PMID: 34474842]
[94]
Liang, G.; Jin, X.; Zhang, S.; Xing, D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials, 2017, 144(144), 95-104.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.017] [PMID: 28834765]
[95]
Pan, U.N.; Sanpui, P.; Paul, A.; Chattopadhyay, A. Protein–nanoparticle agglomerates as a plasmonic magneto-luminescent multifunctional nanocarrier for imaging and combination therapy. ACS Appl. Bio Mater., 2019, 2(8), 3144-3152.
[http://dx.doi.org/10.1021/acsabm.9b00210] [PMID: 35030758]
[96]
Zhan, C.; Huang, Y.; Lin, G.; Huang, S.; Zeng, F.; Wu, S. A gold nanocage/cluster hybrid structure for whole‐body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small, 2019, 15(33), 1900309.
[http://dx.doi.org/10.1002/smll.201900309] [PMID: 31245925]
[97]
Dutta, D.; Sailapu, S.K.; Simon, A.T.; Ghosh, S.S.; Chattopadhyay, A. Gold-nanocluster-embedded mucin nanoparticles for photodynamic therapy and bioimaging. Langmuir, 2019, 35(32), 10475-10483.
[http://dx.doi.org/10.1021/acs.langmuir.9b00998] [PMID: 31291114]
[98]
Vassaux, G.; Angelova, A.; Baril, P.; Midoux, P.; Rommelaere, J.; Cordelier, P. The promise of gene therapy for pancreatic cancer. Hum. Gene Ther., 2016, 27(2), 127-133.
[http://dx.doi.org/10.1089/hum.2015.141] [PMID: 26603492]
[99]
Tarokh, Z.; Naderi-Manesh, H.; Nazari, M. Towards prostate cancer gene therapy: Development of a chlorotoxin-targeted nanovector for toxic (melittin) gene delivery. Eur. J. Pharm. Sci., 2017, 99, 209-218.
[http://dx.doi.org/10.1016/j.ejps.2016.12.021] [PMID: 28024889]
[100]
Glover, D.J.; Lipps, H.J.; Jans, D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet., 2005, 6(4), 299-310.
[http://dx.doi.org/10.1038/nrg1577] [PMID: 15761468]
[101]
Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapyan overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[102]
Scanlon, K.J. Cancer gene therapy: Challenges and opportunities. Anticancer Res., 2004, 24(2A), 501-504.
[PMID: 15152950]
[103]
Raper, S.E.; Chirmule, N.; Lee, F.S.; Wivel, N.A.; Bagg, A.; Gao, G.; Wilson, J.M.; Batshaw, M.L. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab., 2003, 80(1-2), 148-158.
[http://dx.doi.org/10.1016/j.ymgme.2003.08.016] [PMID: 14567964]
[104]
Yu, M.; Han, S.; Kou, Z.; Dai, J.; Liu, J.; Wei, C.; Li, Y.; Jiang, L.; Sun, Y. Artif. Cells Nanomed. Biotechnol., 2017, 1-10.
[105]
Wang, K.; Kievit, F.M.; Jeon, M.; Silber, J.R.; Ellenbogen, R.G.; Zhang, M. Nanoparticle‐mediated target delivery of TRAIL as gene therapy for glioblastoma. Adv. Healthc. Mater., 2015, 4(17), 2719-2726.
[http://dx.doi.org/10.1002/adhm.201500563] [PMID: 26498165]
[106]
Cabral, H.; Kataoka, K. Multifunctional nanoassemblies of block copolymers for future cancer therapy. Sci. Technol. Adv. Mater., 2010, 11(1), 014109.
[http://dx.doi.org/10.1088/1468-6996/11/1/014109] [PMID: 27877324]
[107]
Fernandez-Fernandez, A.; Manchanda, R.; Carvajal, D.; Lei, T.; Srinivasan, S.; McGoron, A. Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer. Int. J. Nanomedicine, 2014, 9, 4631-4648.
[http://dx.doi.org/10.2147/IJN.S69550] [PMID: 25336944]
[108]
El-Sayed, I.H. Nanotechnology in head and neck cancer: The race is on. Curr. Oncol. Rep., 2010, 12(2), 121-128.
[http://dx.doi.org/10.1007/s11912-010-0087-2] [PMID: 20425597]
[109]
Ocsoy, I.; Nuran, I.; Sena, C.; Nalan, Ö.; Weihong, T. ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Advances, 2016, 6(36), 30285-30292.
[http://dx.doi.org/10.1039/C6RA06798K] [PMID: 27774142]
[110]
Alkilany, A.M.; Thompson, L.B.; Boulos, S.P.; Sisco, P.N.; Murphy, C.J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 2012, 64(2), 190-199.
[http://dx.doi.org/10.1016/j.addr.2011.03.005] [PMID: 21397647]