Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Anita Sakarwal, Karishma Sen, Heera Ram*, Suman Chowdhury, Priya Kashyap, Sunil Dutt Shukla and Anil Panwar

DOI: 10.2174/0118715303283666240319062925

DownloadDownload PDF Flyer Cite As
Neuroprotective Efficacy of Phytoconstituents of Methanolic Shoots Extract of Calligonum polygonoides L. in Hypercholesterolemia-associated Neurodegenerations

Page: [152 - 172] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Small molecule phytocompounds can potentially ameliorate degenerative changes in cerebral tissues. Thus, the current study aimed to evaluate the neuroprotective efficacy of phytocompounds of methanolic shoots extract of Calligonum polygonoides L. (MSECP) in hypercholesterolemia-associated neurodegenerations.

Methods: Phytochemical screening of the extract was made by LCMS/MS and validated by a repository of the chemical library. The hypercholesterolemia was induced through the intraperitoneal administration of poloxamer-407 with a high-fat diet. The in silico assessments were accomplished by following the molecular docking, ADME and molecular dynamics. MMPBSA and PCA (Principal Component Analysis) analyzed the molecular dynamics simulations. Consequently, in-vivo studies were examined by lipid metabolism, free radical scavenging capabilities and histopathology of brain tissues (cortex and hippocampus).

Results: 22 leading phytocompounds were exhibited in the test extract, as revealed by LCMS/ MS scrutiny. Molecular docking evaluated significant interactions of apigenin triacetate with target proteins (HMGCR (HMG-CoA reductase), (AChE-Acetylcholinesterase) and (BuChE- Butyrylcholinesterase). Molecular dynamics examined the interactions through assessments of the radius of gyration, RSMD, RSMF and SASA at 100 ns, which were further analyzed by MMPBSA (Molecular Mechanics Poisson-Boltzmann) and PCA (Principal Component Analysis). Accordingly, the treatment of test extract caused significant alterations in lipid profile, dyslipidemia indices, antioxidant levels and histopathology of brain tissues.

Conclusion: It can be concluded that apigenin triacetate is a potent phytoconstituent of MSEPC and can interact with HMGCR, AChE, and BuChE, which resulted in improved hypercholesterolemia along with neuroprotective ameliorations in the cortex and hippocampus.

Keywords: Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), apigenin triacetate, hypercholesterolemia, molecular dynamics, neurodegenerations.

Graphical Abstract

[1]
Ricciarelli, R.; Canepa, E.; Marengo, B.; Marinari, U.M.; Poli, G.; Pronzato, M.A.; Domenicotti, C. Cholesterol and Alzheimer’s disease: A still poorly understood correlation. IUBMB Life, 2012, 64(12), 931-935.
[http://dx.doi.org/10.1002/iub.1091] [PMID: 23124820]
[2]
Schultz, B.G.; Patten, D.K.; Berlau, D.J. The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Transl. Neurodegener., 2018, 7(1), 5.
[http://dx.doi.org/10.1186/s40035-018-0110-3]
[3]
Ralhan, I.; Chang, C.L.; Lippincott-Schwartz, J.; Ioannou, M.S. Lipid droplets in the nervous system. J. Cell Biol., 2021, 220(7), e202102136.
[http://dx.doi.org/10.1083/jcb.202102136] [PMID: 34152362]
[4]
Wang, Y.; Hu, H.; Liu, X.; Guo, X. Hypoglycemic medicines in the treatment of Alzheimer ’ s disease : Pathophysiological links between AD and glucose metabolism. Front. Pharmacol., 2023, 14, 1-25.
[5]
Wu, M.; Zhai, Y.; Liang, X.; Chen, W.; Lin, R.; Ma, L.; Huang, Y.; Zhao, D.; Liang, Y.; Zhao, W.; Fang, J.; Fang, S.; Chen, Y.; Wang, Q.; Li, W. Connecting the dots between hypercholesterolemia and alzheimer’s disease: A potential mechanism based on 27-hydroxycholesterol. Front. Neurosci., 2022, 16, 842814.
[http://dx.doi.org/10.3389/fnins.2022.842814] [PMID: 35464321]
[6]
Björkhem, I.; Meaney, S.; Fogelman, A.M. Brain cholesterol: Long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 806-815.
[http://dx.doi.org/10.1161/01.ATV.0000120374.59826.1b] [PMID: 14764421]
[7]
Samejo, M.Q.; Memon, S.; Bhanger, M.I.; Khan, K.M. Preliminary phytochemicals screening of calligonum polygonoides linn. J. Pharm. Res., 2011, 4, 4402-4403.
[8]
Swarnkar, S.K.; Khunteta, A.; Gupta, M.K.; Jain, P.; Paliwal, S. Pharmacognostic, phytochemical and pharmacological review of “phog”- calligonum polygonoides L. J. Drug Deliv. Ther., 2019, 9(2), 469-473. [Internet].
[http://dx.doi.org/10.22270/jddt.v9i2.2384]
[9]
Chatrou, L.W.; Turner, I.M.; Klitgaard, B.B.; Maas, P.J.M.; Utteridge, T.M.A. A linear sequence to facilitate curation of herbarium specimens of Annonaceae. Kew Bull., 2018, 73(3), 39.
[http://dx.doi.org/10.1007/s12225-018-9764-3] [PMID: 30956369]
[10]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[11]
Al-Dalahmeh, Y.; Al-Bataineh, N.; Al-Balawi, S.S.; Lahham, J.N.; Al-Momani, I.F.; Al-Sheraideh, M.S.; Mayyas, A.S.; Abu Orabi, S.T.; Al-Qudah, M.A. LC-MS/MS screening, total phenolic, flavonoid and antioxidant contents of crude extracts from three asclepiadaceae species growing in jordan. Molecules, 2022, 27(3), 859.
[http://dx.doi.org/10.3390/molecules27030859] [PMID: 35164120]
[12]
Lee, U.; Kwon, M.H.; Kang, H.E. Pharmacokinetic alterations in poloxamer 407-induced hyperlipidemic rats. Xenobiotica Taylor & Francis, 2019, 49, 611-625.
[http://dx.doi.org/10.1080/00498254.2018.1466212]
[13]
Kumar Nigam, P. Calculated low density lipoprotein-cholesterol: Friedewald’s formula versus other modified formulas. Int. J. Life. Sci. Med. Res., 2014, 4, 25-31.
[http://dx.doi.org/10.5963/LSMR0402002]
[14]
Kamoru, A.A.; Japhet, O.M.; Adetunji, A.D.; Musa, M.A.; Hammed, O.O.; Akinlawon, A.A. Castelli risk index, atherogenic index of plasma, and atherogenic coefficient: emerging risk predictors of cardiovascular disease in HIV-treated patients. Int. J. Clin. Trials Case Stud, 2017, 2, 8-15.
[15]
Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475.
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[16]
Moshides, J.S. Kinetic enzymatic method for automated determination of HDL cholesterol in plasma. Clin. Chem. Lab. Med., 1987, 25(9), 583-587.
[http://dx.doi.org/10.1515/cclm.1987.25.9.583] [PMID: 3681196]
[17]
Gottfried, S.P.; Rosenberg, B. Improved manual spectrophotometric procedure for determination of serum triglycerides. Clin. Chem., 1973, 19(9), 1077-1078.
[http://dx.doi.org/10.1093/clinchem/19.9.1077] [PMID: 4744812]
[18]
Njie-Mbye, Y.F.; Kulkarni-Chitnis, M.; Opere, C.A.; Barrett, A.; Ohia, S.E. Lipid peroxidation: Pathophysiological and pharmacological implications in the eye. Front. Physiol., 2013, 4, 366.
[http://dx.doi.org/10.3389/fphys.2013.00366] [PMID: 24379787]
[19]
Ragavendran, P.; Sophia, D.; Raj, C.A.; Starlin, T.G. Evaluation of enzymatic and non-enzymatic antioxidant properties of Aerva lanata (L)-An intro study. Int. J. Pharm. Pharm. Sci., 2012, 4, 522-526.
[20]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[21]
Kumar, S.; Chowdhury, S.; Razdan, A.; Kumari, D.; Purty, R.S.; Ram, H.; Kumar, P.; Nayak, P.; Shukla, S.D. Downregulation of candidate gene expression and neuroprotection by piperine in streptozotocin-induced hyperglycemia and memory impairment in rats. Front. Pharmacol., 2021, 11, 595471.
[http://dx.doi.org/10.3389/fphar.2020.595471] [PMID: 33737876]
[22]
Riyad, P.; Purohit, A.; Karishma, S.; Ram, H. Atherosclerotic plaque regression and HMG-CoA reductase inhibition potential of curcumin: An integrative omics and in vivo study. J. Appl. Biol. Biotechnol., 2022, 10, 129-135.
[23]
Madanagopal, P.; Ramprabhu, N.; Jagadeesan, R. In silico prediction and structure-based multitargeted molecular docking analysis of selected bioactive compounds against mucormycosis. Bull. Natl. Res. Cent., 2022, 46(1), 24.
[http://dx.doi.org/10.1186/s42269-022-00704-4] [PMID: 35125861]
[24]
Rudnitskaya, A.; Török, B.; Török, M. Molecular docking of enzyme inhibitors. Biochem. Mol. Biol. Educ., 2010, 38(4), 261-265.
[http://dx.doi.org/10.1002/bmb.20392] [PMID: 21567838]
[25]
Jaipal, N.; Ram, H.; Charan, J.; Dixit, A.; Singh, G.; Singh, B.P.; Kumar, A.; Panwar, A. HMG‐CoA reductase inhibition medicated hypocholesterolemic and antiatherosclerotic potential of phytoconstituents of an aqueous pod extract of Prosopis cineraria (L.) Druce: In silico, in vitro, and in vivo studies. eFood, 2022, 3(6), e42.
[http://dx.doi.org/10.1002/efd2.42]
[26]
Al-Karmalawy, A.A.; Dahab, M.A.; Metwaly, A.M.; Elhady, S.S.; Elkaeed, E.B.; Eissa, I.H.; Darwish, K.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Front Chem., 2021, 9, 661230.
[http://dx.doi.org/10.3389/fchem.2021.661230] [PMID: 34017819]
[27]
Wang, C.; Greene, D.A.; Xiao, L.; Qi, R.; Luo, R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci., 2018, 4, 87.
[http://dx.doi.org/10.3389/fmolb.2017.00087] [PMID: 29367919]
[28]
Papaleo, E.; Mereghetti, P.; Fantucci, P.; Grandori, R.; De Gioia, L. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. J. Mol. Graph. Model., 2009, 27(8), 889-899.
[http://dx.doi.org/10.1016/j.jmgm.2009.01.006] [PMID: 19264523]
[29]
de Oliveira, J.; Engel, D.F.; de Paula, G.C.; dos Santos, D.B.; Lopes, J.B.; Farina, M.; Moreira, E.L.G.; de Bem, A.F. High cholesterol diet exacerbates blood-brain barrier disruption in LDLr–/– Mice: Impact on cognitive function. J. Alzheimers Dis., 2020, 78(1), 97-115.
[http://dx.doi.org/10.3233/JAD-200541] [PMID: 32925052]
[30]
Álvarez-Almazán, S.; Filisola-Villaseñor, J.G.; Alemán-González-Duhart, D.; Tamay-Cach, F.; Mendieta-Wejebe, J.E. Current molecular aspects in the development and treatment of diabetes. J. Physiol. Biochem., 2020, 76(1), 13-35.
[http://dx.doi.org/10.1007/s13105-019-00717-0] [PMID: 31925679]
[31]
Merino-Serrais, P.; Loera-Valencia, R.; Rodriguez-Rodriguez, P.; Parrado-Fernandez, C.; Ismail, M.A.; Maioli, S.; Matute, E.; Jimenez-Mateos, E.M.; Björkhem, I.; DeFelipe, J.; Cedazo-Minguez, A. 27-Hydroxycholesterol induces aberrant morphology and synaptic dysfunction in hippocampal neurons. Cereb. Cortex, 2019, 29(1), 429-446.
[http://dx.doi.org/10.1093/cercor/bhy274] [PMID: 30395175]
[32]
Loera-Valencia, R.; Ismail, M.A.M.; Goikolea, J.; Lodeiro, M.; Mateos, L.; Björkhem, I. Hypercholesterolemia and 27-hydroxycholesterol increase S100A8 and RAGE expression in the brain: A link between cholesterol, alarmins, and neurodegeneration. Mol. Neurobiol., 2021, 58, 6063-6076.
[http://dx.doi.org/10.1007/s12035-021-02521-8]
[33]
Kumar, S.; Singh, U.N.; Dhakal, S. Study of oxidative stress in hypercholesterolemia. Artic. Int. J. Contemp. Med. Res., 2017, 4, 2454-7379.
[34]
Singh, R.; Sharad, S.; Kapur, S. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. J Indian Acad Clin Med., 2004, 5, 218-225.
[35]
Mohammadali, S.; Heshami, N.; Komaki, A.; Tayebinia, H.; Abbasi Oshaghi, E.; Karimi, J.; Hashemnia, M.; Khodadadi, I. Dill tablet and Ocimum basilicum aqueous extract: Promising therapeutic agents for improving cognitive deficit in hypercholesterolemic rats. J. Food Biochem., 2020, 44(12), e13485.
[http://dx.doi.org/10.1111/jfbc.13485] [PMID: 33015851]
[36]
Ram, H.; Jaipal, N.; Kumar, P.; Deka, P.; Kumar, S.; Kashyap, P.; Kumar, S.; Singh, B.P.; Alqarawi, A.A.; Hashem, A.; Tabassum, B.; Abd-Allah, E.F. Dual inhibition of DPP-4 and cholinesterase enzymes by the phytoconstituents of the ethanolic extract of prosopis cineraria pods: Therapeutic implications for the treatment of diabetes-associated neurological impairments. Curr. Alzheimer Res., 2020, 16(13), 1230-1244.
[http://dx.doi.org/10.2174/1567205016666191203161509] [PMID: 31797759]
[37]
Venkatesan, R.; Ji, E.; Kim, S.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review. BioMed Res. Int., 2015, 2015, 1-22.
[http://dx.doi.org/10.1155/2015/814068] [PMID: 26075266]
[38]
Usha, T.; Shanmugarajan, D.; Goyal, A.K.; Kumar, C.S.; Middha, S.K. Recent updates on computer-aided drug discovery: Time for a paradigm shift. Curr. Top. Med. Chem., 2018, 17(30), 3296-3307.
[http://dx.doi.org/10.2174/1568026618666180101163651] [PMID: 29295698]
[39]
Khan, G.B.; Qasim, M.; Rasul, A.; Ashfaq, U.A.; Alnuqaydan, A.M. Identification of lignan compounds as new 6-Phosphogluconate dehydrogenase inhibitors for lung cancer. Metabolites, 2022, 13(1), 34.
[http://dx.doi.org/10.3390/metabo13010034] [PMID: 36676959]
[40]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[41]
Chugh, A.; Sehgal, I.; Khurana, N.; Verma, K.; Rolta, R.; Vats, P.; Salaria, D.; Fadare, O.A.; Awofisayo, O.; Verma, A.; Phartyal, R.; Verma, M. Comparative docking studies of drugs and phytocompounds for emerging variants of SARS-CoV-2. 3 Biotech, 2023, 13(1), 36.
[http://dx.doi.org/10.1007/s13205-022-03450-6] [PMID: 36619821]
[42]
Sneha, P.; Doss, C.G.P. Gliptins in managing diabetes: Reviewing computational strategy. Life Sci., 2016, 166, 108-120.
[http://dx.doi.org/10.1016/j.lfs.2016.10.009] [PMID: 27744054]
[43]
See, X.Y.; Wen, X.; Wheeler, T.A.; Klein, C.K.; Goodpaster, J.D.; Reiner, B.R.; Tonks, I.A. Iterative supervised principal component analysis driven ligand design for regioselective ti-catalyzed pyrrole synthesis. ACS Catal., 2020, 10(22), 13504-13517.
[http://dx.doi.org/10.1021/acscatal.0c03939] [PMID: 34327040]
[44]
Maisuradze, G.G.; Liwo, A.; Scheraga, H.A. Principal component analysis for protein folding dynamics. J. Mol. Biol., 2009, 385(1), 312-329.
[http://dx.doi.org/10.1016/j.jmb.2008.10.018] [PMID: 18952103]
[45]
Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Adeniyi, A.A.; Soliman, M.E.S.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int. J. Biol. Macromol., 2016, 91, 680-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.110] [PMID: 27262516]
[46]
Ebenezer, O.; Damoyi, N.; Shapi, M. Predicting new anti-norovirus inhibitor with the help of machine learning algorithms and molecular dynamics simulation–based model. Front Chem., 2021, 9, 753427.
[http://dx.doi.org/10.3389/fchem.2021.753427] [PMID: 34869204]
[47]
Walters, W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov., 2012, 7(2), 99-107.
[http://dx.doi.org/10.1517/17460441.2012.648612] [PMID: 22468912]