Local Structure and Optical Studies of Mn2+ Doped L-histidine-4- nitrophenolate 4-nitrophenol Single Crystal

Page: [549 - 556] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The zero-field splitting parameters of Mn2+ doped L-histidine-4- nitrophenolate 4-nitrophenol single crystals are evaluated.

Methods: The superposition model and perturbation theory are used to obtain zero-field splitting parameters for Mn2+ ion-doped LHPP single crystals. The optical spectra of the system are computed using the crystal field parameters from the superposition model as input into the crystal field analysis program.

Results: The evaluated zero field splitting parameters are in good match with the experimental values when local distortion is taken into account. The experimental finding that the Mn2+ ion enters the L-histidine-4-nitrophenolate 4-nitrophenol lattice at the interstitial position is supported by the theoretical result.

Conclusion: It is found that the calculated and experimental band positions agree fairly well. Thus, the theoretical study supports the experimental observation.

Graphical Abstract

[1]
Weil, J.A.; Bolton, J.R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed; Wiley: New York, 2007.
[2]
Mabbs, F.E.; Collison, D.; Gatteschi, D. Electron Paramagnetic Resonance of d Transition Metal Compounds; Elsevier: Amsterdam, 1992.
[3]
Newman, D.J. On the g-shift of S-state ions. J. Phys. C Solid State Phys., 1977, 10(11), L315-L318.
[http://dx.doi.org/10.1088/0022-3719/10/11/008]
[4]
Krishna, R.M.; Seth, V.P.; Gupta, S.K.; Prakash, D.; Chand, I.; Rao, J.L. EPR of Mn2+-ion-doped single crystals of Mg[C4H3O4]2· 6H2O. Spectrochim. Acta A, 1997, 53, 253-258.
[5]
Rudowicz, C.; Gnutek, P.; Açikgöz, M. Superposition model in electron magnetic resonance spectroscopy – A primer for experimentalists with illustrative applications and literature database. Appl. Spectrosc. Rev., 2019, 54(8), 673-718.
[http://dx.doi.org/10.1080/05704928.2018.1494601]
[6]
Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ion; Dover, New York, 1986.
[7]
Pilbrow, J.R. Transition-Ion Electron Paramagnetic Resonance; Clarendon Press: Oxford, 1990.
[8]
Jr, C.P. Poole, H.A. Farach, Theory of Magnetic Resonance; Wiley: New York, 1987.
[9]
Kliava, J. ESR Spectroscopy of Disordered Solids; Zinatne Publishers: Moscow, 1988.
[10]
Misra, S.K. Multifrequency Electron Paramagnetic Resonance; Wiley-VCH: Weinheim, 2011.
[11]
Wybourne, B.G. Spectroscopic Properties of Rare Earth; Wiley: New York, 1965.
[http://dx.doi.org/10.1063/1.3047727]
[12]
Mulak, J.; Gajek, Z. The Effective Crystal Field Potential; Elsevier: Amsterdam, 2000.
[13]
Burns, R.G. Mineralogical Applications of Crystal Field Theoryl; Cambridge University Press: Cambridge, 1993.
[14]
Stevens, K.W.H. Magnetic Ions in Crystals; Princeton University Press: Princeton, 1997.
[http://dx.doi.org/10.1515/9781400864461]
[15]
Powell, R.C. Physics of Solid-State Laser Materials; Springer-Verlag: New York, 1998.
[http://dx.doi.org/10.1007/978-1-4612-0643-9]
[16]
(a) Rudowicz, C. Concept of spin Hamiltonian, forms of zero field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review. Magn. Reson. Rev., 1987, 13, 1-89.;
(b) Rudowicz, E.C. Magn. Reson. Rev., 1988, 13, 335.
[17]
Boča, R. Zero-field splitting in metal complexes. Coord. Chem. Rev., 2004, 248(9-10), 757-815.
[http://dx.doi.org/10.1016/j.ccr.2004.03.001]
[18]
Aktaş, B.; Güner, S.; Yıldız, F.; Nateprov, A.; Siminel, A.; Kulyuk, L. ESR study on Cr3+ and Mn2+ doped ZnAl2S4 single crystal. J. Magn. Magn. Mater., 2003, 258-259, 409-412.
[http://dx.doi.org/10.1016/S0304-8853(02)01073-9]
[19]
Rao, P.S.; Subramanian, S. Single crystal E.P.R. studies of some first-row transition ions in hexaimidazole zinc(II)dichloride tetrahydrate. Mol. Phys., 1985, 54(2), 415-427.
[http://dx.doi.org/10.1080/00268978500100321]
[20]
Misra, S.K. Handbook of ESR; Poole, C.P., Jr; Farach, H.A., Eds.; Springer: New York, 1999, 2, p. 291.
[21]
Jain, A.K.; Upreti, G.C. EPR evidence of possible metastable regions in Mn2+ doped ferroelectric NaNO2. Chem. Phys. Lett., 1978, 55(3), 506-510.
[http://dx.doi.org/10.1016/0009-2614(78)84024-X]
[22]
Narasimhulu, K.V.; Lakshmana Rao, J. Single crystal EPR study of Mn2+ ions in cobalt maleate tetrahydrate Co(C4H3O4)2·4H2O. Physica B, 1998, 254(1-2), 37-44.
[http://dx.doi.org/10.1016/S0921-4526(98)00420-7]
[23]
Gopal, N.O.; Narasimhulu, K.V.; Rao, J.L. EPR and IR spectral studies on Mn2+ ions in nickel maleate tetrahydrate single crystals. J. Phys. Chem. Solids, 2002, 63(2), 295-302.
[http://dx.doi.org/10.1016/S0022-3697(01)00143-3]
[24]
Rudowicz, C.; Karbowiak, M. Disentangling intricate web of interrelated notions at the interface between the physical (crystal field) Hamiltonians and the effective (spin). Hamiltonians. Coord. Chem. Rev., 2015, 287, 28-63.
[http://dx.doi.org/10.1016/j.ccr.2014.12.006]
[25]
Altshuler, S.; Kozyrev, B.M. Electron Paramagnetic Resonance in Compounds of Transition Elements; Wiley: New York, 1974.
[26]
Brik, M.G.; Avram, N.M. Eds.; Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis; Heidelberg: Springer, 2013, pp. 95-121.
[27]
Brik, M.G.; Avram, N.M.; Avram, C.N. Crystal field analysis of Cr 3+ energy levels in LiGa5O8 Spinel. Acta Phys. Pol. A, 2007, 112(5), 1055-1060.
[http://dx.doi.org/10.12693/APhysPolA.112.1055]
[28]
Newman, D.J.; Ng, B. The superposition model of crystal fields. Rep. Prog. Phys., 1989, 52(6), 699-762.
[http://dx.doi.org/10.1088/0034-4885/52/6/002]
[29]
Newman, D.J.; Siegel, E. Superposition model analysis of Fe3+ and Mn 2+ spin-Hamiltonian parameters. J. Phys. C Solid State Phys., 1976, 9(23), 4285-4292.
[http://dx.doi.org/10.1088/0022-3719/9/23/013]
[30]
Yeung, Y.Y.; Newman, D.J. Local distortion and spin-Hamiltonian parameters for Eu2+ sites in the alkali halides. J. Phys. C Solid State Phys., 1988, 21(3), 537-551.
[http://dx.doi.org/10.1088/0022-3719/21/3/010]
[31]
Yeung, Y.Y. Local distortion and zero-field splittings of 3d 5 ions in oxide crystals. J. Phys. C Solid State Phys., 1988, 21(13), 2453-2461.
[http://dx.doi.org/10.1088/0022-3719/21/13/010]
[32]
Sukhorukov, A.A.; Kivshar, Y.S. Nonlinear guided waves and spatial solitons in a periodic layered medium. J. Opt. Soc. Am. B, 2002, 19(4), 772-781.
[http://dx.doi.org/10.1364/JOSAB.19.000772]
[33]
Maroulis, G. Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules. J. Chem. Phys., 2000, 113(5), 1813-1820.
[http://dx.doi.org/10.1063/1.481985]
[34]
Maroulis, G. Electric multipole moment, dipole and quadrupole (hyper)polarizability derivatives for HF (X1Σ+). J. Mol. Struct. THEOCHEM, 2003, 633(2-3), 177-197.
[http://dx.doi.org/10.1016/S0166-1280(03)00273-2]
[35]
Schoonveld, W.A.; Wildeman, J.; Fichou, D.; Bobbert, P.A.; van Wees, B.J.; Klapwijk, T.M. Coulomb-blockade transport in single-crystal organic thin-film transistors. Nature, 2000, 404(6781), 977-980.
[http://dx.doi.org/10.1038/35010073] [PMID: 10801122]
[36]
Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers; Wiley: New York, 1991.
[37]
Chemla, D.S.; Zyss, J. Eds.; Nonlinear Optical Properties of Organic Molecules and Crystals; Academic Press: New York, 1987.
[38]
Pal, T.; Kar, T. Optical, mechanical and thermal studies of nonlinear optical crystal L-arginine acetate. Mater. Chem. Phys., 2005, 91(2-3), 343-347.
[http://dx.doi.org/10.1016/j.matchemphys.2004.11.037]
[39]
Marchewka, M.K.; Debrus, S.; Pietraszko, A.; Barnes, A.J.; Ratajczak, H. Crystal structure, vibrational spectra and nonlinear optical properties of L-histidinium-L-tartrate hemihydrate. J. Mol. Struct., 2003, 656(1-3), 265-273.
[http://dx.doi.org/10.1016/S0022-2860(03)00352-1]
[40]
de Matos Gomes, E.; Rodrigues, V.H.; Costa, M.M.R.; Belsley, M.S.; Cardoso, P.J.M.; Gonçalves, C.F.; Proença, F. Unusual supramolecular assembly and nonlinear optical properties of L-histidinium hydrogen malate. J. Solid State Chem., 2006, 179(8), 2521-2528.
[http://dx.doi.org/10.1016/j.jssc.2006.05.006]
[41]
Ramesh Kumar, G.; Gokul Raj, S.; Mohan, R.; Jayavel, R. Growth, structural and spectral analyses of nonlinear optical L-threonine single crystals. J. Cryst. Growth, 2005, 275(1-2), e1947-e1951.
[http://dx.doi.org/10.1016/j.jcrysgro.2004.11.283]
[42]
Marcy, H.O.; DeLoach, L.A.; Liao, J-H.; Kanatzidis, M.G.; Velsko, S.P.; Rosker, M.J.; Warren, L.F.; Ebbers, C.A.; Cunningham, P.H.; Thomas, C.A. l-Histidine tetrafluoroborate: A solution-grown semiorganic crystal for nonlinear frequency conversion. Opt. Lett., 1995, 20(3), 252-254.
[http://dx.doi.org/10.1364/OL.20.000252] [PMID: 19859151]
[43]
Huang, K.S.; Britton, D.; Etter, M.C.; Byrn, S.R. A novel class of phenol–pyridine co-crystals for second harmonic generation. J. Mater. Chem., 1997, 7, 713-720.
[http://dx.doi.org/10.1039/a604311j]
[44]
Etter, M.C.; Frankenbach, G.M.; Adsmond, D.A. Using hydrogen bonds to design acentric organic materials for nonlinear optical users. Mol. Cryst. Liq. Cryst., 1990, 187, 25-39.
[45]
Hine, J. Polar effects on rates and equilibria. III. J. Am. Chem. Soc., 1960, 82(18), 4877-4880.
[http://dx.doi.org/10.1021/ja01503a031]
[46]
Matsui, T.; Ko, H.C.; Hepler, L.G. Thermodynamics of ionization of benzoic acid and substituted benzoic acids in relation to the hammett equation. Can. J. Chem., 1974, 52(16), 2906-2911.
[http://dx.doi.org/10.1139/v74-423]
[47]
Dhanalakshmi, B.; Ponnusamy, S.; Muthamizhchelvan, C. Growth and characterization of a solution grown, new organic crystal: L-histidine-4-nitrophenolate 4-nitrophenol (LHPP). J. Cryst. Growth, 2010, 313(1), 30-36.
[http://dx.doi.org/10.1016/j.jcrysgro.2010.09.049]
[48]
Prabakaran, R.; Subramanian, P. EPR and optical investigation of Mn2+ doped l-histidine-4-nitrophenolate 4-nitrophenol single crystal. AIP Conf. Proc., 2018, 1942(1), 090021.
[49]
Yu Wan-Lun.; Zhao Min-Guang, Spin-Hamiltonian parameters of state 6 ions. Phys. Rev. B Condens. Matter, 1988, 37(16), 9254-9267.
[http://dx.doi.org/10.1103/PhysRevB.37.9254] [PMID: 9944309]
[50]
Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions, 1970.
[51]
Rudowicz, C.; Sung, H.W.F. Can the electron magnetic resonance (EMR) techniques measure the crystal (ligand) field parameters? Physica B, 2001, 300(1-4), 1-26.
[http://dx.doi.org/10.1016/S0921-4526(01)00568-3]
[52]
Radnell, C.J.; Pilbrow, J.R.; Subramanian, S.; Rogers, M.T. Electron paramagnetic resonance of Fe3+ ions in (NH4)2SbF5. J. Chem. Phys., 1975, 62(12), 4948-4952.
[http://dx.doi.org/10.1063/1.430410]
[53]
Rudowicz, C.; Bramley, R. On standardization of the spin Hamiltonian and the ligand field Hamiltonian for orthorhombic symmetry. J. Chem. Phys., 1985, 83(10), 5192-5197.
[http://dx.doi.org/10.1063/1.449731]
[54]
Figgis, B.N.; Hitchman, M.A. Ligand Field Theory and its Applications; Wiley: New York, 2000.
[55]
Yeom, T.H.; Choh, S.H.; Du, M.L.; Jang, M.S. EPR study of Fe3+ impurities in crystalline BiVO4. Phys. Rev. B Condens. Matter, 1996, 53(6), 3415-3421.
[http://dx.doi.org/10.1103/PhysRevB.53.3415] [PMID: 9983853]
[56]
Rudowicz, C.; Misra, S.K. Spin-Hamiltonian formalisms in electron magnetic resonance (EMR) and related spectroscopies. Appl. Spectrosc. Rev., 2001, 36(1), 11-63.
[http://dx.doi.org/10.1081/ASR-100103089]
[57]
Yang, Z.Y.; Rudowicz, C.; Yeung, Y.Y. Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C3 symmetry Ni2+ centre in LiNbO3 crystals. Physica B, 2004, 348(1-4), 151-159.
[http://dx.doi.org/10.1016/j.physb.2003.11.085]
[58]
Yang, Z.Y.; Hao, Y.; Rudowicz, C.; Yeung, Y. Theoretical investigations of the microscopic spin Hamiltonian parameters including the spin–spin and spin–other-orbit interactions for Ni 2+ (3d 8) ions in trigonal crystal fields. J. Phys. Condens. Matter, 2004, 16(20), 3481-3494.
[http://dx.doi.org/10.1088/0953-8984/16/20/018]
[59]
Yeom, T.H.; Choh, S.H.; Du, M.L. A theoretical investigation of the zero-field splitting parameters for an Mn2+ centre in a BiVO 4 single crystal. J. Phys. Condens. Matter, 1993, 5(13), 2017-2024.
[http://dx.doi.org/10.1088/0953-8984/5/13/017]
[60]
Rudowicz, C.; Yi-Yang, Z.; Wan-Lun, Y. Crystal field analysis for 3d4 and 3d6 ions with an orbital singlet ground state at orthorhombic and tetragonal symmetry sites. J. Phys. Chem. Solids, 1992, 53(9), 1227-1236.
[http://dx.doi.org/10.1016/0022-3697(92)90043-D]
[61]
Kripal, R.; Singh, P. EPR and optical study of Mn2+ doped L-asparagine monohydrate. Physica B, 2007, 387(1-2), 222-226.
[http://dx.doi.org/10.1016/j.physb.2006.04.009]
[62]
Han, K.T.; Kim, J. A theoretical analysis of zero-field splitting of in sodium nitrite. J. Phys. Condens. Matter, 1996, 8(36), 6759-6767.
[http://dx.doi.org/10.1088/0953-8984/8/36/026]
[63]
Zhao, M.G.; Zhang, Y.F. The EPR parameters and magnetic susceptibility of CoCl42-ion in Cs3CoCl5. IEEE Trans. Magn., 1983, MAG-19, 1972-1973.
[http://dx.doi.org/10.1109/TMAG.1983.1062695]
[64]
Min-Guang, Z.; Mao-Lu, D.; Guo-Yin, S. A μ-κ-α correlation ligand-field model for the Ni 2+ -6X - cluster. J. Phys. C Solid State Phys., 1987, 20(33), 5557-5571.
[http://dx.doi.org/10.1088/0022-3719/20/33/013]
[65]
Zhao, M.G.; Chiu, M. Analytical expressions for zero-field splittings of 3 d 5 ions in low-symmetry fields and their applications. Phys. Rev. B Condens. Matter, 1995, 52(14), 10043-10052.
[http://dx.doi.org/10.1103/PhysRevB.52.10043] [PMID: 9980050]
[66]
Zhao, M.G.; Lei, Y. Unified explanation for optical and electron paramagnetic resonance spectra of ions in crystals. J. Phys. Condens. Matter, 1997, 9(2), 529-539.
[http://dx.doi.org/10.1088/0953-8984/9/2/020]
[67]
Zhao, M.G. Determination of the true metal‐ligand bond lengths from the optical spectrum for transition‐metal ions in crystals. Phys. Status Solidi, B Basic Res., 1994, 184(2), 411-416.
[http://dx.doi.org/10.1002/pssb.2221840215]
[68]
Zhao, M.G.; Lei, Y. g-factor formulas of 3 d5 ions in trigonal-symmetry fields and their applications. Phys. Rev. B Condens. Matter, 1997, 55(14), 8955-8960.
[http://dx.doi.org/10.1103/PhysRevB.55.8955]
[69]
Jorgensen, C.K. Modern Aspects of Ligand Field Theory; North-Holland: Amsterdam, 1971, p. 305.
[70]
Kripal, R.; Govind, H.; Gupta, S.K.; Arora, M. EPR and optical absorption study of Mn2+-doped zinc ammonium phosphate hexahydrate single crystals. Physica B, 2007, 392(1-2), 92-98.
[http://dx.doi.org/10.1016/j.physb.2006.11.003]
[71]
Newman, D.J.; Ng, B. Eds.; Crystal Field Handbook; Cambridge University Press: Cambridge, 2000.
[http://dx.doi.org/10.1017/CBO9780511524295]
[72]
Newman, D.J.; Pryce, D.C.; Runciman, W.A. Superposition model analysis of the near infrared spectrum of Fe (super2+) in pyrope-almandine garnets. Am. Mineral., 1978, 63, 1278-1281.
[73]
Edgar, A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts. J. Phys. C Solid State Phys., 1976, 9(23), 4303-4314.
[http://dx.doi.org/10.1088/0022-3719/9/23/015]
[74]
Açıkgöz, M.; Kripal, R.; Misra, M.G.; Yadav, A.K.; Gnutek, P.; Rudowicz, C. Theoretical analysis of crystal field parameters and zero field splitting parameters for Mn2+ ions in tetramethylammonium tetrachlorozincate (TMATC-Zn). Polyhedron, 2023, 235, 116341.
[http://dx.doi.org/10.1016/j.poly.2023.116341]
[75]
Gnutek, P.; Yang, Z.Y.; Rudowicz, C. Modeling local structure using crystal field and spin Hamiltonian parameters: The tetragonal FeK3+–OI2− defect center in KTaO3 crystal. J. Phys. Condens. Matter, 2009, 21, 455402.
[76]
Yeung, Y.Y.; Rudowicz, C. Crystal field energy levels and state vectors for the 3dN ions at orthorhombic or higher symmetry sites. J. Comput. Phys., 1993, 109(1), 150-152.
[http://dx.doi.org/10.1006/jcph.1993.1206]