Development and Characterization of Imatinib Mesylate Liposome: For In-vitro Anti-cancer Activity

Article ID: e010424228517 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: According to our research, liposomes loaded with imatinib mesylate were formulated using a rotary evaporator and the thin film hydration method. FTIR, DSC, and XRD studies were carried out to ensure that the drug excipients in the final formulation were compatible.

Method: The improved liposome batch (F7) was tested for particle size (353.9 nm), zeta potential (-46.0 mV), drug release (92.8%), and entrapment efficiency (94.29%) after 72 hours. Studies using TEM have shown that imatinib mesylate-loaded liposomes have a spherical form.

Result: Finally, in-vitro anticancer activity was assessed through the MTT assay, which revealed an IC50 value of 0.2959μg mL-1 for treating Human leukaemia monocytic cell lines.

Conclusion: The process was refined based on data concerning the rotary evaporator speed, solvent system ratio and volume, hydration media pH, manufacturing yield, entrapment efficiency, in-vitro release, and improved in vitro anti-cancer activity.

Graphical Abstract

[1]
Srivastava, S.K.; Bhardwaj, A.; Arora, S.; Tyagi, N.; Singh, S.; Andrews, J. MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and-independent pathways. Br. J. Cancer, 2015, 113(4), 660-668.
[2]
Barba, A.A.; Bochicchio, S.; Dalmoro, A.; Lamberti, G.J.P. Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications. Pharmaceutics, 2019, 11(8), 360.
[3]
Drummond, D.C.; Meyer, O.; Hong, K.; Kirpotin, D.B.; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev., 1999, 51(4), 691-744.
[4]
Deshpande, P.P.; Biswas, S. Torchilin, VPJN Current trends in the use of liposomes for tumor targeting. Nanomedicine , 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118]
[5]
Tardi, P. Boman, N Liposomal doxorubicin. Cancer Res., 1996, 4(3), 129-140.
[6]
Sadzuka, Y. Takabe, H Liposomalization of SN-38 as active metabolite of CPT-11. J. Control. Release, 2005, 108(2-3), 453-459.
[7]
Kadivar, A.; Kamalidehghan, B.; Javar, H.A.; Davoudi, E.T.; Zaharuddin, N.D.; Sabeti, B. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet. PLoS One, 2015, 10(6), e0126874.
[http://dx.doi.org/10.1371/journal.pone.0126874]
[8]
Lee, H-J.; Han, E.; Kim, H.J. Comparison of utilization trends between biosimilars and generics: Lessons from the nationwide claims data in South Korea. Appl. Health Econ. Health Policy, 2020, 18, 557-566.
[9]
Yücel, C.; Degim, Z.; Yılmaz, S. Nanoparticle and liposome formulation of doxycycline and investigation of transport properties through Caco-2 cell lines. Fabad J. Pharmaceut. Sci., 2010, 35(4), 191-194.
[10]
Senthilraja, M.; Atamanyuk, V.V.; Lesyk, R.B.; Atamanyuk, D.V.; Pinyazhko, O.R.; Nektegayev, I. Development of rational strategy for selective COX-2 inhibitors searching as potential anticancer drugs. FABAD J. Pharm. Sci., 2009, 34(3), 127-136.
[11]
Macdonald, J.B.; Macdonald, B.; Golitz, L.E.; LoRusso, P. Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J. Am. Acad. Dermatol., 2015, 72(2), 203-218.
[12]
Macdonald, J.B.; Macdonald, B.; Golitz, L.E.; LoRusso, P. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J. Am. Acad. Dermatol., 2015, 72(2), 221-236.
[13]
Patil, P.; Killedar, S.J.D.D.; Pharmacy, I. Improving gallic acid and quercetin bioavailability by polymeric nanoparticle formulation. Drug Dev. Ind. Pharm., 2021, 47(10), 1656-1663.
[http://dx.doi.org/10.1080/03639045.2022.2043353]
[14]
Patil, P.; Killedar, S.J.H. Chitosan and glyceryl monooleate nanostructures containing gallic acid isolated from amla fruit: Targeted delivery system. Heliyon, 2021, 7(3), e06526.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06526]
[15]
Patil, P. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. J. Drug Deliv. Sci. Technol., 2021, 63, 102523.
[16]
Park, JWJBCR Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res., 2002, 4, 1-5.
[http://dx.doi.org/10.1186/bcr432]
[17]
Stern, R. Hyaluronidases in cancer biology. Semin. Cancer Biol., 2008, 18(4), 275-280.
[18]
Patil, P.; Killedar, S. Green approach towards synthesis and characterization of gmo/chitosan nanoparticles for in vitro release of quercetin: Isolated from peels of pomegranate fruit. J. Pharm. Innov., 2021, 17, 764-777.
[19]
Ghanbarzadeh, S.; Valizadeh, H. The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Adv. Pharm. Bull., 2013, 3(1), 25.
[20]
Shaikh, K.S.; Pawar, A. Liposomal delivery enhances cutaneous availability of ciclopirox olamine. Lat. Am. J. Pharm., 2010, 29(5), 763-770.
[21]
Harrison, L.I.; Stoesz, J.D.; Battiste, J.L.; Nelson, R.J.; Zarraga, I.E. A pharmaceutical comparison of different commercially available imiquimod 5% cream products. J. Dermatolog. Treat., 2009, 20(3), 160-164.
[http://dx.doi.org/10.1080/09546630802513693] [PMID: 19085200]
[22]
Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Wadkar, G.H.; Todkar, S.S.; Mohite, S.K. Functionalized single walled carbon nanotube for colon targeted delivery of isolated lycopene in colorectal cancer: In-vitro cytotoxicity and in-vivo roentgenographic study. J. Mater. Res., 2020, 36, 4894-4907.
[http://dx.doi.org/10.1557/s43578-021-00431-y]
[23]
Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Todkar, S.S.; Mulla, A.S.; Jadhav, N.R. Green synthesis of silver, iron and gold nanoparticles of lycopene extracted from tomato: Their characterization and cytotoxicity against COLO320DM, HT29 and Hella cell. J. Mater. Sci. Mater. Med., 2021, 32(2), 19.
[http://dx.doi.org/10.1007/s10856-021-06489-8] [PMID: 33576907]
[24]
Randiv, D.S.; Gavade, A.S.; Shejawal, K.P.; Bhutkar, M.A.; Bhinge, S.D.; Jadhav, N.R. Colon targeted dosage form of Capecitabine using folic acid anchored modified carbon nanotube: In-vitro cytotoxicity, apoptosis and in vivo roentgenographic study. Drug Dev. Ind. Pharm., 2021, 47(9), 1401-1412.
[http://dx.doi.org/10.1080/03639045.2021.1994988]
[25]
Kamble, R.V.; Bhinge, S.D.; Mohite, S.K.; Randive, D.S.; Bhutkar, M.A. In vitro targeting and selective killing of mcf-7 and colo320dm cells by 5-fluorouracil anchored to carboxylated SWCNTs and MWCNTs. J. Mater. Sci. Mater. Med., 2021, 32(6), 71.
[http://dx.doi.org/10.1007/s10856-021-06540-8] [PMID: 34125294]
[26]
Patil, P.S.; Salunkhe, V.R.; Bhinge, S.D.; Patil, S.B.; Kumbhar, B.V. Formulation optimization and evaluation of glycyrrhetinic acid loaded PLARosome using factorial design: In-vitro anti-ulcer activity and in silico PASS prediction. J. Indian Chem. Soc., 2021, 98(11), 100199.
[http://dx.doi.org/10.1016/j.jics.2021.100199]
[27]
Vakhariya, R.R.; Salunkhe, V.R.; Bhutkar, M.A.; Bhinge, S.D. Design, development and optimization of ramipril solid lipid nanoparticles using solvent emulsification and evaporation method. Nanosci Nanotech, 2021, 11(01), 42-52.
[http://dx.doi.org/10.2174/2210681209666191204113659]