Current Bioinformatics

Author(s): Xian-Fang Wang*, Chong-Yang Ma, Zhi-Yong Du, Yi-Feng Liu, Shao-Hui Ma, Sang Yu, Rui-xia Jin and Dong-Qing Wei*

DOI: 10.2174/0115748936292599240308102616

DownloadDownload PDF Flyer Cite As
Research on the Mechanism of Traditional Chinese Medicine Treatment for Diseases caused by Human Coronavirus COVID-19

Page: [87 - 101] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Human coronaviruses are a large group of viruses that exist widely in nature and multiply through self-replication. Due to its suddenness and variability, it poses a great threat to global human health and is a major problem currently faced by the medical and health fields.

Objective: COVID-19 is the seventh known coronavirus that can infect humans. The main purpose of this paper is to analyze the effective components and action targets of the Longyi Zhengqi formula and Lianhua Qingwen formula, study their mechanism of action in the treatment of new coronavirus pneumonia (new coronavirus pneumonia), compare the similarities and differences of their pharmacological effects, and obtain the pharmacodynamic mechanism of the two traditional Chinese medicine compounds.

Methods: Obtain the effective ingredients and targets of Longyi-Zhengqi Formula and Lianhua- Qingwen Formula from ETCM (Encyclopedia of Traditional Chinese Medicine) and other traditional Chinese medicine databases, use GeneCards database to obtain the relevant targets of COVID-19, and use Cytoscape software to build the component COVID-19 target network of Longyi-Zhengqi Formula and the component COVID-19 target network of Lianhua-Qingwen Formula. STRING was used to construct a protein interaction network and screen key targets. GO (Gene Ontology) was used for enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) was used for pathways to find out the targets and pathways related to the treatment of COVID-19.

Results: In the GO enrichment analysis results, there are 106 biological processes, 31 cell localization and 28 molecular functions of the intersection PPI network targets of Longyi-Zhengqi Formula- COVID-19, 224 biological processes, 51 cell localization and 55 molecular functions of the intersection PPI network targets of Lianhua-Qingwen Formula-COVID-19. In the KEGG pathway analysis results, the number of targets of Longyi-Zhengqi Formula on the COVID-19 pathway is 7, and the number of targets of Lianhua-Qingwen Formula on the COVID-19 pathway is 19; In the regulation analysis results, Longyi-Zhengqi Formula achieves the effect of treating COVID-19 by regulating IL-6, and Lianhua-Qingwen Formula achieves the effect of treating pneumonia by regulating TLR4.

Conclusion: This paper explores the mechanism of action of Longyi-Zhengqi Formula and Lianhua-Qingwen Formula in treating COVID-19 based on the method of network pharmacology, and provides a theoretical basis for traditional Chinese medicine to treat sudden diseases caused by human coronavirus in terms of drug targets and disease interactions. It has certain practical significance.

Keywords: Target network, PPI network, GO enrichment analysis, KEGG pathway analysis, human coronavirus, traditional chinese medicine.

Graphical Abstract

[1]
Meulen V. Coronaviruses: A group with unique features. Virus Res 1987; 7(1): 99-102.
[http://dx.doi.org/10.1016/0168-1702(87)90061-X]
[2]
Novelli A, Biancolella M, Borgiani P, et al. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2 positive patients. 2020.
[http://dx.doi.org/10.21203/rs.3.rs-39011/v3]
[3]
Aleebrahim-Dehkordi E, Reyhanian A, Saberianpour S, Hasanpour-Dehkordi A. Acute kidney injury in COVID-19; a review on current knowledge. J Nephropathol 2020; 9(4): e31-1.
[http://dx.doi.org/10.34172/jnp.2020.31]
[4]
Waqas M, Haider A, Rehman A, et al. Immunoinformatics and molecular docking studies predicted potential multiepitope-based peptide vaccine and novel compounds against novel SARS-CoV-2 through virtual screening. BioMed Res Int 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/1596834] [PMID: 33728324]
[5]
Steyn A, Keep S, Bickerton E, Fife M. The characterization of chIFITMs in avian coronavirus infection in vivo, ex vivo and in vitro. Genes 2020; 11(8): 918.
[http://dx.doi.org/10.3390/genes11080918] [PMID: 32785186]
[6]
Tyrrell DAJ, Bynoe ML. Cultivation of a novel type of common-cold virus in organ cultures. BMJ 1965; 1(5448): 1467-70.
[http://dx.doi.org/10.1136/bmj.1.5448.1467] [PMID: 14288084]
[7]
Woo PCY, Lau SKP, Wong BHL, et al. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide. J Clin Microbiol 2004; 42(12): 5885-8.
[http://dx.doi.org/10.1128/JCM.42.12.5885-5888.2004] [PMID: 15583332]
[8]
Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203(2): 622-30.
[http://dx.doi.org/10.1002/path.1560] [PMID: 15141376]
[9]
Yap YL, Zhang XW, Danchin A. Relationship of SARS-CoV to other pathogenic RNA viruses explored by tetranucleotide usage profiling. BMC Bioinformatics 2003; 4(1): 43.
[http://dx.doi.org/10.1186/1471-2105-4-43] [PMID: 14499005]
[10]
Song D, Ha G, Serhan W, et al. Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels. J Clin Microbiol 2015; 53(4): 1178-82.
[http://dx.doi.org/10.1128/JCM.03096-14] [PMID: 25631809]
[11]
Miguel E, Perera RAPM, Baubekova A, et al. Absence of middle east respiratory syndrome coronavirus in camelids, kazakhstan, 2015. Emerg Infect Dis 2016; 22(3): 555-7.
[http://dx.doi.org/10.3201/eid2203.151284] [PMID: 26889787]
[12]
Leclercq I, Batéjat C, Burguière AM, Manuguerra JC. Heat inactivation of the Middle East respiratory syndrome coronavirus. Influenza Other Respir Viruses 2014; 8(5): 585-6.
[http://dx.doi.org/10.1111/irv.12261] [PMID: 25074677]
[13]
Schnyder JL, de Jong HK, Grobusch MP. Intradermal immunization—a dose-sparing strategy to combat global shortages of severe acute respiratory syndrome coronavirus 2 vaccines? Clin Microbiol Infect 2022; 28(1): 6-8.
[http://dx.doi.org/10.1016/j.cmi.2021.08.020] [PMID: 34469811]
[14]
Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2021; 2(1): e13-22.
[http://dx.doi.org/10.1016/S2666-5247(20)30172-5] [PMID: 33521734]
[15]
Domingo-Fernández D, Gadiya Y, Mubeen S, et al. Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. iScience 2023; 26(9): 107729.
[http://dx.doi.org/10.1016/j.isci.2023.107729] [PMID: 37701812]
[16]
Hashimoto R, Tamura T, Watanabe Y, et al. Evaluation of broad anti-coronavirus activity of autophagy-related compounds using human airway organoids. Mol Pharm 2023; 20(4): 2276-87.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00114] [PMID: 36946991]
[17]
Chen X, Wang M. Traditional Chinese medicine during the COVID-19 pandemic: Recent successes and future perspectives. Acup Herb Med 2023; 3(4): 357-9.
[http://dx.doi.org/10.1097/HM9.0000000000000084]
[18]
Liu H, Luo Z, Chen J, Zheng H, Zeng Q. Treatment progress of cryptozoospermia with Western Medicine and traditional Chinese medicine: A literature review. Health Sci Rep 2023; 6(1): e1019.
[http://dx.doi.org/10.1002/hsr2.1019] [PMID: 36582629]
[19]
Pierce RP, Stevermer JJ. Disparities in the use of telehealth at the onset of the COVID-19 public health emergency. J Telemed Telecare 2023; 29(1): 3-9.
[http://dx.doi.org/10.1177/1357633X20963893] [PMID: 33081595]
[20]
Jiang L, An X, Duan Y, et al. The pathological mechanism of the COVID-19 convalescence and its treatment with traditional Chinese medicine. Front Pharmacol 2023; 13: 1054312.
[http://dx.doi.org/10.3389/fphar.2022.1054312] [PMID: 36703736]
[21]
Jing C. Longhua hospital formulated ” Longyi-Zhengqi Formula” strengthening the body resistance to eliminate pathogenic factors to prevent respiratory infectious diseases 2022. Available from: http://www.sh.chinanews.com.cn
[22]
Račková L, Jančinová V, Petríková M, et al. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. Nat Prod Res 2007; 21(14): 1234-41.
[http://dx.doi.org/10.1080/14786410701371280] [PMID: 18075885]
[23]
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol 2017; 55(1): 5-18.
[http://dx.doi.org/10.1080/13880209.2016.1225775] [PMID: 27650551]
[24]
Damle M. Glycyrrhiza glabra (Liquorice)-a potent medicinal herb. Int J Herb Med 2014; 2(2): 132-6.
[25]
Bardhan KD, Cumberland DC, Dixon RA, Holdsworth CD. Clinical trial of deglycyrrhizinised liquorice in gastric ulcer. Gut 1978; 19(9): 779-82.
[http://dx.doi.org/10.1136/gut.19.9.779] [PMID: 361512]
[26]
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015; 5(4): 310-5.
[http://dx.doi.org/10.1016/j.apsb.2015.05.005] [PMID: 26579460]
[27]
Panlin Li, Lili HE. Chuyuan Li. Effects of honeysuckle and flos lonicerae on acute oral inflammation. J sun yat-sen univ 2016; 55(4): 118-22.
[28]
Rahman A, Kang SC. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb. Food Chem 2009; 116(3): 670-5.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.014]
[29]
Wang LQ. Studies on antiviral effect and immunopotentiating activity of Lonicera japonica Thunb. and flos lonicerae in vitro. In: Agricultural University of Henan. Mater thesis 2008.
[30]
Guo Y, Lin L, Wang Y. Chemistry and pharmacology of the herb pair Flos Lonicerae japonicae-Forsythiae fructus. Chin Med 2015; 10(1): 16.
[http://dx.doi.org/10.1186/s13020-015-0044-y] [PMID: 26161134]
[31]
Bing Q, Wei Q, Tang YT. Study on the anti-inflammatory and analgesia function of Fructus forsythia extraction. Zhong Cao Yao 1999; 30: 43-35.
[32]
Zhou C, Lu M, Cheng J, et al. Review on the pharmacological properties of phillyrin. Molecules 2022; 27(12): 3670.
[http://dx.doi.org/10.3390/molecules27123670] [PMID: 35744798]
[33]
Pan C, Zhou G, Chen W, et al. Protective effect of forsythiaside A on lipopolysaccharide/d-galactosamine-induced liver injury. Int Immunopharmacol 2015; 26(1): 80-5.
[http://dx.doi.org/10.1016/j.intimp.2015.03.009] [PMID: 25797347]
[34]
Yu X, Yang G, Jiang H, et al. Patchouli oil ameliorates acute colitis: A targeted metabolite analysis of 2,4,6-trinitrobenzenesulfonic acid-induced rats. Exp Ther Med 2017; 14(2): 1184-92.
[http://dx.doi.org/10.3892/etm.2017.4577] [PMID: 28810577]
[35]
Silva-Filho SE, Wiirzler LAM, Cavalcante HAO, et al. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. Biomed Pharmacother 2016; 84: 1697-704.
[http://dx.doi.org/10.1016/j.biopha.2016.10.084] [PMID: 27847207]
[36]
Zhang L, Tao J. Antioxidant activity of essential oil of Patchouli. Zhongguo Yesheng Zhiwu Ziyuan 2016; 35: 31-4.
[37]
Ting-Ting G, Yi-Zhe C, Bang Q, et al. Analgesic effect of pogostemon cablin on acetic acid-induced writhing in mice. Animal Husbandry and Feed ence 2024.
[38]
Li W, Wen HM, Cui XB, et al. Effective components of rhizoma atractylodis macrocephalae in invigorating spleen. J Nanjing Univ Tradit Chin Med 2006; 6: 366-7.
[39]
Lee YP, Lee YJ, Lee SM, et al. Effect of atractylodes macrocephala on hypertonic stress-induced water channel protein expression in renal collecting duct cells. Evid Based Complement Alternat Med 2012; 2012: 650809.
[40]
Jia-Jia LU, Pharmacy DO. A GC-MS analysis of volatile components of atractylodes macrocephala koidz and their research of inhibitory activity on five tumor cells. Strait Pharma J 2024.
[41]
Li L, He Y, Wang N, et al. Atractylone in the Atractylodes macrocephala rhizoma essential oil and its anti-inflammatory activity. Molecules 2023; 28(21): 7340.
[http://dx.doi.org/10.3390/molecules28217340] [PMID: 37959758]
[42]
Xu HY, Zhang YQ, Liu ZM, et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2018; 47(1): 976-82.
[http://dx.doi.org/10.1093/nar/gky987] [PMID: 30365030]
[43]
Kim S. Exploring chemical information in pubchem. Curr Protoc 2021; 1(8): e217.
[http://dx.doi.org/10.1002/cpz1.217] [PMID: 34370395]
[44]
Wang X, Zhang W, Wang M, et al. Mechanism of lianhua-qingwen capsule for the treatment of coronavirus disease 2019(COVID-19) based on network pharmacology and chemical composition research. Mod Trad Chi Med Mat Medica-World Sci Techno 2020; 22(09): 3169-77.
[45]
Zhu Z, Qiu N, Yi J. Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate. Eur Food Res Technol 2010; 231(1): 13-9.
[http://dx.doi.org/10.1007/s00217-010-1235-5]
[46]
Salehi B, Sharifi-Rad J, Capanoglu E, et al. Cucurbita plants: From farm to industry. Appl Sci 2019; 9(16): 3387.
[http://dx.doi.org/10.3390/app9163387]
[47]
Chang HK, Yang HY, Lee TH, et al. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cycloosygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Biol Pharm Bull 2005; 28(3): 449-54.
[http://dx.doi.org/10.1248/bpb.28.449] [PMID: 15744067]
[48]
Yiğit D, Yiğit N, Mavi A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz J Med Biol Res 2009; 42(4): 346-52.
[http://dx.doi.org/10.1590/S0100-879X2009000400006] [PMID: 19330262]
[49]
Song Z, Johansen HK, Moser C, Høiby N. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection. Acta Pathol Microbiol Scand Suppl 1996; 104(1-6): 350-4.
[http://dx.doi.org/10.1111/j.1699-0463.1996.tb00726.x] [PMID: 8703440]
[50]
Xiao Z, Hao Y, Liu B, Qian L. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. Leuk Lymphoma 2002; 43(9): 1763-8.
[http://dx.doi.org/10.1080/1042819021000006295] [PMID: 12685829]
[51]
Karakoca K, Ozusaglam MA, Cakmak YS, Erkul SK. Antioxidative, antimicrobial and cytotoxic properties of Isatis floribunda Boiss. ex Bornm. extracts. EXCLI J 2013; 12: 150-67.
[PMID: 26417224]
[52]
Battistelli M, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M, Gobbi P. Rhodiola rosea as antioxidant in red blood cells: ultrastructural and hemolytic behaviour. Eur J Histochem 2005; 49(3): 243-54.
[PMID: 16216810]
[53]
Darbinyan V, Aslanyan G, Amroyan E, Gabrielyan E, Malmström C, Panossian A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord J Psychiatry 2007; 61(5): 343-8.
[http://dx.doi.org/10.1080/08039480701643290] [PMID: 17990195]
[54]
Hu X, Lin S, Yu D, Qiu S, Zhang X, Mei R. A preliminary study: The anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol Toxicol 2010; 26(6): 499-507.
[http://dx.doi.org/10.1007/s10565-010-9159-1] [PMID: 20309622]
[55]
Iaremiĭ IN. Grigor’Eva N F. Eksp Klin Farmakol 2002; 65(6): 57.
[PMID: 12596536]
[56]
Lee SY, Lai FY, Shi LS, Chou YC, Yen IC, Chang TC. Rhodiola crenulata extract suppresses hepatic gluconeogenesis via activation of the AMPK pathway. Phytomedicine 2015; 22(4): 477-86.
[http://dx.doi.org/10.1016/j.phymed.2015.01.016] [PMID: 25925970]
[57]
Li H, Wang J, Qu Y, Xiao X. Analysis on changes of purgative biopotency in different processed products of rhubarb. Zhongguo Zhongyao Zazhi 2012; 37(3): 302-4.
[PMID: 22568228]
[58]
Feng S, Meijuan Y, Yan L, et al. Comparision of the actions on blood stasis of rhubarb with different prepared methods. Pharmacology and Clinics of Chinese Materia Medica 2012.
[59]
Chen K, Wang CQ, Fan YQ, et al. Lipid-lowering effect of seven traditional Chinese medicine monomers in zebrafish system. Sheng Li Xue Bao 2017; 69(1): 55-60.
[PMID: 28217808]
[60]
Zhen-Qiang QI, Hong-Zhen HU, Xiang-Sheng W. Review on molecular and cellular mechanism researches of emodin for treating kidney disease. Global Traditional Chinese Medicine 2015.
[61]
Cao YJ, Pu ZJ, Tang YP, et al. Advances in bio-active constituents, pharmacology and clinical applications of rhubarb. Chin Med 2017; 12(1): 36.
[http://dx.doi.org/10.1186/s13020-017-0158-5] [PMID: 29299052]
[62]
Jiang YN, Mo HY, Ren H. Effect of emodin lipid nano-microbubble on MAPK signal pathway and inflammation cytokine in AT-II cells by mechanical stretch. Zhong Yao Cai 2013; 36(6): 967-71.
[PMID: 24380287]
[63]
Sun H, Luo G, Xiang Z, Cai X, Chen D. Pharmacokinetics and pharmacodynamics study of rhein treating renal fibrosis based on metabonomics approach. Phytomedicine 2016; 23(13): 1661-70.
[http://dx.doi.org/10.1016/j.phymed.2016.10.002] [PMID: 27823631]
[64]
Li X, Tang Q, Meng F, Du P, Chen W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput Struct Biotechnol J 2022; 20: 1345-51.
[http://dx.doi.org/10.1016/j.csbj.2022.03.006] [PMID: 35356545]
[65]
Stelzer G, Rosen R, Plaschkes I, et al. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Prot Bioinfo 2016; 30: 1-30.
[http://dx.doi.org/10.1002/cpbi.5]
[66]
Zhao H. Discussion on the network pharmacological mechanism and preliminary evidence of huopo xialing decoction for the treatment of 2019-ncov inflammatory storm by integrating “pathway-target-active component. Mod Trad Chi Med Mat Medica-World Sci Techno 2021; 23(02): 536-51.
[67]
Kohl M, Wiese S, Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol 2011; 696: 291-303.
[http://dx.doi.org/10.1007/978-1-60761-987-1_18] [PMID: 21063955]
[68]
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51(D1): D638-46.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[69]
Sherman BT, Hao M, Qiu J, et al. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50(W1): W216-21.
[http://dx.doi.org/10.1093/nar/gkac194] [PMID: 35325185]
[70]
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[71]
Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[72]
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28: 27-30.
[PMID: 10592173]
[73]
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28: 1947-51.
[PMID: 31441146]
[74]
Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 2023; 51: D587-92.
[PMID: 36300620]
[75]
Yuguang W, Wensheng QI, Jiaju MA, et al. Clinical features and syndrome differentiation of COVID-19. J Tradit Chin Med 2020; 61(04): 281-5.
[76]
Teng P, Li H, Bin D, Qiu J, He G, Fan J. Research progress of atractylodes and their pharmacological effects. China Pharmacy 2012; 23(39): 3732-4.
[77]
Xia Z. Study on the effect of isoliquiritin for rats with COPD based on NF-κB and Nrf2/HO-1 signal pathways. J Sich Trad Chi Med 2022; 40(01): 44-8.
[78]
Yuan Q. Study on the mechanism of the effect/side effects of licorice and glycyrrhetinic acid based on network pharmacology. Guangdong Chem Ind 2022; 49(03): 76-8.
[79]
Hu Z, Lei T, Geng Y, Yang QI, Hou J. A review on pharmacological activities and preparations of luteolin. Cli J Chi Med 2022; 14(10): 141-5.
[80]
Dan C. Study on the anti-inflammatory and analgesic effects of kaempferol and its mechanism. Nanjing University of Chinese Medicine 2021.
[81]
Lappano R, Sebastiani A, Cirillo F, et al. The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov 2017; 3: 17063.
[http://dx.doi.org/10.1038/cddiscovery.2017.63]
[82]
Xiao L. Mechanism of antiinflammatory action of adenine riboside. Nature Magazine 2002; (03): 185.
[83]
Xuejiao HAN, Na G, Zhu M, Tao Y. Research progress in pharmacological activities and related mechanism of salidroside. Chinese J Biochem Pharma 2015; 35(01): 171-5.
[84]
Hang F. Study on TLR4-targeting anti-inflammatory activity and related mechanism of extracts from solanum lyratum thunb. Jilin University 2022.
[85]
Durstenfeld MS, Hsue PY, Peluso MJ, Deeks SG. Findings from mayo clinic’s post-COVID clinic: PASC phenotypes vary by sex and degree of il-6 elevation. Mayo Clin Proc 2022; 97(3): 430-2.
[http://dx.doi.org/10.1016/j.mayocp.2022.01.020] [PMID: 35246280]
[86]
Zhao Y, Kuang M, Li J, et al. Publisher Correction: SARS-CoV-2 spike protein interacts with and activates TLR4. Cell Res 2021; 31(7): 825.
[http://dx.doi.org/10.1038/s41422-021-00501-0] [PMID: 33907310]