Current Stem Cell Research & Therapy

Author(s): Mengze Zhang, Yaying Song, Chong Xie and Yangtai Guan*

DOI: 10.2174/011574888X290104240320041613

DownloadDownload PDF Flyer Cite As
Comparative Outcomes of Intravenous, Intranasal, and Intracerebroventricular Transplantation of Human Neural Stem Cells in Mice Model of Ischemic Stroke

Page: [183 - 198] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Transplantation of neural stem cells improves ischemic stroke outcomes in rodent models and is currently in the clinical test stage. However, the optimal delivery route to achieve improved efficacy remains undetermined.

Objective: This study aims to evaluate three more clinically feasible delivery routes: intravenous (IV), intranasal (IN), and intracerebroventricular (ICV). We compared the therapeutic efficacies of the three routes of transplanting human neural stem cells (hNSCs) into mice with permanent middle cerebral artery obstruction (pMCAO).

Methods: Behavioral tests and cresyl violet staining were used to evaluate the therapeutic efficacies of functional recovery and lesion volumes. The expression of proinflammatory cytokines and neurotrophic factors was measured by real-time PCR. The distribution and differentiation of hNSCs were determined by immunofluorescence staining. The effect on endogenous neurogenesis and astrocyte function were determined by immunofluorescence staining and western blot.

Results: hNSC transplantation using the three routes improved behavioral outcomes and reduced lesion volumes; IV transplantation of hNSCs results in earlier efficacy and improves the inflammatory microenvironment. The long-term distribution and differentiation of transplanted hNSCs in the peri-infarct areas can only be evaluated using ICV delivery. IV and ICV transplantation of hNSCs promote neurogenesis and modulate the dual function of astrocytes in the peri-infarct areas.

Conclusion: IV and IN delivery is suitable for repeated administration of hNSCs to achieve improved prognosis. Comparatively, ICV transplantation provides long-term efficacy at lower doses and fewer administration times.

Keywords: Neural stem cells, ischemic stroke, delivery route, neurogenesis, glial scar, intravenous, intranasal, intracerebroventricular.

Graphical Abstract

[1]
Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.E.; Adebayo, O.M.; Adeoye, A.M.; Agarwal, G.; Agrawal, S.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alahdab, F.; Ali, R.; Alvis-Guzman, N.; Anber, N.H.; Anjomshoa, M.; Arabloo, J.; Arauz, A.; Ärnlöv, J.; Arora, A.; Awasthi, A.; Banach, M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Basu, S.; Belachew, A.B.; Belayneh, Y.M.; Bennett, D.A.; Bensenor, I.M.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bin Sayeed, M.S.; Butt, Z.A.; Cahuana-Hurtado, L.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Chaiah, Y.; Chiang, P.P-C.; Choi, J-Y.J.; Christensen, H.; Chu, D-T.; Cortinovis, M.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Daryani, A.; Davletov, K.; de Courten, B.; De la Cruz-Góngora, V.; Degefa, M.G.; Dharmaratne, S.D.; Diaz, D.; Dubey, M.; Duken, E.E.; Edessa, D.; Endres, M.; Faraon, E.J.A.; Farzadfar, F.; Fernandes, E.; Fischer, F.; Flor, L.S.; Ganji, M.; Gebre, A.K.; Gebremichael, T.G.; Geta, B.; Gezae, K.E.; Gill, P.S.; Gnedovskaya, E.V.; Gómez-Dantés, H.; Goulart, A.C.; Grosso, G.; Guo, Y.; Gupta, R.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamidi, S.; Hankey, G.J.; Hassen, H.Y.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Herial, N.A.; Hosseini, M.A.; Hostiuc, S.; Irvani, S.S.N.; Islam, S.M.S.; Jahanmehr, N.; Javanbakht, M.; Jha, R.P.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karch, A.; Karimi, N.; Karimi-Sari, H.; Kasaeian, A.; Kassa, T.D.; Kazemeini, H.; Kefale, A.T.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kisa, A.; Kivimäki, M.; Koyanagi, A.; Krishnamurthi, R.K.; Kumar, G.A.; Lafranconi, A.; Lewington, S.; Li, S.; Lo, W.D.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Mackay, M.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Manafi, N.; Mansournia, M.A.; Mehndiratta, M.M.; Mehta, V.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mirrakhimov, E.M.; Mohajer, B.; Mohammad, Y.; Mohammadoo-khorasani, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Mokhayeri, Y.; Moradi, G.; Morawska, L.; Moreno Velásquez, I.; Mousavi, S.M.; Muhammed, O.S.S.; Muruet, W.; Naderi, M.; Naghavi, M.; Naik, G.; Nascimento, B.R.; Negoi, R.I.; Nguyen, C.T.; Nguyen, L.H.; Nirayo, Y.L.; Norrving, B.; Noubiap, J.J.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Olagunju, T.O.; Owolabi, M.O.; Pandian, J.D.; Patel, S.; Perico, N.; Piradov, M.A.; Polinder, S.; Postma, M.J.; Poustchi, H.; Prakash, V.; Qorbani, M.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.A.; Reis, C.; Remuzzi, G.; Renzaho, A.M.N.; Ricci, S.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Roshandel, G.; Sabbagh, P.; Safari, H.; Safari, S.; Safiri, S.; Sahebkar, A.; Salehi Zahabi, S.; Samy, A.M.; Santalucia, P.; Santos, I.S.; Santos, J.V.; Santric Milicevic, M.M.; Sartorius, B.; Sawant, A.R.; Schutte, A.E.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Shams-Beyranvand, M.; Sheikh, A.; Sheth, K.N.; Shibuya, K.; Shigematsu, M.; Shin, M-J.; Shiue, I.; Siabani, S.; Sobaih, B.H.; Sposato, L.A.; Sutradhar, I.; Sylaja, P.N.; Szoeke, C.E.I.; Te Ao, B.J.; Temsah, M-H.; Temsah, O.; Thrift, A.G.; Tonelli, M.; Topor-Madry, R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Venketasubramanian, N.; Vosoughi, K.; Vu, G.T.; Waheed, Y.; Weiderpass, E.; Weldegwergs, K.G.; Westerman, R.; Wolfe, C.D.A.; Wondafrash, D.Z.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yatsuya, H.; Yimer, E.M.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zamani, M.; Zarghi, A.; Zhang, Y.; Zodpey, S.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 439-458.
[http://dx.doi.org/10.1016/S1474-4422(19)30034-1] [PMID: 30871944]
[2]
Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abejie, A.N.; Abyu, G.Y.; Ademi, Z.; Agarwal, G.; Ahmed, M.B.; Akinyemi, R.O.; Al-Raddadi, R.; Aminde, L.N.; Amlie-Lefond, C.; Ansari, H.; Asayesh, H.; Asgedom, S.W.; Atey, T.M.; Ayele, H.T.; Banach, M.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Basu, S.; Bedi, N.; Behzadifar, M.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berhe, D.F.; Boneya, D.J.; Brainin, M.; Campos-Nonato, I.R.; Caso, V.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Christensen, H.; Criqui, M.H.; Damasceno, A.; Dandona, L.; Dandona, R.; Davletov, K.; de Courten, B.; deVeber, G.; Dokova, K.; Edessa, D.; Endres, M.; Faraon, E.J.A.; Farvid, M.S.; Fischer, F.; Foreman, K.; Forouzanfar, M.H.; Gall, S.L.; Gebrehiwot, T.T.; Geleijnse, J.M.; Gillum, R.F.; Giroud, M.; Goulart, A.C.; Gupta, R.; Gupta, R.; Hachinski, V.; Hamadeh, R.R.; Hankey, G.J.; Hareri, H.A.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Hibstu, D.T.; James, S.L.; Jeemon, P.; John, D.; Jonas, J.B.; Jóźwiak, J.; Kalani, R.; Kandel, A.; Kasaeian, A.; Kengne, A.P.; Khader, Y.S.; Khan, A.R.; Khang, Y.H.; Khubchandani, J.; Kim, D.; Kim, Y.J.; Kivimaki, M.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Kravchenko, M.; Krishnamurthi, R.; Kumar, G.A.; Lafranconi, A.; Lavados, P.M.; Legesse, Y.; Li, Y.; Liang, X.; Lo, W.D.; Lorkowski, S.; Lotufo, P.A.; Loy, C.T.; Mackay, M.T.; Abd El Razek, H.M.; Mahdavi, M.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Mantovani, L.G.; Martins, S.C.O.; Mate, K.K.; Mazidi, M.; Mehata, S.; Meier, T.; Melaku, Y.A.; Mendoza, W.; Mensah, G.A.; Meretoja, A.; Mezgebe, H.B.; Miazgowski, T.; Miller, T.R.; Ibrahim, N.M.; Mohammed, S.; Mokdad, A.H.; Moosazadeh, M.; Moran, A.E.; Musa, K.I.; Negoi, R.I.; Nguyen, M.; Nguyen, Q.L.; Nguyen, T.H.; Tran, T.T.; Nguyen, T.T.; Anggraini Ningrum, D.N.; Norrving, B.; Noubiap, J.J.; O’Donnell, M.J.; Olagunju, A.T.; Onuma, O.K.; Owolabi, M.O.; Parsaeian, M.; Patton, G.C.; Piradov, M.; Pletcher, M.A.; Pourmalek, F.; Prakash, V.; Qorbani, M.; Rahman, M.; Rahman, M.A.; Rai, R.K.; Ranta, A.; Rawaf, D.; Rawaf, S.; Renzaho, A.M.; Robinson, S.R.; Sahathevan, R.; Sahebkar, A.; Salomon, J.A.; Santalucia, P.; Santos, I.S.; Sartorius, B.; Schutte, A.E.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Shamsizadeh, M.; Sheth, K.N.; Sisay, M.; Shin, M.J.; Shiue, I.; Silva, D.A.S.; Sobngwi, E.; Soljak, M.; Sorensen, R.J.D.; Sposato, L.A.; Stranges, S.; Suliankatchi, R.A.; Tabarés-Seisdedos, R.; Tanne, D.; Nguyen, C.T.; Thakur, J.S.; Thrift, A.G.; Tirschwell, D.L.; Topor-Madry, R.; Tran, B.X.; Nguyen, L.T.; Truelsen, T.; Tsilimparis, N.; Tyrovolas, S.; Ukwaja, K.N.; Uthman, O.A.; Varakin, Y.; Vasankari, T.; Venketasubramanian, N.; Vlassov, V.V.; Wang, W.; Werdecker, A.; Wolfe, C.D.A.; Xu, G.; Yano, Y.; Yonemoto, N.; Yu, C.; Zaidi, Z.; El Sayed Zaki, M.; Zhou, M.; Ziaeian, B.; Zipkin, B.; Vos, T.; Naghavi, M.; Murray, C.J.L.; Roth, G.A. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med., 2018, 379(25), 2429-2437.
[http://dx.doi.org/10.1056/NEJMoa1804492] [PMID: 30575491]
[3]
Saini, V.; Guada, L.; Yavagal, D.R. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology, 2021, 97(20_Suppl_2), S6-S16.
[http://dx.doi.org/10.1212/WNL.0000000000012781] [PMID: 34785599]
[4]
Anthony, S.; Cabantan, D.; Monsour, M.; Borlongan, C.V. Neuroinflammation, stem cells, and stroke. Stroke, 2022, 53(5), 1460-1472.
[http://dx.doi.org/10.1161/STROKEAHA.121.036948] [PMID: 35380050]
[5]
Nistor-Cseppentö, D.C.; Jurcău, M.C.; Jurcău, A.; Andronie-Cioară, F.L.; Marcu, F. Stem cell- and cell-based therapies for ischemic stroke. Bioengineering, 2022, 9(11), 717.
[http://dx.doi.org/10.3390/bioengineering9110717] [PMID: 36421118]
[6]
Zhang, R.; Mao, W.; Niu, L.; Bao, W.; Wang, Y.; Wang, Y.; Zhu, Y.; Yang, Z.; Chen, J.; Dong, J.; Cai, M.; Yuan, Z.; Song, H.; Li, G.; Zhang, M.; Xiong, N.; Wei, J.; Dong, Z. NSC-derived exosomes enhance therapeutic effects of NSC transplantation on cerebral ischemia in mice. eLife, 2023, 12, e84493.
[http://dx.doi.org/10.7554/eLife.84493] [PMID: 37104115]
[7]
Noh, J.E.; Oh, S.H.; Lee, S.; Lee, S.; Kim, Y.H.; Park, H.J.; Ju, J.H.; Kim, H.S.; Huh, J.Y.; Song, J. Intracerebral transplantation of HLA-homozygous human iPSC-derived neural precursors ameliorates the behavioural and pathological deficits in a rodent model of ischaemic stroke. Cell Prolif., 2020, 53(9), e12884.
[http://dx.doi.org/10.1111/cpr.12884] [PMID: 32713053]
[8]
Bacigaluppi, M.; Russo, G.L.; Peruzzotti-Jametti, L.; Rossi, S.; Sandrone, S.; Butti, E.; De Ceglia, R.; Bergamaschi, A.; Motta, C.; Gallizioli, M.; Studer, V.; Colombo, E.; Farina, C.; Comi, G.; Politi, L.S.; Muzio, L.; Villani, C.; Invernizzi, R.W.; Hermann, D.M.; Centonze, D.; Martino, G. Neural stem cell transplantation induces stroke recovery by upregulating glutamate transporter GLT-1 in astrocytes. J. Neurosci., 2016, 36(41), 10529-10544.
[http://dx.doi.org/10.1523/JNEUROSCI.1643-16.2016] [PMID: 27733606]
[9]
Hamblin, M.H.; Lee, J.P. Neural stem cells for early ischemic stroke. Int. J. Mol. Sci., 2021, 22(14), 7703.
[http://dx.doi.org/10.3390/ijms22147703] [PMID: 34299322]
[10]
Fernandez-Muñoz, B.; Garcia-Delgado, A.B.; Arribas-Arribas, B.; Sanchez-Pernaute, R. Human neural stem cells for cell-based medicinal products. Cells, 2021, 10(9), 2377.
[http://dx.doi.org/10.3390/cells10092377] [PMID: 34572024]
[11]
Ziaee, S.M.; Tabeshmehr, P.; Haider, K.H.; Farrokhi, M.; Shariat, A.; Amiri, A.; Hosseini, S.M. Optimization of time for neural stem cells transplantation for brain stroke in rats. Stem Cell Investig., 2017, 4, 29.
[http://dx.doi.org/10.21037/sci.2017.03.10] [PMID: 28529944]
[12]
Song, M.; Kim, Y.J.; Kim, Y.H.; Roh, J.; Kim, S.U.; Yoon, B.W. Effects of duplicate administration of human neural stem cell after focal cerebral ischemia in the rat. Int. J. Neurosci., 2011, 121(8), 457-461.
[http://dx.doi.org/10.3109/00207454.2011.576792] [PMID: 21574891]
[13]
Tajiri, N.; Quach, D.M.; Kaneko, Y.; Wu, S.; Lee, D.; Lam, T.; Hayama, K.L.; Hazel, T.G.; Johe, K.; Wu, M.C.; Borlongan, C.V. Behavioral and histopathological assessment of adult ischemic rat brains after intracerebral transplantation of NSI-566RSC cell lines. PLoS One, 2014, 9(3), e91408.
[http://dx.doi.org/10.1371/journal.pone.0091408] [PMID: 24614895]
[14]
Liu, X.; Jia, X. Neuroprotection of stem cells against ischemic brain injury: From bench to clinic. Transl. Stroke Res., 2024; 15(4): 691-713.
[http://dx.doi.org/10.1007/s12975-023-01163-3] [PMID: 37415004]
[15]
Doeppner, T.R.; Kaltwasser, B.; Teli, M.K.; Sanchez-Mendoza, E.H.; Kilic, E.; Bähr, M.; Hermann, D.M. Post-stroke transplantation of adult subventricular zone derived neural progenitor cells — A comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp. Neurol., 2015, 273, 45-56.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.023] [PMID: 26253224]
[16]
Li, L.; Jiang, Q.; Ding, G.; Zhang, L.; Zhang, Z.G.; Li, Q.; Panda, S.; Lu, M.; Ewing, J.R.; Chopp, M. Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J. Cereb. Blood Flow Metab., 2010, 30(3), 653-662.
[http://dx.doi.org/10.1038/jcbfm.2009.238] [PMID: 19888287]
[17]
Mochizuki, N.; Moriyama, Y.; Takagi, N.; Takeo, S.; Tanonaka, K. Intravenous injection of neural progenitor cells improves cerebral ischemia-induced learning dysfunction. Biol. Pharm. Bull., 2011, 34(2), 260-265.
[http://dx.doi.org/10.1248/bpb.34.260] [PMID: 21415538]
[18]
Li, Y.; Wu, H.; Jiang, X.; Dong, Y.; Zheng, J.; Gao, J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: Combining with intranasal delivery. Acta Pharm. Sin. B, 2022, 12(8), 3215-3232.
[http://dx.doi.org/10.1016/j.apsb.2022.04.001] [PMID: 35967290]
[19]
Lu, M.H.; Ji, W.L.; Chen, H.; Sun, Y.Y.; Zhao, X.Y.; Wang, F.; Shi, Y.; Hu, Y.N.; Liu, B.X.; Wu, J.; Xu, D.E.; Zheng, J.W.; Liu, C.F.; Ma, Q.H. Intranasal transplantation of human neural stem cells ameliorates alzheimer’s disease-like pathology in a mouse model. Front. Aging Neurosci., 2021, 13, 650103.
[http://dx.doi.org/10.3389/fnagi.2021.650103] [PMID: 33776747]
[20]
Kawabori, M.; Shichinohe, H.; Kuroda, S.; Houkin, K. Clinical trials of stem cell therapy for cerebral ischemic stroke. Int. J. Mol. Sci., 2020, 21(19), 7380.
[http://dx.doi.org/10.3390/ijms21197380] [PMID: 33036265]
[21]
Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; Greco, R.; Vezzulli, P.; Ottoboni, L.; Bonopane, M.; Capilupo, D.; Ruffini, F.; Belotti, D.; Cabiati, B.; Cesana, S.; Matera, G.; Leocani, L.; Martinelli, V.; Moiola, L.; Vago, L.; Panina-Bordignon, P.; Falini, A.; Ciceri, F.; Uglietti, A.; Sormani, M.P.; Comi, G.; Battaglia, M.A.; Rocca, M.A.; Storelli, L.; Pagani, E.; Gaipa, G.; Martino, G. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med., 2023, 29(1), 75-85.
[http://dx.doi.org/10.1038/s41591-022-02097-3] [PMID: 36624312]
[22]
Baak, L.M.; Wagenaar, N.; van der Aa, N.E.; Groenendaal, F.; Dudink, J.; Tataranno, M.L.; Mahamuud, U.; Verhage, C.H.; Eijsermans, R.M.J.C.; Smit, L.S.; Jellema, R.K.; de Haan, T.R.; ter Horst, H.J.; de Boode, W.P.; Steggerda, S.J.; Prins, H.J.; de Haar, C.G.; de Vries, L.S.; van Bel, F.; Heijnen, C.J.; Nijboer, C.H.; Benders, M.J.N.L. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): A first-in-human, open-label intervention study. Lancet Neurol., 2022, 21(6), 528-536.
[http://dx.doi.org/10.1016/S1474-4422(22)00117-X] [PMID: 35568047]
[23]
Tang, Y.; Yuan, F.; Cai, B.; Xia, W.; Wang, Y.; Yang, G.Y. Effect of ischaemic brain injury on sexual function in adult mice. BMJ, 2016, 1(3), 127-132.
[http://dx.doi.org/10.1136/svn-2016-000013] [PMID: 28959474]
[24]
Endres, M.; Moro, M.A.; Nolte, C.H.; Dames, C.; Buckwalter, M.S.; Meisel, A. Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke. Circ. Res., 2022, 130(8), 1167-1186.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319994] [PMID: 35420915]
[25]
Houlton, J.; Abumaria, N.; Hinkley, S.F.R.; Clarkson, A.N. Therapeutic potential of neurotrophins for repair after brain injury: A helping hand from biomaterials. Front. Neurosci., 2019, 13, 790.
[http://dx.doi.org/10.3389/fnins.2019.00790] [PMID: 31427916]
[26]
Curcio, M.; Salazar, I.L.; Inácio, A.R.; Duarte, E.P.; Canzoniero, L.M.T.; Duarte, C.B. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis., 2015, 6(2), e1645.
[http://dx.doi.org/10.1038/cddis.2014.578] [PMID: 25675305]
[27]
Tang, H.; Li, Y.; Tang, W.; Zhu, J.; Parker, G.C.; Zhang, J.H. Endogenous neural stem cell–induced neurogenesis after ischemic stroke: Processes for brain repair and perspectives. Transl. Stroke Res., 2023, 14(3), 297-303.
[http://dx.doi.org/10.1007/s12975-022-01078-5] [PMID: 36057034]
[28]
Tuazon, J.P.; Castelli, V.; Borlongan, C.V. Drug-like delivery methods of stem cells as biologics for stroke. Expert Opin. Drug Deliv., 2019, 16(8), 823-833.
[http://dx.doi.org/10.1080/17425247.2019.1645116] [PMID: 31311344]
[29]
Gao, Q.; Liao, L-Y.; Lau, B.W-M.; Sánchez-Vidaña, D.I. Exogenous neural stem cell transplantation for cerebral ischemia. Neural Regen. Res., 2019, 14(7), 1129-1137.
[http://dx.doi.org/10.4103/1673-5374.251188] [PMID: 30804235]
[30]
Huang, L.; Zhang, L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog. Neurobiol., 2019, 173, 1-17.
[http://dx.doi.org/10.1016/j.pneurobio.2018.05.004] [PMID: 29758244]
[31]
Zhang, R.; Zhang, Z.; Chopp, M. Function of neural stem cells in ischemic brain repair processes. J. Cereb. Blood Flow Metab., 2016, 36(12), 2034-2043.
[http://dx.doi.org/10.1177/0271678X16674487] [PMID: 27742890]
[32]
Wang, G.; Han, B.; Shen, L.; Wu, S.; Yang, L.; Liao, J.; Wu, F.; Li, M.; Leng, S.; Zang, F.; Zhang, Y.; Bai, Y.; Mao, Y.; Chen, B.; Yao, H. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke. EBioMedicine, 2020, 52, 102660.
[http://dx.doi.org/10.1016/j.ebiom.2020.102660] [PMID: 32062357]
[33]
Doerr, J.; Schwarz, M.K.; Wiedermann, D.; Leinhaas, A.; Jakobs, A.; Schloen, F.; Schwarz, I.; Diedenhofen, M.; Braun, N.C.; Koch, P.; Peterson, D.A.; Kubitscheck, U.; Hoehn, M.; Brüstle, O. Whole-brain 3D mapping of human neural transplant innervation. Nat. Commun., 2017, 8(1), 14162.
[http://dx.doi.org/10.1038/ncomms14162] [PMID: 28102196]
[34]
Smith, E.J.; Stroemer, R.P.; Gorenkova, N.; Nakajima, M.; Crum, W.R.; Tang, E.; Stevanato, L.; Sinden, J.D.; Modo, M. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells, 2012, 30(4), 785-796.
[http://dx.doi.org/10.1002/stem.1024] [PMID: 22213183]
[35]
Moeinabadi-Bidgoli, K.; Babajani, A.; Yazdanpanah, G.; Farhadihosseinabadi, B.; Jamshidi, E.; Bahrami, S.; Niknejad, H. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. Biomed. Pharmacother., 2021, 142, 112026.
[http://dx.doi.org/10.1016/j.biopha.2021.112026] [PMID: 34411911]
[36]
Zhang, S.; Lachance, B.B.; Moiz, B.; Jia, X. Optimizing stem cell therapy after ischemic brain injury. J. Stroke, 2020, 22(3), 286-305.
[http://dx.doi.org/10.5853/jos.2019.03048] [PMID: 33053945]
[37]
Achón Buil, B.; Tackenberg, C.; Rust, R. Editing a gateway for cell therapy across the blood–brain barrier. Brain, 2023, 146(3), 823-841.
[http://dx.doi.org/10.1093/brain/awac393] [PMID: 36397727]
[38]
Villar-Gómez, N.; Ojeda-Hernandez, D.D.; López-Muguruza, E.; García-Flores, S.; Bonel-García, N.; Benito-Martín, M.S.; Selma-Calvo, B.; Canales-Aguirre, A.A.; Mateos-Díaz, J.C.; Montero-Escribano, P.; Matias-Guiu, J.A.; Matías-Guiu, J.; Gómez-Pinedo, U. Nose-to-brain: The next step for stem cell and biomaterial therapy in neurological disorders. Cells, 2022, 11(19), 3095.
[http://dx.doi.org/10.3390/cells11193095] [PMID: 36231058]
[39]
Galeano, C.; Qiu, Z.; Mishra, A.; Farnsworth, S.L.; Hemmi, J.J.; Moreira, A.; Edenhoffer, P.; Hornsby, P.J. The route by which intranasally delivered stem cells enter the central nervous system. Cell Transplant., 2018, 27(3), 501-514.
[http://dx.doi.org/10.1177/0963689718754561] [PMID: 29756518]
[40]
Baker, E.W.; Kinder, H.A.; West, F.D. Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain Behav., 2019, 9(3), e01214.
[http://dx.doi.org/10.1002/brb3.1214] [PMID: 30747485]
[41]
Ramiro, L.; Simats, A.; García-Berrocoso, T.; Montaner, J. Inflammatory molecules might become both biomarkers and therapeutic targets for stroke management. Ther. Adv. Neurol. Disord., 2018, 11
[http://dx.doi.org/10.1177/1756286418789340] [PMID: 30093920]
[42]
Disdier, C.; Chen, X.; Kim, J.E.; Threlkeld, S.; Stonestreet, B. Anti-cytokine therapy to attenuate ischemic-reperfusion associated brain injury in the perinatal period. Brain Sci., 2018, 8(6), 101.
[http://dx.doi.org/10.3390/brainsci8060101] [PMID: 29875342]
[43]
Lambertsen, K.L.; Finsen, B.; Clausen, B.H. Post-stroke inflammation—target or tool for therapy? Acta Neuropathol., 2019, 137(5), 693-714.
[http://dx.doi.org/10.1007/s00401-018-1930-z] [PMID: 30483945]
[44]
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[45]
Peruzzotti-Jametti, L.; Bernstock, J.D.; Vicario, N.; Costa, A.S.H.; Kwok, C.K.; Leonardi, T.; Booty, L.M.; Bicci, I.; Balzarotti, B.; Volpe, G.; Mallucci, G.; Manferrari, G.; Donegà, M.; Iraci, N.; Braga, A.; Hallenbeck, J.M.; Murphy, M.P.; Edenhofer, F.; Frezza, C.; Pluchino, S. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell, 2018, 22(3), 355-368.e13.
[http://dx.doi.org/10.1016/j.stem.2018.01.020] [PMID: 29478844]
[46]
de Almeida, M.M.A.; Goodkey, K.; Voronova, A. Regulation of microglia function by neural stem cells. Front. Cell. Neurosci., 2023, 17, 1130205.
[http://dx.doi.org/10.3389/fncel.2023.1130205] [PMID: 36937181]
[47]
Chang, D.J.; Lee, N.; Choi, C.; Jeon, I.; Oh, S.H.; Shin, D.A.; Hwang, T.S.; Lee, H.J.; Kim, S.U.; Moon, H.; Hong, K.S.; Kang, K.S.; Song, J. Therapeutic effect of BDNF-overexpressing human neural stem cells (HB1.F3.BDNF) in a rodent model of middle cerebral artery occlusion. Cell Transplant., 2013, 22(8), 1441-1452.
[http://dx.doi.org/10.3727/096368912X657323] [PMID: 23044072]
[48]
Yuan, M.; Wen, S.; Yang, C.; Pang, Y.; Gao, X.; Liu, X.; Huang, L.; Yuan, Q. Transplantation of neural stem cells overexpressing glial cell line-derived neurotrophic factor enhances Akt and Erk1/2 signaling and neurogenesis in rats after stroke. Chin. Med. J. (Engl.), 2013, 126(7), 1302-1309.
[http://dx.doi.org/10.3760/cma.j.issn.0366-6999.20122965] [PMID: 23557563]
[49]
Xiong, L.L.; Hu, Y.; Zhang, P.; Zhang, Z.; Li, L.H.; Gao, G.D.; Zhou, X.F.; Wang, T.H. Neural stem cell transplantation promotes functional recovery from traumatic brain injury via brain derived neurotrophic factor-mediated neuroplasticity. Mol. Neurobiol., 2018, 55(3), 2696-2711.
[http://dx.doi.org/10.1007/s12035-017-0551-1] [PMID: 28421542]
[50]
Razavi, S.; Nazem, G.; Mardani, M.; Esfandiari, E.; Salehi, H.; Esfahani, S.Z. Neurotrophic factors and their effects in the treatment of multiple sclerosis. Adv. Biomed. Res., 2015, 4(1), 53.
[http://dx.doi.org/10.4103/2277-9175.151570] [PMID: 25802822]
[51]
Ceanga, M.; Dahab, M.; Witte, O.W.; Keiner, S. Adult neurogenesis and stroke: A tale of two neurogenic niches. Front. Neurosci., 2021, 15, 700297.
[http://dx.doi.org/10.3389/fnins.2021.700297] [PMID: 34447293]
[52]
Tang, Y.; Wang, J.; Lin, X.; Wang, L.; Shao, B.; Jin, K.; Wang, Y.; Yang, G.Y. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J. Cereb. Blood Flow Metab., 2014, 34(7), 1138-1147.
[http://dx.doi.org/10.1038/jcbfm.2014.61] [PMID: 24714034]
[53]
Blaya, M.O.; Tsoulfas, P.; Bramlett, H.M.; Dietrich, W.D. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp. Neurol., 2015, 264, 67-81.
[http://dx.doi.org/10.1016/j.expneurol.2014.11.014] [PMID: 25483396]
[54]
Hassani, Z.; O’Reilly, J.; Pearse, Y.; Stroemer, P.; Tang, E.; Sinden, J.; Price, J.; Thuret, S. Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke. PLoS One, 2012, 7(11), e50444.
[http://dx.doi.org/10.1371/journal.pone.0050444] [PMID: 23185625]
[55]
Vasic, V.; Barth, K.; Schmidt, M.H.H. Neurodegeneration and neuro-regeneration—alzheimer’s disease and stem cell therapy. Int. J. Mol. Sci., 2019, 20(17), 4272.
[http://dx.doi.org/10.3390/ijms20174272] [PMID: 31480448]
[56]
Jin, K.; Xie, L.; Mao, X.; Greenberg, M.B.; Moore, A.; Peng, B.; Greenberg, R.B.; Greenberg, D.A. Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res., 2011, 1374, 56-62.
[http://dx.doi.org/10.1016/j.brainres.2010.12.037] [PMID: 21167824]
[57]
Patabendige, A.; Singh, A.; Jenkins, S.; Sen, J.; Chen, R. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int. J. Mol. Sci., 2021, 22(8), 4280.
[http://dx.doi.org/10.3390/ijms22084280] [PMID: 33924191]
[58]
Cai, H.; Ma, Y.; Jiang, L.; Mu, Z.; Jiang, Z.; Chen, X.; Wang, Y.; Yang, G.Y.; Zhang, Z. Hypoxia response element-regulated mmp-9 promotes neurological recovery via glial scar degradation and angiogenesis in delayed stroke. Mol. Ther., 2017, 25(6), 1448-1459.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.020] [PMID: 28396199]
[59]
Garcia, A.D.R.; Doan, N.B.; Imura, T.; Bush, T.G.; Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci., 2004, 7(11), 1233-1241.
[http://dx.doi.org/10.1038/nn1340] [PMID: 15494728]
[60]
Choudhury, G.R.; Ding, S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol. Dis., 2016, 85, 234-244.
[http://dx.doi.org/10.1016/j.nbd.2015.05.003] [PMID: 25982835]
[61]
Hayakawa, K.; Nakano, T.; Irie, K.; Higuchi, S.; Fujioka, M.; Orito, K.; Iwasaki, K.; Jin, G.; Lo, E.H.; Mishima, K.; Fujiwara, M. Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab., 2010, 30(4), 871-882.
[http://dx.doi.org/10.1038/jcbfm.2009.257] [PMID: 19997116]
[62]
Zhao, T.; Zhu, T.; Xie, L.; Li, Y.; Xie, R.; Xu, F.; Tang, H.; Zhu, J. Neural stem cells therapy for ischemic stroke: Progress and challenges. Transl. Stroke Res., 2022, 13(5), 665-675.
[http://dx.doi.org/10.1007/s12975-022-00984-y] [PMID: 35032307]
[63]
Li, Z.; Dong, X.; Tian, M.; Liu, C.; Wang, K.; Li, L.; Liu, Z.; Liu, J. Stem cell-based therapies for ischemic stroke: A systematic review and meta-analysis of clinical trials. Stem Cell Res. Ther., 2020, 11(1), 252.
[http://dx.doi.org/10.1186/s13287-020-01762-z] [PMID: 32586371]
[64]
Gutova, M.; Flores, L.; Adhikarla, V.; Tsaturyan, L.; Tirughana, R.; Aramburo, S.; Metz, M.; Gonzaga, J.; Annala, A.; Synold, T.W.; Portnow, J.; Rockne, R.C.; Aboody, K.S. Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Front. Oncol., 2019, 9, 68.
[http://dx.doi.org/10.3389/fonc.2019.00068] [PMID: 30838174]
[65]
Kim, H.J.; Cho, K.R.; Jang, H.; Lee, N.K.; Jung, Y.H.; Kim, J.P.; Lee, J.I.; Chang, J.W.; Park, S.; Kim, S.T.; Moon, S.W.; Seo, S.W.; Choi, S.J.; Na, D.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial. Alzheimers Res. Ther., 2021, 13(1), 154.
[http://dx.doi.org/10.1186/s13195-021-00897-2] [PMID: 34521461]
[66]
Al Fauzi, A.; Sumorejo, P.; Suroto, N.S.; Parenrengi, M.A.; Wahyuhadi, J.; Turchan, A.; Mahyudin, F.; Suroto, H.; Rantam, F.A.; Machfoed, M.H.; Bajamal, A.H.; Lumenta, C.B. Clinical outcomes of repeated intraventricular transplantation of autologous bone marrow mesenchymal stem cells in chronic haemorrhagic stroke. A one-year follow up. Open Neurol. J., 2017, 11(1), 74-83.
[http://dx.doi.org/10.2174/1874205X01711010074] [PMID: 29290837]
[67]
Myeong, S.H.; Kim, H.; Lee, N.K.; Hwang, J.W.; Kim, H.J.; Jang, H.; Choi, S.J.; Na, D.L. Intracerebroventricular administration of human umbilical cord blood—derived mesenchymal stem cells induces transient inflammation in a transgenic mouse model and patients with alzheimer’s disease. Biomedicines, 2022, 10(3), 563.
[http://dx.doi.org/10.3390/biomedicines10030563] [PMID: 35327365]
[68]
Seyer, B.; Pham, V.; Albiston, A.L.; Chai, S.Y. Cannula implantation into the lateral ventricle does not adversely affect recognition or spatial working memory. Neurosci. Lett., 2016, 628, 171-178.
[http://dx.doi.org/10.1016/j.neulet.2016.06.034] [PMID: 27345383]
[69]
Li, X.; Sundström, E. Stem cell therapies for central nervous system trauma: The 4 ws—what, when, where, and why. Stem Cells Transl. Med., 2022, 11(1), 14-25.
[http://dx.doi.org/10.1093/stcltm/szab006] [PMID: 35641168]
[70]
Guzman, R.; Janowski, M.; Walczak, P. Intra-arterial delivery of cell therapies for stroke. Stroke, 2018, 49(5), 1075-1082.
[http://dx.doi.org/10.1161/STROKEAHA.117.018288] [PMID: 29669876]
[71]
Namestnikova, D.D.; Gubskiy, I.L.; Revkova, V.A.; Sukhinich, K.K.; Melnikov, P.A.; Gabashvili, A.N.; Cherkashova, E.A.; Vishnevskiy, D.A.; Kurilo, V.V.; Burunova, V.V.; Semkina, A.S.; Abakumov, M.A.; Gubsky, L.V.; Chekhonin, V.P.; Ahlfors, J.E.; Baklaushev, V.P.; Yarygin, K.N. Intra-arterial stem cell transplantation in experimental stroke in rats: Real-time MR visualization of transplanted cells starting with their first pass through the brain with regard to the therapeutic action. Front. Neurosci., 2021, 15, 641970.
[http://dx.doi.org/10.3389/fnins.2021.641970] [PMID: 33737862]
[72]
Rosenblum, S.; Wang, N.; Smith, T.N.; Pendharkar, A.V.; Chua, J.Y.; Birk, H.; Guzman, R. Timing of intra-arterial neural stem cell transplantation after hypoxia-ischemia influences cell engraftment, survival, and differentiation. Stroke, 2012, 43(6), 1624-1631.
[http://dx.doi.org/10.1161/STROKEAHA.111.637884] [PMID: 22535265]
[73]
Cherkashova, E.; Namestnikova, D.; Leonov, G.; Gubskiy, I.; Sukhinich, K.; Melnikov, P.; Chekhonin, V.; Yarygin, K.; Goldshtein, D.; Salikhova, D. Comparative study of the efficacy of intra-arterial and intravenous transplantation of human induced pluripotent stem cells-derived neural progenitor cells in experimental stroke. PeerJ, 2023, 11, e16358.
[http://dx.doi.org/10.7717/peerj.16358] [PMID: 38025691]
[74]
Walczak, P.; Zhang, J.; Gilad, A.A.; Kedziorek, D.A.; Ruiz-Cabello, J.; Young, R.G.; Pittenger, M.F.; van Zijl, P.C.M.; Huang, J.; Bulte, J.W.M. Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 2008, 39(5), 1569-1574.
[http://dx.doi.org/10.1161/STROKEAHA.107.502047] [PMID: 18323495]
[75]
Salehi, M.S.; Jurek, B.; Karimi-Haghighi, S.; Nezhad, N.J.; Mousavi, S.M.; Hooshmandi, E.; Safari, A.; Dianatpour, M.; Haerteis, S.; Miyan, J.A.; Pandamooz, S.; Borhani-Haghighi, A. Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: A review. Rev. Neurosci., 2022, 33(6), 583-606.
[http://dx.doi.org/10.1515/revneuro-2021-0163] [PMID: 35130375]