Analyzing Hair for Drug Traces: A Review of Electrochemical Approaches

Page: [115 - 130] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Hair analysis plays a crucial role in forensic toxicology, offering a unique medium for long-term drug trace detection. This review emphasizes the evolution of electrochemical methods in analyzing hair for drug traces, underscoring their significance in forensic science.

Methods: We examined recent advancements in electrochemical techniques, including voltammetry, amperometry, and electrochemical impedance spectroscopy, and their application in drug trace analysis. The review also explores the development of novel electrode materials and surface modifications, which enhance the detection capabilities of these methods.

Results: Electrochemical methods have shown high sensitivity and specificity in detecting a range of drugs in hair. Innovations, like molecularly imprinted polymers and nanomaterials, have expanded the detectable substance range, offering more refined and accurate detection. Despite challenges, such as hair variability and external contamination, these methods have significantly improved the reliability of drug trace analysis.

Conclusion: Electrochemical approaches to hair analysis represent a significant advancement in forensic toxicology. Their ability to provide sensitive, specific, and non-invasive analysis makes them valuable tools. Future developments, including portable device creation and integration with other analytical techniques, hold promise for further enhancing the scope and accuracy of drug trace detection in hair.

Graphical Abstract

[1]
de Oliveira, C.D.R.; Roehsig, M.; de Almeida, R.M.; Rocha, W.L.; Yonamine, M. Recent advances in chromatographic methods to detect drugs of abuse in alternative biological matrices. Curr. Pharm. Anal., 2007, 3, 95-109.
[http://dx.doi.org/10.2174/157341207780598931]
[2]
Kuwayama, K.; Miyaguchi, H.; Iwata, Y.T.; Kanamori, T.; Tsujikawa, K.; Yamamuro, T.; Segawa, H.; Inoue, H. Strong evidence of drug-facilitated crimes by hair analysis using LC-MS/MS after micro-segmentation. Forensic Toxicol., 2019, 37(2), 480-487.
[http://dx.doi.org/10.1007/s11419-019-00472-3]
[3]
Usman, M.; Naseer, A.; Baig, Y.; Jamshaid, T.; Shahwar, M.; Khurshuid, S. Forensic toxicological analysis of hair: A review. Egypt. J. Forensic Sci., 2019, 9(1), 17.
[http://dx.doi.org/10.1186/s41935-019-0119-5]
[4]
Kintz, P. Hair analysis in forensic toxicology. WIREs Forensic Sci., 2019, 1(1), e1196.
[http://dx.doi.org/10.1002/wfs2.1196]
[5]
Ferreira, C.; Paulino, C.; Quintas, A. Extraction procedures for hair forensic toxicological analysis: A mini-review. Chem. Res. Toxicol., 2019, 32(12), 2367-2381.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00301] [PMID: 31701744]
[6]
Frederiksen, H.; Nielsen, O.; Koch, H.M.; Skakkebaek, N.E.; Juul, A.; Jørgensen, N.; Andersson, A.M. Changes in urinary excretion of phthalates, phthalate substitutes, bisphenols and other polychlorinated and phenolic substances in young Danish men; 2009-2017. Int. J. Hyg. Environ. Health, 2020, 223(1), 93-105.
[http://dx.doi.org/10.1016/j.ijheh.2019.10.002] [PMID: 31669154]
[7]
Cuypers, E.; Flanagan, R.J. The interpretation of hair analysis for drugs and drug metabolites. Clin. Toxicol., 2018, 56(2), 90-100.
[http://dx.doi.org/10.1080/15563650.2017.1379603] [PMID: 28938866]
[8]
Florea, A.; de Jong, M.; De Wael, K. Electrochemical strategies for the detection of forensic drugs. Curr. Opin. Electrochem., 2018, 11, 34-40.
[http://dx.doi.org/10.1016/j.coelec.2018.06.014]
[9]
Adumitrăchioaie, A.; Tertiș, M.; Cernat, A.; Săndulescu, R.; Cristea, C. Electrochemical methods based on molecularly imprinted polymers for drug detection. A review. Int. J. Electrochem. Sci., 2018, 13(3), 2556-2576.
[http://dx.doi.org/10.20964/2018.03.75]
[10]
Ducharme, D.P.; Yang, K.; Currás, A.N.; Ploense, K.L.; Zhang, Y.; Gerson, J.; Kurnik, M.; Kippin, T.E.; Stojanovic, M.N.; Plaxco, K.W. Electrochemical aptamer based sensors for improved therapeutic drug monitoring and high-precision, feedback controlled drug delivery. ACS Sens., 2019, 4(10), 2832-2837.
[http://dx.doi.org/10.1021/acssensors.9b01616] [PMID: 31556293]
[11]
Lu, Y.; Yan, J.; Ou, G.; Fu, L. A review of recent progress in drug doping and gene doping control analysis. Molecules, 2023, 28(14), 5483.
[http://dx.doi.org/10.3390/molecules28145483] [PMID: 37513354]
[12]
Fu, L.; Xu, Y.; Du, J.; Cao, D.; Liu, Q. Electroanalytical methods for fish drug determination and control: A review and outlook. Int. J. Electrochem. Sci., 2019, 14(5), 4383-4396.
[http://dx.doi.org/10.20964/2019.05.32]
[13]
Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim. Acta, 2015, 182(1-2), 1-41.
[http://dx.doi.org/10.1007/s00604-014-1308-4] [PMID: 25568497]
[14]
Wang, P.; Chen, S.; Guan, Y.; Li, Y.; Jiamali, A. An electrochemical sensing platform based on gold nanostars for the detection of Alzheimer’s disease marker Aβ oligomers (Aβo). Alex. Eng. J., 2023, 81, 1-6.
[http://dx.doi.org/10.1016/j.aej.2023.08.073]
[15]
Li, B.; Wang, J.; Zhang, R. Detection and analysis of electrochemical signals in wine fermentation process. J. Food Meas. Charact., 2023, 17(5), 5103-5109.
[http://dx.doi.org/10.1007/s11694-023-02027-y]
[16]
Zhang, P.; Liu, D. Effect of organic carbon coating prepared by hydrothermal method on performance of lithium iron phosphate battery. Alex. Eng. J., 2023, 80, 1-7.
[http://dx.doi.org/10.1016/j.aej.2023.08.054]
[17]
Wu, H. Electrochemical evaluation of total antioxidant properties in red wine. J. Food Meas. Charact., 2023, 17(5), 5344-5351.
[http://dx.doi.org/10.1007/s11694-023-02002-7]
[18]
Lima, H.R.S.; da Silva, J.S.; de Farias, O.E.A.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.C.C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron., 2018, 108, 27-37.
[http://dx.doi.org/10.1016/j.bios.2018.02.034] [PMID: 29494885]
[19]
Pramanick, B.; Cadenas, L.B.; Kim, D.M.; Lee, W.; Shim, Y.B.; Chapa, M.S.O.; Madou, M.J.; Hwang, H. Human hair-derived hollow carbon microfibers for electrochemical sensing. Carbon, 2016, 107, 872-877.
[http://dx.doi.org/10.1016/j.carbon.2016.06.095]
[20]
De Rycke, E.; Stove, C.; Dubruel, P.; De Saeger, S.; Beloglazova, N. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens. Bioelectron., 2020, 169, 112579.
[http://dx.doi.org/10.1016/j.bios.2020.112579] [PMID: 32947080]
[21]
Kintz, P.; Villain, M.; Cirimele, V. Hair analysis for drug detection. Ther. Drug Monit., 2006, 28(3), 442-446.
[http://dx.doi.org/10.1097/01.ftd.0000211811.27558.b5] [PMID: 16778731]
[22]
Niu, Z.; Zhang, W.; Yu, C.; Zhang, J.; Wen, Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Analyt. Chem., 2018, 102, 123-146.
[http://dx.doi.org/10.1016/j.trac.2018.02.005]
[23]
Robbins, C.R. Chemical composition of different hair types. In: Chemical and Physical Behavior of Human Hair; Robbins, C.R., Ed.; Springer: Berlin, Heidelberg, 2012, pp. 105-176.
[http://dx.doi.org/10.1007/978-3-642-25611-0_2]
[24]
Wolfram, L.J. Human hair: A unique physicochemical composite. J. Am. Acad. Dermatol., 2003, 48(S6), S106-S114.
[http://dx.doi.org/10.1067/mjd.2003.276] [PMID: 12789162]
[25]
Zhang, G.; Senak, L.; Moore, D.J. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging. J. Biomed. Opt., 2011, 16(5), 056009-056009.
[http://dx.doi.org/10.1117/1.3580286] [PMID: 21639577]
[26]
Boumba, V.A.; Ziavrou, K.S.; Vougiouklakis, T. Hair as a biological indicator of drug use, drug abuse or chronic exposure to environmental toxicants. Int. J. Toxicol., 2006, 25(3), 143-163.
[http://dx.doi.org/10.1080/10915810600683028] [PMID: 16717031]
[27]
Cooper, G.A.A. Anatomy and physiology of hair, and principles for its collection. In: Hair Analysis in Clinical and Forensic Toxicology; Kintz, P.; Salomone, A.; Vincenti, M., Eds.; Academic Press: Boston, 2015, pp. 1-22.
[http://dx.doi.org/10.1016/B978-0-12-801700-5.00001-7]
[28]
Sadreev, I.I.; Burwood, G.W.S.; Flaherty, S.M.; Kim, J.; Russell, I.J.; Abdullin, T.I.; Lukashkin, A.N. Drug diffusion along an intact mammalian cochlea. Front. Cell. Neurosci., 2019, 13, 161.
[http://dx.doi.org/10.3389/fncel.2019.00161] [PMID: 31080407]
[29]
Tsanaclis, L.; Andraus, M.; Wicks, J. Hair analysis when external contamination is in question: A review of practical approach for the interpretation of results. Forensic Sci. Int., 2018, 285, 105-110.
[http://dx.doi.org/10.1016/j.forsciint.2018.01.028] [PMID: 29471142]
[30]
Baciu, T.; Borrull, F.; Aguilar, C.; Calull, M. Recent trends in analytical methods and separation techniques for drugs of abuse in hair. Anal. Chim. Acta, 2014, 856, 1-26.
[http://dx.doi.org/10.1016/j.aca.2014.06.051] [PMID: 25542354]
[31]
Shah, I.; Al-Dabbagh, B.; Salem, A.E.; Hamid, S.A.A.; Muhammad, N.; Naughton, D.P. A review of bioanalytical techniques for evaluation of cannabis (Marijuana, weed, Hashish) in human hair. BMC Chem., 2019, 13(1), 106.
[http://dx.doi.org/10.1186/s13065-019-0627-2] [PMID: 31428743]
[32]
Vogliardi, S.; Tucci, M.; Stocchero, G.; Ferrara, S.D.; Favretto, D. Sample preparation methods for determination of drugs of abuse in hair samples: A review. Anal. Chim. Acta, 2015, 857, 1-27.
[http://dx.doi.org/10.1016/j.aca.2014.06.053] [PMID: 25604816]
[33]
Vincenti, M.; Kintz, P. New challenges and perspectives in hair analysis. In: Hair Analysis in Clinical and Forensic Toxicology; Kintz, P.; Salomone, A.; Vincenti, M., Eds.; Academic Press: Boston, 2015, pp. 337-368.
[http://dx.doi.org/10.1016/B978-0-12-801700-5.00012-1]
[34]
Allibe, N.; Kintz, P.; Faure, A.; Paysant, F.; Lenoir, M.A.P.; Labesque, S.F.; Scolan, V.; Guerin, E.H. Interest of single hair analysis to document drug exposure: Literature review and a case report involving zuclopenthixol. Curr. Pharm. Des., 2018, 23(36), 5502-5510.
[http://dx.doi.org/10.2174/1381612823666170622100443] [PMID: 28641534]
[35]
Klein, J.; Karaskov, T.; Koren, G. Clinical applications of hair testing for drugs of abuse — The Canadian experience. Forensic Sci. Int., 2000, 107(1-3), 281-288.
[http://dx.doi.org/10.1016/S0379-0738(99)00171-1] [PMID: 10689580]
[36]
Kintz, P. Bioanalytical procedures for detection of chemical agents in hair in the case of drug-facilitated crimes. Anal. Bioanal. Chem., 2007, 388(7), 1467-1474.
[http://dx.doi.org/10.1007/s00216-007-1209-z] [PMID: 17340077]
[37]
Cooper, G.A.A.; Kronstrand, R.; Kintz, P. Society of hair testing guidelines for drug testing in hair. Forensic Sci. Int., 2012, 218(1-3), 20-24.
[http://dx.doi.org/10.1016/j.forsciint.2011.10.024] [PMID: 22088946]
[38]
Pragst, F.; Balikova, M.A. State of the art in hair analysis for detection of drug and alcohol abuse. Clin. Chim. Acta, 2006, 370(1-2), 17-49.
[http://dx.doi.org/10.1016/j.cca.2006.02.019] [PMID: 16624267]
[39]
Radi, A.E.; Wahdan, T.; Basiony, E.A. Electrochemical sensors based on molecularly imprinted polymers for pharmaceuticals analysis. Curr. Anal. Chem., 2019, 15(3), 219-239.
[http://dx.doi.org/10.2174/1573411014666180501100131]
[40]
Feroz, M.; Vadgama, P. Molecular imprinted polymer modified electrochemical sensors for small drug analysis: Progress to practical application. Electroanalysis, 2020, 32(11), 2361-2386.
[http://dx.doi.org/10.1002/elan.202060276]
[41]
Merli, D.; Zamboni, D.; Protti, S.; Pesavento, M.; Profumo, A. Electrochemistry and analytical determination of lysergic acid diethylamide (LSD) via adsorptive stripping voltammetry. Talanta, 2014, 130, 456-461.
[http://dx.doi.org/10.1016/j.talanta.2014.07.037] [PMID: 25159435]
[42]
Khorablou, Z.; Fard, S.F.; Razmi, H.; Yola, M.L.; Maleh, K.H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere, 2021, 278, 130393.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130393] [PMID: 33823350]
[43]
Regiart, M.; Baldo, F.M.A.; Spotorno, V.G.; Bertolino, F.A.; Raba, J. Ultra sensitive microfluidic immunosensor for determination of clenbuterol in bovine hair samples using electrodeposited gold nanoparticles and magnetic micro particles as bio-affinity platform. Biosens. Bioelectron., 2013, 41, 211-217.
[http://dx.doi.org/10.1016/j.bios.2012.08.020] [PMID: 22975092]
[44]
Wu, X.L.; Zhou, H.B.; Wang, S.J.; Ye, B.X. Determination of magnesium and calcium in biological samples by potentiometric stripping analysis. J. Chin. Chem. Soc., 2010, 57(4A), 647-652.
[http://dx.doi.org/10.1002/jccs.201000090]
[45]
Bilge, S.; Topal, D.B.; Gürbüz, M.M.; Yücel, A.; Sınağ, A.; Ozkan, S.A Recent advances in electrochemical sensing of cocaine: A review. Trends Analyt. Chem., 2022, 157, 116768.
[http://dx.doi.org/10.1016/j.trac.2022.116768]
[46]
D’Aurelio, R.; Chianella, I.; Goode, J.A.; Tothill, I.E. Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors, 2020, 10(3), 22.
[http://dx.doi.org/10.3390/bios10030022] [PMID: 32143406]
[47]
Zanfrognini, B.; Pigani, L.; Zanardi, C. Recent advances in the direct electrochemical detection of drugs of abuse. J. Solid State Electrochem., 2020, 24(11-12), 2603-2616.
[http://dx.doi.org/10.1007/s10008-020-04686-z]
[48]
Felipe Montiel, N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs. Electrochim. Acta, 2022, 436, 141446.
[http://dx.doi.org/10.1016/j.electacta.2022.141446]
[49]
Saisahas, K.; Soleh, A.; Somsiri, S.; Senglan, P.; Promsuwan, K.; Saichanapan, J.; Kanatharana, P.; Thavarungkul, P.; Lee, K.; Chang, K.H.; Abdullah, A.F.L.; Tayayuth, K.; Limbut, W. Electrochemical sensor for methamphetamine detection using laser induced porous graphene electrode. Nanomaterials, 2021, 12(1), 73.
[http://dx.doi.org/10.3390/nano12010073] [PMID: 35010025]
[50]
Klimuntowski, M.; Alam, M.M.; Singh, G.; Howlader, M.M.R. Electrochemical sensing of cannabinoids in biofluids: A noninvasive tool for drug detection. ACS Sens., 2020, 5(3), 620-636.
[http://dx.doi.org/10.1021/acssensors.9b02390] [PMID: 32102542]
[51]
LeBeau, M.A.; Montgomery, M.A.; Brewer, J.D. The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci. Int., 2011, 210(1-3), 110-116.
[http://dx.doi.org/10.1016/j.forsciint.2011.02.015] [PMID: 21382678]
[52]
Kuwayama, K.; Nariai, M.; Miyaguchi, H.; Iwata, Y.T.; Kanamori, T.; Tsujikawa, K.; Yamamuro, T.; Segawa, H.; Abe, H.; Iwase, H.; Inoue, H. Accurate estimation of drug intake day by microsegmental analysis of a strand of hair by use of internal temporal markers. J. Appl. Lab. Med., 2018, 3(1), 37-47.
[http://dx.doi.org/10.1373/jalm.2017.025346] [PMID: 33626832]
[53]
Kuwayama, K.; Miyaguchi, H.; Kanamori, T.; Tsujikawa, K.; Yamamuro, T.; Segawa, H.; Okada, Y.; Iwata, Y.T. Micro segmental hair analysis: Detailed procedures and applications in forensic toxicology. Forensic Toxicol., 2022, 40(2), 215-233.
[http://dx.doi.org/10.1007/s11419-022-00619-9] [PMID: 36454411]
[54]
Wright, K.D.; Ford, J.L.; Perazzo, J.; Jones, L.M.; Mahari, S.; Sullenbarger, B.A.; Laudenslager, M.L. Collecting hair samples for hair cortisol analysis in African Americans, JoVE. J. Vis. Exp., 2018, 2018(136), e57288.
[PMID: 29939172]
[55]
Villain, M.; Cirimele, V.; Kintz, P. Hair analysis in toxicology. Clin. Chem. Lab. Med., 2004, 42(11), 1265-1272.
[http://dx.doi.org/10.1515/CCLM.2004.247] [PMID: 15576289]
[56]
Short, S.J.; Stalder, T.; Marceau, K.; Entringer, S.; Moog, N.K.; Shirtcliff, E.A.; Wadhwa, P.D.; Buss, C. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology, 2016, 71, 12-18.
[http://dx.doi.org/10.1016/j.psyneuen.2016.05.007] [PMID: 27235635]
[57]
Madry, M.M.; Kraemer, T.; Baumgartner, M.R. Systematic assessment of different solvents for the extraction of drugs of abuse and pharmaceuticals from an authentic hair pool. Forensic Sci. Int., 2018, 282, 137-143.
[http://dx.doi.org/10.1016/j.forsciint.2017.11.027] [PMID: 29197244]
[58]
Khajuria, H.; Nayak, B.P.; Badiye, A. Toxicological hair analysis: Pre-analytical, analytical and interpretive aspects. Med. Sci. Law, 2018, 58(3), 137-146.
[http://dx.doi.org/10.1177/0025802418768305] [PMID: 29683043]
[59]
Kintz, P. Hair analysis in forensic toxicology: An updated review with a special focus on pitfalls. Curr. Pharm. Des., 2018, 23(36), 5480-5486.
[http://dx.doi.org/10.2174/1381612823666170929155628] [PMID: 28969544]
[60]
Kroshko, T.; Kapronczai, L.; Cattet, M.R.L.; Macbeth, B.J.; Stenhouse, G.B.; Obbard, M.E.; Janz, D.M. Comparison of methanol and isopropanol as wash solvents for determination of hair cortisol concentration in grizzly bears and polar bears. MethodsX, 2017, 4, 68-75.
[http://dx.doi.org/10.1016/j.mex.2017.01.004] [PMID: 28203534]
[61]
Itou, T.; Ito, S.; Wakamatsu, K. Effects of aging on hair color, melanosome morphology, and melanin composition in Japanese females. Int. J. Mol. Sci., 2019, 20(15), 3739.
[http://dx.doi.org/10.3390/ijms20153739] [PMID: 31370161]
[62]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[63]
Pozebon, D.; Scheffler, G.L.; Dressler, V.L. Elemental hair analysis: A review of procedures and applications. Anal. Chim. Acta, 2017, 992, 1-23.
[http://dx.doi.org/10.1016/j.aca.2017.09.017] [PMID: 29054142]
[64]
Wiedfeld, C.; Skopp, G.; Musshoff, F. Single hair analysis: Validation of a screening method for over 150 analytes and application on documented single dose cases. Drug Test. Anal., 2021, 13(4), 817-832.
[http://dx.doi.org/10.1002/dta.2997] [PMID: 33448136]
[65]
de Jong, M.; Florea, A.; Vries, A.M.; van Nuijs, A.L.N.; Covaci, A.; Van Durme, F.; Martins, J.C.; Samyn, N.; De Wael, K. Levamisole: A common adulterant in cocaine street samples hindering electrochemical detection of cocaine. Anal. Chem., 2018, 90(8), 5290-5297.
[http://dx.doi.org/10.1021/acs.analchem.8b00204] [PMID: 29473411]
[66]
Freitas, J.M.; Ramos, D.L.O.; Sousa, R.M.F.; Paixão, T.R.L.C.; Santana, M.H.P.; Muñoz, R.A.A.; Richter, E.M. A portable electrochemical method for cocaine quantification and rapid screening of common adulterants in seized samples. Sens. Actuators B Chem., 2017, 243, 557-565.
[http://dx.doi.org/10.1016/j.snb.2016.12.024]
[67]
Backofen, U.; Matysik, F.M.; Lunte, C.E. Determination of cannabinoids in hair using high-pH* non-aqueous electrolytes and electrochemical detection. J. Chromatogr. A, 2002, 942(1-2), 259-269.
[http://dx.doi.org/10.1016/S0021-9673(01)01348-6] [PMID: 11822390]
[68]
Navaee, A.; Salimi, A.; Teymourian, H. Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens. Bioelectron., 2012, 31(1), 205-211.
[http://dx.doi.org/10.1016/j.bios.2011.10.018] [PMID: 22079300]
[69]
Atta, N.F.; Galal, A.; Hassan, S.H. Ultrasensitive determination of nalbuphine and tramadol narcotic analgesic drugs for postoperative pain relief using nano-cobalt oxide/ionic liquid crystal/carbon nanotubes-based electrochemical sensor. J. Electroanal. Chem., 2019, 839, 48-58.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.002]
[70]
Grothe, R.A.; Lobato, A.; Mounssef, B.; Tasić, N.; Braga, A.A.C.; Maldaner, A.O.; Aldous, L.; Paixão, T.R.L.C.; Gonçalves, L.M Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule. Analyst, 2021, 146(5), 1747-1759.
[http://dx.doi.org/10.1039/D0AN02274H] [PMID: 33470260]
[71]
Özgür, E.; Saylan, Y.; Bereli, N.; Türkmen, D.; Denizli, A. Molecularly imprinted polymer integrated plasmonic nanosensor for cocaine detection. J. Biomater. Sci. Polym. Ed., 2020, 31(9), 1211-1222.
[http://dx.doi.org/10.1080/09205063.2020.1751524] [PMID: 32238027]
[72]
Smolinska-Kempisty, K.; Ahmad, O.S.; Guerreiro, A.; Karim, K.; Piletska, E.; Piletsky, S. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection. Biosens. Bioelectron., 2017, 96, 49-54.
[http://dx.doi.org/10.1016/j.bios.2017.04.034] [PMID: 28472729]
[73]
Sposito, H.G.M.; Lobato, A.; Tasić, N.; Maldaner, A.O.; Paixão, T.R.L.C.; Gonçalves, L.M. Swift electrochemical sensing of diltiazem employing highly-selective molecularly-imprinted 3-amino-4-hydroxybenzoic acid. J. Electroanal. Chem., 2022, 911, 116207.
[http://dx.doi.org/10.1016/j.jelechem.2022.116207]
[74]
Wren, S.P.; Nguyen, T.H.; Gascoine, P.; Lacey, R.; Sun, T.; Grattan, K.T.V. Preparation of novel optical fibre-based Cocaine sensors using a molecular imprinted polymer approach. Sens. Actuators B Chem., 2014, 193, 35-41.
[http://dx.doi.org/10.1016/j.snb.2013.11.071]
[75]
Jiménez-Pérez, R.; Sevilla, J.M.; Pineda, T.; Blázquez, M.; Rodríguez, G.J. Electrochemical behaviour of gamma hydroxybutyric acid at a platinum electrode in acidic medium. Electrochim. Acta, 2013, 111, 601-607.
[http://dx.doi.org/10.1016/j.electacta.2013.07.231]
[76]
Honeychurch, K.C.; Hart, J.P. Electrochemical detection of benzodiazepines, following liquid chromatography, for applications in pharmaceutical, biomedical and forensic investigations. Insciences J., 2014, 4, 1-18.
[http://dx.doi.org/10.5640/insc.040101]
[77]
Jin, C.; Li, M.; Duan, S.; Zhang, Q.; Zhang, G.; Liu, Q.; Zhang, R.; Bai, H. An electrochemical sensor for direct and sensitive detection of ketamine. Biosens. Bioelectron., 2023, 226, 115134.
[http://dx.doi.org/10.1016/j.bios.2023.115134] [PMID: 36780720]
[78]
Fu, K.; Zhang, R.; He, J.; Bai, H.; Zhang, G. Sensitive detection of ketamine with an electrochemical sensor based on UV-induced polymerized molecularly imprinted membranes at graphene and MOFs modified electrode. Biosens. Bioelectron., 2019, 143, 111636.
[http://dx.doi.org/10.1016/j.bios.2019.111636] [PMID: 31476596]
[79]
Ashrafi, H.; Mobed, A.; Hasanzadeh, M.; Babaie, P.; Ansarin, K.; Jouyban, A. Monitoring of five benzodiazepines using a novel polymeric interface prepared by layer by layer strategy. Microchem. J., 2019, 146, 121-125.
[http://dx.doi.org/10.1016/j.microc.2018.12.064]
[80]
Florea, A.; Cowen, T.; Piletsky, S.; De Wael, K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst, 2019, 144(15), 4639-4646.
[http://dx.doi.org/10.1039/C9AN00618D] [PMID: 31250860]
[81]
Javed, A.; Fatima, B.; Hussain, D.; Jawad, Z.S.E.; Subhan, M.; Najam-ul-Haq, M. Effect of narcotic drugs on neurotransmitter: Electrochemical determination of heroin and dopamine by graphene oxide/carboxymethylcellulose/magnesium oxide nanohybrid membrane. J. Mol. Liq., 2023, 384, 122154.
[http://dx.doi.org/10.1016/j.molliq.2023.122154]
[82]
Schram, J.; Parrilla, M.; Slosse, A.; Van Durme, F.; Åberg, J.; Björk, K.; Bijvoets, S.M.; Sap, S.; Heerschop, M.W.J.; De Wael, K. Paraformaldehyde-coated electrochemical sensor for improved on-site detection of amphetamine in street samples. Microchem. J., 2022, 179, 107518.
[http://dx.doi.org/10.1016/j.microc.2022.107518]
[83]
Zhao, J.; Kan, Y.; Chen, Z.; Li, H.; Zhang, W. MOFs-modified electrochemical sensors and the application in the detection of opioids. Biosensors, 2023, 13(2), 284.
[http://dx.doi.org/10.3390/bios13020284] [PMID: 36832051]
[84]
Mood, B.M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol., 2021, 12, 643972.
[http://dx.doi.org/10.3389/fphar.2021.643972] [PMID: 33927623]
[85]
Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron., 2017, 94, 443-455.
[http://dx.doi.org/10.1016/j.bios.2017.03.031] [PMID: 28340464]
[86]
Cloete, E.; Khumalo, N.P.; Ngoepe, M.N. The what, why and how of curly hair: A review. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2019, 475(2231), 20190516.
[http://dx.doi.org/10.1098/rspa.2019.0516] [PMID: 31824224]
[87]
Gargano, E.M.; Sell, S.; Langhoff, S.; Schmidt, C.U.; Wierlacher, S. Development and validation of a method for simultaneous analysis of hair underivatized amino acids and damage biomarkers, using liquid chromatography-tandem mass spectrometry. Talanta, 2021, 233, 122584.
[http://dx.doi.org/10.1016/j.talanta.2021.122584] [PMID: 34215076]
[88]
Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.G.; Urban, G.A.; Dincer, C. On-Site therapeutic drug monitoring. Trends Biotechnol., 2020, 38(11), 1262-1277.
[http://dx.doi.org/10.1016/j.tibtech.2020.03.001] [PMID: 33058758]
[89]
Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors, 2021, 11(9), 336.
[http://dx.doi.org/10.3390/bios11090336] [PMID: 34562926]
[90]
Kucherenko, I.S.; Soldatkin, O.O.; Dzyadevych, S.V.; Soldatkin, A.P. Electrochemical biosensors based on multienzyme systems: Main groups, advantages and limitations - A review. Anal. Chim. Acta, 2020, 1111, 114-131.
[http://dx.doi.org/10.1016/j.aca.2020.03.034] [PMID: 32312388]
[91]
Mantinieks, D.; Gerostamoulos, D.; Wright, P.; Drummer, O. The effectiveness of decontamination procedures used in forensic hair analysis. Forensic Sci. Med. Pathol., 2018, 14(3), 349-357.
[http://dx.doi.org/10.1007/s12024-018-9994-6] [PMID: 29971694]
[92]
Hsu, J.F.; Chang, W.C.W.; Ho, W.Y.; Liao, P.C. Exploration of long-term exposure markers for phthalate esters in human hair using liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 2022, 1200, 339610.
[http://dx.doi.org/10.1016/j.aca.2022.339610] [PMID: 35256140]
[93]
Grosvenor, A.J.; Choudhury, D.S.; Middlewood, P.G.; Thomas, A.; Lee, E.; Vernon, J.A.; Woods, J.L.; Taylor, C.; Bell, F.I.; Clerens, S. The physical and chemical disruption of human hair after bleaching - studies by transmission electron microscopy and redox proteomics. Int. J. Cosmet. Sci., 2018, 40(6), 536-548.
[http://dx.doi.org/10.1111/ics.12495] [PMID: 30229956]