Multicomponent 3D-printed Collagen-based Scaffolds for Cartilage Regeneration: Recent Progress, Developments, and Emerging Technologies

Page: [576 - 594] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Cartilage tissue presents challenges in terms of repair and regeneration due to its inherent limitations in self-healing and the scarcity of available donors. Cartilage damage can result in the development of joint problems characterized by symptoms, such as pain, swelling, and osteoarthritis. Collagen scaffolds are extensively used as biomimetic substances for cartilage engineering due to their ability to offer structural, biochemical, and mechanical signals for chondrocytes. Nevertheless, traditional techniques for producing collagen scaffolds frequently yield inadequate pore architecture, diminished mechanical robustness, and restricted form accuracy. Hence, 3D printing is a developing method that can surpass these restrictions by allowing accurate manipulation of the shape, porousness, and makeup of the scaffold. 3D printing has the capability to include various materials and cells in the scaffolds, resulting in the production of intricate and personalized tissue structures. This research examines the latest progress in utilizing 3D printing to create collagen scaffolds for the purpose of regenerating cartilage. This text discusses the different sources of collagen, methods of cross-linking, techniques for printing, and strategies for post-processing that are employed to improve the performance of scaffolds. Furthermore, it discusses the difficulties and potential future paths of utilizing 3D printing to create collagen scaffolds for the purpose of regenerating cartilage.

Graphical Abstract

[1]
Staniowski, T.; Knefel, Z.A.; Malinowska, S.K. Therapeutic potential of dental pulp stem cells according to different transplant types. Molecules, 2021, 26(24), 7423.
[http://dx.doi.org/10.3390/molecules26247423] [PMID: 34946506]
[2]
Battafarano, G.; Rossi, M.; De Martino, V.; Marampon, F.; Borro, L.; Secinaro, A.; Del Fattore, A. Strategies for bone regeneration: From graft to tissue engineering. Int. J. Mol. Sci., 2021, 22(3), 1128.
[http://dx.doi.org/10.3390/ijms22031128] [PMID: 33498786]
[3]
Cui, H.; Nowicki, M.; Fisher, J.P.; Zhang, L.G. 3D bioprinting for organ regeneration. Adv. Healthc. Mater., 2017, 6(1), 1601118.
[http://dx.doi.org/10.1002/adhm.201601118] [PMID: 27995751]
[4]
Guo, L.; Chen, H.; Li, Y.; Zhou, J.; Chen, J. Biocompatible scaffolds constructed by chondroitin sulfate microspheres conjugated 3D-printed frameworks for bone repair. Carbohydr. Polym., 2023, 299, 120188.
[http://dx.doi.org/10.1016/j.carbpol.2022.120188] [PMID: 36876803]
[5]
Bashiri, Z.; Fomeshi, R.M.; Hamidabadi, G.H.; Jafari, D.; Alizadeh, S.; Bojnordi, N.M.; Orive, G.; Pirouz, D.A.; Zahiri, M.; Reis, R.L.; Kundu, S.C.; Gholipourmalekabadi, M. 3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties. Mater. Today Bio, 2023, 20, 100666.
[http://dx.doi.org/10.1016/j.mtbio.2023.100666] [PMID: 37273796]
[6]
Fan, D.; Zhang, C.; Wang, H.; Wei, Q.; Cai, H.; Wei, F.; Bian, Z.; Liu, W.; Wang, X.; Liu, Z. Fabrication of a composite 3D-printed titanium alloy combined with controlled in situ drug release to prevent osteosarcoma recurrence. Mater. Today Bio, 2023, 20, 100683.
[http://dx.doi.org/10.1016/j.mtbio.2023.100683] [PMID: 37346395]
[7]
Buchmann, S.; Enrico, A.; Holzreuter, M.A.; Reid, M.; Zeglio, E.; Niklaus, F.; Stemme, G.; Herland, A. Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling. Mater. Today Bio, 2023, 21, 100706.
[http://dx.doi.org/10.1016/j.mtbio.2023.100706] [PMID: 37435551]
[8]
Ebraheim, N.A.; Elgafy, H.; Xu, R. Bone-graft harvesting from iliac and fibular donor sites: Techniques and complications. J. Am. Acad. Orthop. Surg., 2001, 9(3), 210-218.
[http://dx.doi.org/10.5435/00124635-200105000-00007] [PMID: 11421578]
[9]
Luo, H.; Yang, Y.; Lu, L.; Li, G.; Wang, X.; Huang, X.; Tao, X.; Huang, C.; Lan, Z.; Zhou, W.; Guo, J.; Liu, H. Highly-dispersed nano-TiB2 derived from the two-dimensional Ti3CN MXene for tailoring the kinetics and reversibility of the Li-Mg-B-H hydrogen storage material. Appl. Surf. Sci., 2023, 610, 155581.
[http://dx.doi.org/10.1016/j.apsusc.2022.155581]
[10]
Zhang, A.; Wang, K.; Nine, M.J.; Cao, M.; Zong, H.; Liu, Z.; Guo, H.; Liu, J.; Losic, D. Natural high-porous diatomaceous-earth based self-floating aerogel for efficient solar steam power generation. Green Energy Environ., 2024, 9(2), 378-389.
[http://dx.doi.org/10.1016/j.gee.2022.08.001]
[11]
Oryan, A.; Alemzadeh, E.; Moshiri, A. Burn wound healing: Present concepts, treatment strategies and future directions. J. Wound Care, 2017, 26(1), 5-19.
[http://dx.doi.org/10.12968/jowc.2017.26.1.5] [PMID: 28103165]
[12]
Regis, J.E.; Renteria, A.; Hall, S.E.; Hassan, M.S.; Marquez, C.; Lin, Y. Recent trends and innovation in additive manufacturing of soft functional materials. Materials, 2021, 14(16), 4521.
[http://dx.doi.org/10.3390/ma14164521] [PMID: 34443043]
[13]
Gu, D. Laser Additive Manufacturing of High-Performance Materials; Springer: Berlin, Heidelberg, 2015.
[http://dx.doi.org/10.1007/978-3-662-46089-4]
[14]
Ghazali, H.S.; Askari, E.; Ghazali, Z.S.; Naghib, S.M.; Braschler, T. Lithography-based 3D printed hydrogels: From bioresin designing to biomedical application. Colloid Interface Sci. Commun., 2022, 50, 100667.
[http://dx.doi.org/10.1016/j.colcom.2022.100667]
[15]
León, R.M.; Özcan, M. Additive manufacturing technologies used for processing polymers: Current status and potential application in prosthetic dentistry. J. Prosthodont., 2019, 28(2), 146-158.
[http://dx.doi.org/10.1111/jopr.12801] [PMID: 29682823]
[16]
Yin, J.; Zhong, J.; Wang, J.; Wang, Y.; Li, T.; Wang, L.; Yang, Y.; Zhen, Z.; Li, Y.; Zhang, H.; Zhong, S.; Wu, Y.; Huang, W. 3D-printed high-density polyethylene scaffolds with bioactive and antibacterial layer-by-layer modification for auricle reconstruction. Mater. Today Bio, 2022, 16, 100361.
[http://dx.doi.org/10.1016/j.mtbio.2022.100361] [PMID: 35937577]
[17]
Ghazali, H.S.; Askari, E.; Seyfoori, A.; Naghib, S.M. A high-absorbance water-soluble photoinitiator nanoparticle for hydrogel 3D printing: Synthesis, characterization and in vitro cytotoxicity study. Sci. Rep., 2023, 13(1), 8577.
[http://dx.doi.org/10.1038/s41598-023-35865-3] [PMID: 37237070]
[18]
Kumar, R.S.; Sridhar, S.; Venkatraman, R.; Venkatesan, M. Polymer additive manufacturing of ASA structure: Influence of printing parameters on mechanical properties. Mater. Today Proc., 2021, 39, 1316-1319.
[http://dx.doi.org/10.1016/j.matpr.2020.04.500]
[19]
Dunbar, A.J.; Denlinger, E.R.; Heigel, J.; Michaleris, P.; Guerrier, P.; Martukanitz, R.; Simpson, T.W. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process. Addit. Manuf., 2016, 12, 25-30.
[http://dx.doi.org/10.1016/j.addma.2016.04.007]
[20]
Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today, 2018, 21(1), 22-37.
[http://dx.doi.org/10.1016/j.mattod.2017.07.001]
[21]
Moheb Afzali, A.; Kheradmand, M.A.; Naghib, S.M. Bioreactor design-assisted bioprinting of stimuli-responsive materials for tissue engineering and drug delivery applications. Bioprinting, 2024, 37, e00325.
[http://dx.doi.org/10.1016/j.bprint.2023.e00325]
[22]
Soleymani, S.; Naghib, S.M. 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon, 2023, 9(9), e19363.
[http://dx.doi.org/10.1016/j.heliyon.2023.e19363] [PMID: 37662765]
[23]
Fico, D.; Rizzo, D.; Casciaro, R.; Corcione, E.C. A review of polymer-based materials for fused filament fabrication (FFF): Focus on sustainability and recycled materials. Polymers, 2022, 14(3), 465.
[http://dx.doi.org/10.3390/polym14030465] [PMID: 35160455]
[24]
Ojo, S.A.; Abere, D.V.; Adejo, H.O.; Robert, R.A.; Oluwasegun, K.M. Additive manufacturing of hydroxyapatite-based composites for bioengineering applications. Bioprinting, 2023, 32, e00278.
[http://dx.doi.org/10.1016/j.bprint.2023.e00278]
[25]
Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev., 2017, 117(15), 10212-10290.
[http://dx.doi.org/10.1021/acs.chemrev.7b00074] [PMID: 28756658]
[26]
Yuan, W.; Xia, D.; Wu, S.; Zheng, Y.; Guan, Z.; Rau, J.V. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact. Mater., 2022, 7, 192-216.
[http://dx.doi.org/10.1016/j.bioactmat.2021.05.018] [PMID: 34466727]
[27]
Xu, C.; Wu, F.; Yang, J.; Wang, H.; Jiang, J.; Bao, Z.; Yang, X.; Yang, G.; Gou, Z.; He, F. 3D printed long-term structurally stable bioceramic dome scaffolds with controllable biodegradation favorable for guided bone regeneration. Chem. Eng. J., 2022, 450, 138003.
[http://dx.doi.org/10.1016/j.cej.2022.138003]
[28]
Bozkurt, Y.; Karayel, E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol., 2021, 14, 1430-1450.
[29]
Dong, C.A.L. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers, 2016, 8(2), 42.
[30]
Mu, X.; Agostinacchio, F.; Xiang, N.; Pei, Y.; Khan, Y.; Guo, C.; Cebe, P.; Motta, A.; Kaplan, D. Recent advances in 3D printing with protein-based inks. Prog. Polym. Sci., 2021, 115, 101375.
[31]
Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers, 2021, 13(4), 598.
[http://dx.doi.org/10.3390/polym13040598] [PMID: 33671195]
[32]
Wu, H.; Fahy, W.P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J.H. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog. Mater. Sci., 2020, 111, 100638.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100638]
[33]
Guttridge, C.; Shannon, A.; Sullivan, A.O.; O'Sullivan, K.J.; O'Sullivan, L.W. Biocompatible 3D printing resins for medical applications: A review of marketed intended uses, biocompatibility certification, and post-processing guidance. Annals. 3D Print. Med., 2022.
[34]
Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering, 2015, 4(5), 729-742.
[35]
Zhou, X.; Tenaglio, S.; Esworthy, T.; Hann, S.Y.; Cui, H.; Webster, T.J.; Fenniri, H.; Zhang, L.G. Three-dimensional printing biologically inspired DNA-based gradient scaffolds for cartilage tissue regeneration. ACS Appl. Mater. Interfaces, 2020, 12(29), 33219-33228.
[http://dx.doi.org/10.1021/acsami.0c07918] [PMID: 32603082]
[36]
Marques, C.F.; Diogo, G.S.; Pina, S.; Oliveira, J.M.; Silva, T.H.; Reis, R.L. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J. Mater. Sci. Mater. Med., 2019, 30(3), 32.
[37]
Song, J.; Michas, C.; Chen, C.S.; White, A.E.; Grinstaff, M.W. From simple to architecturally complex hydrogel scaffolds for cell and tissue engineering applications: Opportunities presented by two‐photon polymerization. Adv. Healthc. Mater., 2020, 9(1), 1901217.
[http://dx.doi.org/10.1002/adhm.201901217] [PMID: 31746140]
[38]
Caldwell, A.S.; Rao, V.V.; Golden, A.C.; Anseth, K.S. Porous bio-click microgel scaffolds control hMSC interactions and promote their secretory properties. Biomaterials, 2020, 232, 119725.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119725] [PMID: 31918222]
[39]
Niu, H.; Zhao, P.; Sun, W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater., 2023, 166, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2023.04.043] [PMID: 37137403]
[40]
Zhao, Q.; Zhou, Y.; Wang, M. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying. Acta Biomater., 2021, 123, 312-324.
[http://dx.doi.org/10.1016/j.actbio.2021.01.035] [PMID: 33508508]
[41]
Giorleo, L.; Tegazzini, F.; Sartore, L. 3D printing of gelatin/chitosan biodegradable hybrid hydrogel: Critical issues due to the crosslinking reaction, degradation phenomena and process parameters. Bioprinting, 2021, 24, e00170.
[http://dx.doi.org/10.1016/j.bprint.2021.e00170]
[42]
Moazzam, M.; Shehzad, A.; Sultanova, D.; Mukasheva, F.; Trifonov, A.; Berillo, D.; Akilbekova, D. Macroporous 3D printed structures for regenerative medicine applications. Bioprinting, 2022, 28, e00254.
[http://dx.doi.org/10.1016/j.bprint.2022.e00254]
[43]
Saghebasl, S.; Akbarzadeh, A.; Gorabi, A.M.; Nikzamir, N.; SeyedSadjadi, M.; Mostafavi, E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. Polym. Adv. Technol., 2022, 33(7), 2044-2068.
[http://dx.doi.org/10.1002/pat.5669]
[44]
Sabzevari, A.; Pisheh, R.H.; Ansari, M.; Salati, A. Progress in bioprinting technology for tissue regeneration. J. Artif. Organs, 2023, 26(4), 255-274.
[http://dx.doi.org/10.1007/s10047-023-01394-z] [PMID: 37119315]
[45]
Ghosh, S.; Kaushik, G.; Roy, P.; Lahiri, D. Application of 3D bioprinting in wound healing: A review. Trends Biomater. Artif. Organs, 2021, 35(5)
[46]
Gu, Z.; Fu, J.; Lin, H.; He, Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J. Pharm. Sci., 2020, 15(5), 529-557.
[http://dx.doi.org/10.1016/j.ajps.2019.11.003] [PMID: 33193859]
[47]
Li, X.; Liu, B.; Pei, B.; Chen, J.; Zhou, D.; Peng, J.; Zhang, X.; Jia, W.; Xu, T. Inkjet bioprinting of biomaterials. Chem. Rev., 2020, 120(19), 10793-10833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00008] [PMID: 32902959]
[48]
Douillet, C.; Nicodeme, M.; Hermant, L.; Bergeron, V.; Guillemot, F.; Fricain, J.C.; Oliveira, H.; Garcia, M. From local to global matrix organization by fibroblasts: a 4D laser-assisted bioprinting approach. Biofabrication, 2022, 14(2), 025006.
[http://dx.doi.org/10.1088/1758-5090/ac40ed] [PMID: 34875632]
[49]
Zennifer, A.; Subramanian, A.; Sethuraman, S. Design considerations of bioinks for laser bioprinting technique towards tissue regenerative applications. Bioprinting, 2022, 27, e00205.
[http://dx.doi.org/10.1016/j.bprint.2022.e00205]
[50]
Touya, N.; Devun, M.; Handschin, C.; Casenave, S.; Ahmed Omar, N.; Gaubert, A.; Dusserre, N.; De Oliveira, H.; Kérourédan, O.; Devillard, R. In vitro and in vivo characterization of a novel tricalcium silicate-based ink for bone regeneration using laser-assisted bioprinting. Biofabrication, 2022, 14(2), 024104.
[http://dx.doi.org/10.1088/1758-5090/ac584b] [PMID: 35203068]
[51]
Dou, C.; Perez, V.; Qu, J.; Tsin, A.; Xu, B.; Li, J. A state‐of‐the‐art review of laser‐assisted bioprinting and its future research trends. ChemBioEng Rev., 2021, 8(5), 517-534.
[http://dx.doi.org/10.1002/cben.202000037]
[52]
Tripathi, S.; Mandal, S.S.; Bauri, S.; Maiti, P. 3D bioprinting and its innovative approach for biomedical applications. MedComm, 2023, 4(1), e194.
[http://dx.doi.org/10.1002/mco2.194] [PMID: 36582305]
[53]
Guvendiren, M.; Molde, J.; Soares, R.M.D.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng., 2016, 2(10), 1679-1693.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00121] [PMID: 28025653]
[54]
Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering, 2018, 4(5), 729-742.
[http://dx.doi.org/10.1016/j.eng.2018.07.021]
[55]
Cid, S.P.; Rosado, J.M.; Romero, A.; Puyana, P.V. Novel trends in hydrogel development for biomedical applications: A review. Polymers, 2022, 14(15), 3023.
[http://dx.doi.org/10.3390/polym14153023] [PMID: 35893984]
[56]
Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020, 226, 119536.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119536] [PMID: 31648135]
[57]
Yu, H.; Zhang, X.; Song, W.; Pan, T.; Wang, H.; Ning, T.; Wei, Q.; Xu, H.H.K.; Wu, B.; Ma, D. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells. J. Endod., 2019, 45(6), 706-715.
[http://dx.doi.org/10.1016/j.joen.2019.03.004] [PMID: 31056297]
[58]
Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Hydrogel‐based 3D bioprinting for bone and cartilage tissue engineering. Biotechnol. J., 2020, 15(12), 2000095.
[http://dx.doi.org/10.1002/biot.202000095] [PMID: 32869529]
[59]
Morrison, D.G.; Tomlinson, R.E. Leveraging advancements in tissue engineering for bioprinting dental tissues. Bioprinting, 2021, 23, e00153.
[http://dx.doi.org/10.1016/j.bprint.2021.e00153] [PMID: 34268456]
[60]
Zhang, Q.; Bei, H.P.; Zhao, M.; Dong, Z.; Zhao, X. Shedding light on 3D printing: Printing photo-crosslinkable constructs for tissue engineering. Biomaterials, 2022, 286, 121566.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121566] [PMID: 35633590]
[61]
Taneja, H.; Salodkar, S.M.; Parmar, S.A.; Chaudhary, S. Hydrogel based 3D printing: Bio ink for tissue engineering. J. Mol. Liq., 2022, 367, 120390.
[http://dx.doi.org/10.1016/j.molliq.2022.120390]
[62]
Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Kondiah, P.P.D.; Pillay, V. 3D-printing and the effect on medical costs: A new era? Expert Rev. Pharmacoecon. Outcomes Res., 2016, 16(1), 23-32.
[http://dx.doi.org/10.1586/14737167.2016.1138860] [PMID: 26817398]
[63]
Ashammakhi, N.; Ahadian, S.; Xu, C.; Montazerian, H.; Ko, H.; Nasiri, R.; Barros, N.; Khademhosseini, A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1, 100008.
[64]
Huang, J.; Xiong, J.; Wang, D.; Zhang, J.; Yang, L.; Sun, S.; Liang, Y. 3D bioprinting of hydrogels for cartilage tissue engineering. Gels, 2021, 7(3), 144.
[http://dx.doi.org/10.3390/gels7030144] [PMID: 34563030]
[65]
Unagolla, J.M.; Jayasuriya, A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today, 2020, 18(100479), 100479.
[http://dx.doi.org/10.1016/j.apmt.2019.100479] [PMID: 32775607]
[66]
Ansari, M.A.A.; Golebiowska, A.A.; Dash, M.; Kumar, P.; Jain, P.K.; Nukavarapu, S.P.; Ramakrishna, S.; Nanda, H.S. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater. Sci., 2022, 10(11), 2789-2816.
[http://dx.doi.org/10.1039/D2BM00035K] [PMID: 35510605]
[67]
Barkane, A.; Platnieks, O.; Jurinovs, M.; Kasetaite, S.; Ostrauskaite, J.; Gaidukovs, S.; Habibi, Y. UV-light curing of 3d printing inks from vegetable oils for stereolithography. Polymers, 2021, 13(8), 1195.
[http://dx.doi.org/10.3390/polym13081195] [PMID: 33917193]
[68]
Yahang, M.; Chen, J.; An, X.; Liang, J.; Li, J.; Zhou, Y.; Sun, X. Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing. J. Eur. Ceram. Soc., 2023, 43(2), 661-675.
[69]
Xiaolong, Y.M.a.b. Stereolithography 3D printing of ceramic cores for hollow aeroengine turbine blades. J. Mater. Sci. Technol., 2022, 127, 177-182.
[70]
Dirè, S.; Motta, A.; Kaplan, D.L. In situ 3D printing: Opportunities with silk inks. Trends Biotechnol, 2021, 39(7), 719-730.
[71]
Villalobos, C.M.; Munguía, C.D.A.; Guía, F.T.E.; Gamboa, V.G.; Correa, V.J.A.; Salazar, S.L.F.; Rizo, C.J.A. Removal of water pollutants using composite hydrogels comprised of collagen, guar gum, and metal-organic frameworks. J. Polym. Res., 2021, 28(10), 395.
[http://dx.doi.org/10.1007/s10965-021-02767-9]
[72]
Carvalho, M.S.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Bone matrix non-collagenous proteins in tissue engineering: Creating new bone by mimicking the extracellular matrix. Polymers, 2021, 13(7), 1095.
[http://dx.doi.org/10.3390/polym13071095] [PMID: 33808184]
[73]
Askari, E.; Naghib, S.M.; Zahedi, A.; Seyfoori, A.; Zare, Y.; Rhee, K.Y. Local delivery of chemotherapeutic agent in tissue engineering based on gelatin/graphene hydrogel. J. Mater. Res. Technol., 2021, 12, 412-422.
[http://dx.doi.org/10.1016/j.jmrt.2021.02.084]
[74]
Rahmanian, M.; seyfoori, A.; Dehghan, M.M.; Eini, L.; Naghib, S.M.; Gholami, H.; Mohajeri, F.S.; Mamaghani, K.R.; Majidzadeh-A, K. Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. J. Taiwan Inst. Chem. Eng., 2019, 101, 214-220.
[http://dx.doi.org/10.1016/j.jtice.2019.04.028]
[75]
Liu, S.; Yu, J.M.; Gan, Y.C.; Qiu, X.Z.; Gao, Z.C.; Wang, H.; Chen, S.X.; Xiong, Y.; Liu, G.H.; Lin, S.E.; McCarthy, A.; John, J.V.; Wei, D.X.; Hou, H.H. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil. Med. Res., 2023, 10(1), 16.
[http://dx.doi.org/10.1186/s40779-023-00448-w] [PMID: 36978167]
[76]
Kumar, P.; Mehta, N.; Abubakar, A.A.; Verma, A.K.; Kaka, U.; Sharma, N.; Sazili, A.Q.; Pateiro, M.; Kumar, M.; Lorenzo, J.M. Potential alternatives of animal proteins for sustainability in the food sector. Food Rev. Int., 2022, 39(8), 1-26.
[77]
Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery wastes as a yet undiscovered treasure from the sea: Biomolecules sources, extraction methods and valorization. Mar. Drugs, 2020, 18(12), 622.
[http://dx.doi.org/10.3390/md18120622] [PMID: 33297310]
[78]
Rhee, S.; Puetzer, J.L.; Mason, B.N.; Reinhart-King, C.A.; Bonassar, L.J. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng., 2016, 2(10), 1800-1805.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00288] [PMID: 33440478]
[79]
Liu, S.; Lau, C.S.; Liang, K.; Wen, F.; Teoh, S.H. Marine collagen scaffolds in tissue engineering. Curr. Opin. Biotechnol., 2022, 74, 92-103.
[http://dx.doi.org/10.1016/j.copbio.2021.10.011] [PMID: 34920212]
[80]
Lim, Y.S.; Ok, Y.J.; Hwang, S.Y.; Kwak, J.Y.; Yoon, S. Marine collagen as A promising biomaterial for biomedical applications. Mar. Drugs, 2019, 17(8), 467.
[http://dx.doi.org/10.3390/md17080467] [PMID: 31405173]
[81]
Jamróz, W.J.S.; Szafraniec, J.; Kurek, M. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res, 2018, 35, 176.
[82]
Shahbazi, M.A.; Ghalkhani, M.; Maleki, H. Directional freeze‐casting: A bioinspired method to assemble multifunctional aligned porous structures for advanced applications. Adv. Eng. Mater., 2020, 22(7), 2000033.
[http://dx.doi.org/10.1002/adem.202000033]
[83]
Lyu, S.; Dong, Z.; Xu, X.; Bei, H.P.; Yuen, H.Y.; Cheung, J.C.W.; Wong, M.S.; He, Y.; Zhao, X. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact. Mater., 2023, 27, 303-326.
[http://dx.doi.org/10.1016/j.bioactmat.2023.04.003] [PMID: 37122902]
[84]
Xu, Q.; Torres, J.E.; Hakim, M.; Babiak, P.M.; Pal, P.; Battistoni, C.M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. Rep., 2021, 146, 100641.
[http://dx.doi.org/10.1016/j.mser.2021.100641] [PMID: 34483486]
[85]
Liu, K.; Liu, N.; Ma, S.; Cheng, P.; Hu, W.; Jia, X.; Cheng, Q.; Xu, J.; Guo, Q.; Wang, D. Highly permeable polyamide nanofiltration membrane mediated by an upscalable wet-laid EVOH nanofibrous scaffold. ACS Appl. Mater. Interfaces, 2021, 13(19), 23142-23152.
[http://dx.doi.org/10.1021/acsami.1c02776] [PMID: 33960782]
[86]
Lu, Z.; Wang, W.; Zhang, J.; Bártolo, P.; Gong, H.; Li, J. Electrospun highly porous poly(L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration. Mater. Sci. Eng. C, 2020, 117, 111359.
[http://dx.doi.org/10.1016/j.msec.2020.111359] [PMID: 32919696]
[87]
Olvera, D.; Schipani, R.; Sathy, B.N.; Kelly, D.J. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Biomed. Mater., 2019, 14(3), 035016.
[http://dx.doi.org/10.1088/1748-605X/ab0de1] [PMID: 30844776]
[88]
Harussani, M.M.; Sapuan, S.M.; Iyad, M.; Wong, H.K.; Farouk, Z.I.; Nazrin, A. Collagen based composites derived from marine organisms: As a solution for the underutilization of fish biomass, jellyfish and sponges. In: Composites from the Aquatic Environment; Springer, 2023; pp. 245-274.
[89]
Miele, D.; Catenacci, L.; Rossi, S.; Sandri, G.; Sorrenti, M.; Terzi, A.; Giannini, C.; Riva, F.; Ferrari, F.; Caramella, C.; Bonferoni, M.C. Collagen/PCL nanofibers electrospun in green solvent by DOE assisted process. An insight into collagen contribution. Materials, 2020, 13(21), 4698.
[http://dx.doi.org/10.3390/ma13214698] [PMID: 33105584]
[90]
Keshvardoostchokami, M.; Majidi, S.S.; Huo, P.; Ramachandran, R.; Chen, M.; Liu, B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials, 2020, 11(1), 21.
[http://dx.doi.org/10.3390/nano11010021] [PMID: 33374248]
[91]
Furko, M.; Balázsi, K.; Balázsi, C. Calcium phosphate loaded biopolymer composites-a comprehensive review on the most recent progress and promising trends. Coatings, 2023, 13(2), 360.
[http://dx.doi.org/10.3390/coatings13020360]
[92]
Taghizadeh, M.; Taghizadeh, A.; Yazdi, M.K.; Zarrintaj, P.; Stadler, F.J.; Ramsey, J.D.; Habibzadeh, S.; Rad, H.S.; Naderi, G.; Saeb, M.R.; Mozafari, M.; Schubert, U.S. Chitosan-based inks for 3D printing and bioprinting. Green Chem., 2022, 24(1), 62-101.
[http://dx.doi.org/10.1039/D1GC01799C]
[93]
Casadiego, C.D.A.; Martínez, R.C.A.; Colón, Q.B.A.; Almodóvar, J. Electrospun collagen scaffolds. In: Electrospun Biomaterials and Related Technologies; Almodovar, J., Ed.; Springer International Publishing: Cham, 2017; pp. 21-55.
[http://dx.doi.org/10.1007/978-3-319-70049-6_2]
[94]
Vázquez, J.J.; Martínez, S.M.E. Collagen and elastin scaffold by electrospinning for skin tissue engineering applications. J. Mater. Res., 2019, 34(16), 2819-2827.
[http://dx.doi.org/10.1557/jmr.2019.233]
[95]
Soria, G.A.; Serna, M.V.; Canales, D.A.; Herrera, G.C.; Zapata, P.A.; Orihuela, P.A. Effect of electrospun PLGA/collagen scaffolds on cell adhesion, viability, and collagen release: Potential applications in tissue engineering. Polymers, 2023, 15(5), 1079.
[http://dx.doi.org/10.3390/polym15051079] [PMID: 36904322]
[96]
Liu, N.; Zhang, X.; Guo, Q.; Wu, T. 3D bioprinted scaffolds for tissue repair and regeneration. Front. Mater., 2022, 9, 925321.
[97]
Chen, G.; Kawazoe, N.; Tateishi, T. Collagen-based scaffolds. In: Natural-Based Polymers for Biomedical Applications; Woodhead Publishing, 2008; pp. 396-415.
[http://dx.doi.org/10.1533/9781845694814.3.396]
[98]
Nijsure, M.P.; Kishore, V. Collagen-based scaffolds for bone tissue engineering applications. In: Orthopedic Biomaterials; Springer, 2018; pp. 187-224.
[99]
Mathews, S.; Bhonde, R.; Gupta, P.K.; Totey, S. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 102(8), 1825-1834.
[100]
Iravani, S.; Varma, R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem., 2019, 21(18), 4839-4867.
[http://dx.doi.org/10.1039/C9GC02391G]
[101]
Tajvar, S.; Hadjizadeh, A.; Samandari, S.S. Scaffold degradation in bone tissue engineering: An overview. Int. Biodeterior. Biodegradation, 2023, 180, 105599.
[http://dx.doi.org/10.1016/j.ibiod.2023.105599]
[102]
Abdollahiyan, P.; Oroojalian, F.; Mokhtarzadeh, A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J. Control. Release, 2021, 332, 460-492.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.036] [PMID: 33675876]
[103]
Charbe, N.B.; Tambuwala, M.; Palakurthi, S.S.; Warokar, A.; Jahjefendić, H.A.; Bakshi, H.; Zacconi, F.; Mishra, V.; Khadse, S.; Aljabali, A.A.; Tanani, E.M.; Aroca, S.Ã.; Palakurthi, S. Biomedical applications of three‐dimensional bioprinted craniofacial tissue engineering. Bioeng. Transl. Med., 2023, 8(1), e10333.
[http://dx.doi.org/10.1002/btm2.10333] [PMID: 36684092]
[104]
Su, X.; Wang, T.; Guo, S. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Regen. Ther., 2021, 16, 63-72.
[http://dx.doi.org/10.1016/j.reth.2021.01.007] [PMID: 33598507]
[105]
Mozdzen , L.C.; Rodgers, R.; Banks, J.M.; Bailey, R.C.; Harley , B.A.C. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers. Acta Biomater, 2016, 33, 25-33.
[106]
Remes, D.F.W.A. Immune response in biocompatibility. Biomaterials, 1992, 13(11), 731-743.
[http://dx.doi.org/10.1016/0142-9612(92)90010-L]
[107]
Wang, H. A review of the effects of collagen treatment in clinical studies. Polymers, 2021, 13(22), 3868.
[http://dx.doi.org/10.3390/polym13223868] [PMID: 34833168]
[108]
Chicatun, F.; Griffanti, G.; McKee, M.D.; Nazhat, S.N. Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering. In: Biomedical Composites; Woodhead Publishing Series, 2017; pp. 163-198.
[109]
Vijayalekha, A.; Anandasadagopan, S.K.; Pandurangan, A.K. An overview of collagen-based composite scaffold for bone tissue engineering. Appl Biochem Biotechnol, 2023, 195(7), 4617-4636.
[http://dx.doi.org/10.1007/s12010-023-04318-y]
[110]
Chen, P. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 2019, 9(9), 2439-2459.
[111]
Pierce, D.M. Multi-phase, large-strain constitutive models of cartilage for finite element analyses in 3-D. Arch Appl Mech, 2022, 92, 513-528.
[112]
Doweidar, M.H.; Doblaré, M. Finite element modeling and simulation of the multiphysic behavior of articular cartilage. In: Methods and Advanced Simulation in Biomechanics and Biological Processes; Academic Press, 2018; pp. 37-53.
[http://dx.doi.org/10.1016/B978-0-12-811718-7.00003-4]
[113]
Shirazi, R.; Adl, S.A. Computational aspects in mechanical modeling of the articular cartilage tissue. Proc Inst Mech Eng H, 2013, 227(4), 402-420.
[114]
Liu, C.Z.; Xia, Z.D.; Han, Z.W.; Hulley, P.A.; Triffitt, J.T.; Czernuszka, J.T. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 85(2), 519-528.
[115]
Chen, J.; Peng, Q.; Peng, X.; Han, L.; Wang, X.; Wang, J.; Zang, H. Recent advances in mechano-responsive hydrogels for biomedical applications. ACS Appl. Polym. Mater., 2020, 2(3), 1092-1107.
[116]
Linka, K.A.S.; Schäfer, A.; Hillgärtner, M. Towards patient-specific computational modelling of articular cartilage on the basis of advanced multiparametric MRI techniques. Sci Rep, 2019, 9, 7172.
[117]
Radke, K.L.L.M.W.; Wilms, L.M.; Frenken, M.; Stabinska, J. Lorentzian-corrected apparent exchange-dependent relaxation (LAREX) Ω-plot analysis-an adaptation for qCEST in a multi-pool system: Comprehensive in silico, in situ, and in vivo studies. Int. J. Mol. Sci., 2022, 23(13), 6920.
[118]
Klarmann, G.J.; Piroli, M.E.; Loverde, J.R. 3D printing a universal knee meniscus using a custom collagen ink. Bioprinting, 2023, 31, e00272.
[119]
Dobaj Štiglic, A.; Lackner, F.; Nagaraj, C.; Beaumont, M.; Bračič, M.; Duarte, I.; Kononenko, V.; Drobne, D.; Madhan, B.; Finšgar, M.; Kargl, R.; Stana Kleinschek, K.; Mohan, T. 3D-printed collagen–nanocellulose hybrid bioscaffolds with tailored properties for tissue engineering applications. ACS Appl. Bio Mater., 2023, 6(12), 5596-5608.
[http://dx.doi.org/10.1021/acsabm.3c00767] [PMID: 38050684]
[120]
Koo, Y.; Choi, E.J.; Lee, J.; Kim, H.J.; Kim, G.; Do, S.H. 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration. J. Ind. Eng. Chem., 2018, 66, 343-355.
[http://dx.doi.org/10.1016/j.jiec.2018.05.049]
[121]
Yang, T.; Tamaddon, M.; Jiang, L.; Wang, J.; Liu, Z.; Liu, Z.; Meng, H.; Hu, Y.; Gao, J.; Yang, X.; Zhao, Y.; Wang, Y.; Wang, A.; Wu, Q.; Liu, C.; Peng, J.; Sun, X.; Xue, Q. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J. Orthop. Translat., 2021, 30, 112-121.
[http://dx.doi.org/10.1016/j.jot.2021.09.001] [PMID: 34722154]
[122]
Xu, N.; Lu, D.; Qiang, L.; Liu, Y.; Yin, D.; Wang, Z.; Luo, Y.; Yang, C.; Ma, Z.; Ma, H.; Wang, J. 3D-printed composite bioceramic scaffolds for bone and cartilage integrated regeneration. ACS Omega, 2023, 8(41), 37918-37926.
[http://dx.doi.org/10.1021/acsomega.3c03284] [PMID: 37867636]
[123]
Theodoridis, K.; Aggelidou, E.; Manthou, M.; Demiri, E.; Bakopoulou, A.; Kritis, A. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture. Colloids Surf. B Biointerfaces, 2019, 183, 110403.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110403] [PMID: 31400614]
[124]
She, Y.; Fan, Z.; Wang, L.; Li, Y.; Sun, W.; Tang, H.; Zhang, L.; Wu, L.; Zheng, H.; Chen, C. 3D printed biomimetic PCL scaffold as framework interspersed with collagen for long segment tracheal replacement. Front. Cell Dev. Biol., 2021, 9, 629796.
[http://dx.doi.org/10.3389/fcell.2021.629796] [PMID: 33553186]
[125]
Dewey, M.J.; Nosatov, A.V.; Subedi, K.; Shah, R.; Jakus, A.; Harley, B.A.C. Inclusion of a 3D-printed hyperelastic bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold. Acta Biomater., 2021, 121, 224-236.
[http://dx.doi.org/10.1016/j.actbio.2020.11.028] [PMID: 33227483]
[126]
Wang, Z.; Yang, Y.; Gao, Y.; Xu, Z.; Yang, S.; Jin, M. Establishing a novel 3D printing bioinks system with recombinant human collagen. Int J Biol Macromol, 2022, 211, 400-409.
[127]
Callanan, N.M.a.A. Novel phase separated polycaprolactone/collagen scaffolds for cartilage tissue engineering. Biomed. Mater., 2018, 13(5), 051001.
[128]
Temple, J.P.; Yeager, K.; Bhumairtana, S.; Vunjak-Norakovic, G.; Grayson, W.L. Bioreactor cultivation of anatomically shaped human grafts. Biomimetics and stem cell: Methods and Protocols, 2014, 57-78.
[129]
Tack, P.J.V. 3D-printing techniques in a medical setting: A systematic literature review. Biomed. Eng. Online, 2016, 15, 115.
[130]
Xia, Y.; Zhou, P.; Cheng, X.; Wei, H.; Sun, R.; Tian, H.; Chen, X. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol. Ther., 2014, 23(2), 330-338.
[131]
Han, J.; Meng, Q.; Xi, T.; Zhuang, H. Collagen scaffolds with different pore sizes for vascularized bone regeneration in vivo. 2016.
[132]
Liang, Y.; Liang, Z.; Wang, X.; Zhang, Y.; Zhang, Z.; Chen, X. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl., 2021, 123, 111963.