Abstract

Background: Inflammation is a series of complex defense-related reactions. The inflammation cascade produces various pro-inflammatory mediators. Unregulated production of these pro-inflammatory mediators can lead to a wide range of diseases, including rheumatoid arthritis, sepsis, and inflammatory bowel disease. In the literature, the anti-inflammatory action of quinoline and thiazolidinedione nuclei are well established, alone, and associated with other nuclei. The synthesis of hybrid molecules is a strategy for obtaining more efficient molecules due to the union of pharmacophoric nuclei known to be related to pharmacological activity.

Objectives: Based on this, this work presents the synthesis of thiazolidinedione-quinoline molecular hybrids and their involvement in the modulation of cytokines involved in the inflammatory reaction cascade.

Methods: After synthesis and characterization, the compounds were submitted to cell viability test (MTT), ELISA IFN-γ and TNF-α, adipogenic differentiation, and molecular docking assay with PPARy and COX-2 targets.

Results: LPSF/ZKD2 and LPSF/ZKD7 showed a significant decrease in the concentration of IFN- γ and TNF-α, with a dose-dependent behavior. LPSF/ZKD4 at a concentration of 50 μM significantly reduced IL-6 expression. LPSF/ZKD4 demonstrates lipid accumulation with significant differences between the untreated and negative control groups, indicating a relevant agonist action on the PPARγ receptor. Molecular docking showed that all synthesized compounds have good affinity with PPARγ e COX-2, with binding energy close to -10,000 Kcal/mol.

Conclusion: These results demonstrate that the synthesis of quinoline-thiazolidinedione hybrids may be a useful strategy for obtaining promising candidates for new anti-inflammatory agents.

Graphical Abstract

[1]
Fougère, B.; Boulanger, E.; Nourhashémi, F.; Guyonnet, S.; Cesari, M. Chronic inflammation: Accelerator of biological aging. Journal of gerontologicaly. Med. Sci., 2017, 72(9), 1218-1225.
[http://dx.doi.org/10.1093/gerona/glw240] [PMID: 28003373]
[2]
Soysal, P.; Arik, F.; Smith, L.; Jackson, S.E.; Isik, A.T. Inflammation, frailty and cardiovascular disease. Adv Exp Med Biol, 2020, 1216, 55-64.
[http://dx.doi.org/10.1007/978-3-030-33330-0_7]
[3]
Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World, 2018, 11(5), 627-635.
[http://dx.doi.org/10.14202/vetworld.2018.627-635] [PMID: 29915501]
[4]
Corazza, M.; Oton-Gonzalez, L.; Scuderi, V.; Rotondo, J.C.; Lanzillotti, C.; Di Mauro, G.; Tognon, M.; Martini, F.; Borghi, A. Tissue cytokine/chemokine profile in vulvar lichen sclerosus: An observational study on keratinocyte and fibroblast cultures. J. Dermatol. Sci., 2020, 100(3), 223-226.
[http://dx.doi.org/10.1016/j.jdermsci.2020.09.006] [PMID: 32998835]
[5]
Murray, P.J. Macrophage polarization. Annu. Rev. Physiol., 2017, 79(1), 541-566.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034339] [PMID: 27813830]
[6]
Alam, J.; Jantan, I.; Bukhari, S.N.A. Rheumatoid arthrits: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed. Pharmacother., 2017, (92), 613-633.
[7]
Boirivant, M.; Cossu, A. Inflammatory bowel disease. Oral Dis., 2012, 18(1), 1-15.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01811.x] [PMID: 21564424]
[8]
Chen, L.Z.; Wu, J.; Li, K.; Wu, Q.Q.; Chen, R.; Liu, X.H.; Ruan, B.F. Novel phthalide derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo. Eur. J. Med. Chem., 2020, 206, 112722.
[http://dx.doi.org/10.1016/j.ejmech.2020.112722] [PMID: 32823004]
[9]
Chang, J.; Tang, N.; Fang, Q.; Zhu, K.; Liu, L.; Xiong, X.; Zhu, Z.; Zhang, B.; Zhang, M.; Tao, J. Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem. Biophys. Res. Commun., 2019, 517(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.061] [PMID: 29339153]
[10]
Qandeel, N.A.; El-Damasy, A.K.; Sharawy, M.H.; Bayomi, S.M.; El-Gohary, N.S. Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg. Chem., 2020, 102, 103890.
[http://dx.doi.org/10.1016/j.bioorg.2020.103890] [PMID: 32801081]
[11]
Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Abdel-Aziz, M.; Dalby, K.N.; Kaoud, T.S. Novel quinoline incorporating 1,2,4-triazole/oxime hybrids: Synthesis, molecular docking, anti-inflammatory, COX inhibition, ulceroginicity and histopathological investigations. Bioorg. Chem., 2017, 75, 242-259.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.018] [PMID: 29032325]
[12]
Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Gouda, A.M.; Gomaa, H.A.M.; Youssif, B.G.M.; Radwan, M.O.; Fujita, M.; Otsuka, M.; Abdel-Aziz, M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J. Mol. Struct., 2021, 1244, 130948.
[http://dx.doi.org/10.1016/j.molstruc.2021.130948]
[13]
Kashef, E.H.; Badr, G.; Maali, A.E.N.; Sayed, D.; Melnyk, P.; Lebegue, N.; Khalek, A.E.R. Synthesis of a novel series of (Z)-3,5-disubstituted thiazolidine-2,4-diones as promising anti-breast cancer agents. Bioorg. Chem., 2020, 96, 103569.
[http://dx.doi.org/10.1016/j.bioorg.2020.103569] [PMID: 31978680]
[14]
Mahapatra, M.K.; Kumar, R.; Kumar, M. Exploring sulfonate esters of 5-arylidene thiazolidine-2,4-diones as PTP1B inhibitors with anti-hyperglycemic activity. Med. Chem. Res., 2018, 27(2), 476-487.
[http://dx.doi.org/10.1007/s00044-017-2074-8]
[15]
Khan, I.H.; Patel, N.B.; Patel, V.M. Synthesis, in silico molecular docking and pharmacokinetic studies, in vitro antimycobacterial and antimicrobial studies of new imidozolones clubbed with thiazolidinedione. Curr. Computeraided Drug Des., 2018, 14(4), 269-283.
[http://dx.doi.org/10.2174/1573409914666180516113552] [PMID: 29766819]
[16]
Elzahhar, P.A.; Alaaeddine, R.; Ibrahim, T.M.; Nassra, R.; Ismail, A.; Chua, B.S.K.; Frkic, R.L.; Bruning, J.B.; Wallner, N.; Knape, T.; von Knethen, A.; Labib, H.; El-Yazbi, A.F.; Belal, A.S.F. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur. J. Med. Chem., 2019, 167, 562-582.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.034] [PMID: 30818268]
[17]
Garcia, G.M.; Roy, J.; Pitta, I.R.; Abdalla, D.S.P.; Guimarães, GG.A.; Mosqueira, V.C.F.; Richard, S. Polylactide nanocapsules attenuate adverse cardiac cellular effects of Lyso-7, a Pan-PPAR agonist/anti-inflammatory new thiazolidinedione. Pharmaceutics, 2021, 13(9), 1521.
[http://dx.doi.org/10.3390/pharmaceutics13091521] [PMID: 34575597]
[18]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem., 2014, 87(87), 814-833.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.025] [PMID: 25440883]
[19]
Chinetti, G.; Fruchart, J.C.; Staels, B. Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res., 2000, 49(10), 497-505.
[http://dx.doi.org/10.1007/s000110050622] [PMID: 11089900]
[20]
Glass, C.k.; Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol, 2010, 10(5), 365-376.
[21]
Huang, S.; Zhu, B.; Cheon, I.S.; Goplen, N.P.; Jiang, L.; Zhang, R.; Peebles, R.S.; Mack, M.; Kaplan, M.H.; Limper, A.H.; Sun, J. PPAR-γ in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J. Virol., 2019, 93(9), e00030-19.
[http://dx.doi.org/10.1128/JVI.00030-19] [PMID: 30787149]
[22]
Aneja, D.K.; Kaushik, D. Anti-inflammatory evaluations and docking studies of some derivatives of pyrazolyl-2, 4-thiazolidinediones. Indian J. Heterocycl. Chem., 2020, 30(02), 143-163.
[23]
Chaaban, I.; Rizk, O.H.; Ibrahim, T.M.; Henen, S.S.; El-Khawass, E.S.M.; Bayad, A.E.; El-Ashmawy, I. M.; Nematalla, H. A. Bioorganic chemistry synthesis, anti-inflammatory screening, molecular docking, and COX-1,-2/-5-LOX inhibition profile of some novel quinolone derivatives. Biorganic chemistry, 2018, 78, 220-235.
[24]
Ghanim, A.M.; Rezq, S.; Ibrahim, T.S.; Romero, D.G.; Kothayer, H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem., 2021, 219, 113457.
[http://dx.doi.org/10.1016/j.ejmech.2021.113457] [PMID: 33892270]
[25]
Wang, W.; He, X.; Wan, Y.; Chen, D.; Li, Z.; Feng, Y.; Wen, Q. Discovery of bi-4-methoxycarbonyl-2-quinolone and evaluation of its anti-inflammatory and anti-cancer activity in vitro. Nat. Prod. Res., 2024, 1-6.
[http://dx.doi.org/10.1080/14786419.2024.2303606] [PMID: 38217490]
[26]
da Silva, S.E.B.; da Moura, S.J.A.; de Nunes, S.T.R.; da Pitta, R.I.; da Pitta, R.M.G. New trends in biological activities and clinical studies of quinolinic analogues: A Review. Curr. Drug Targets, 2022, 23(5), 441-457.
[http://dx.doi.org/10.2174/1389450122666210415100151] [PMID: 33858312]
[27]
Huang, Z.H.; Yin, L.Q.; Guan, L.P.; Li, Z.H.; Tan, C. Screening of chalcone analogs with anti-depressant, anti-inflammatory, analgesic, and COX-2-inhibiting effects. Bioorg. Med. Chem. Lett., 2020, 30(11), 127173.
[http://dx.doi.org/10.1016/j.bmcl.2020.127173] [PMID: 32278513]
[28]
Mroueh, M.; Faour, W.H.; Shebaby, W.N.; Daher, C.F.; Ibrahim, T.M.; Ragab, H.M. Synthesis, biological evaluation and modeling of hybrids from tetrahydro-1H-pyrazolo[3,4-b]quinolines as dual cholinestrase and COX-2 inhibitors. Bioorg. Chem., 2020, 100, 103895.
[http://dx.doi.org/10.1016/j.bioorg.2020.103895] [PMID: 32413626]
[29]
Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; Ibrahim, T.S.; Panda, S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem., 2022, 119, 105557.
[http://dx.doi.org/10.1016/j.bioorg.2021.105557] [PMID: 34952242]
[30]
Abdelrahman, M.H.; Youssif, B.G.M.; abdelgawad, M.A.; Abdelazeem, A.H.; Ibrahim, H.M.; Moustafa, A.E.G.A.; Treamblu, L.; Bukhari, S.N.A. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2017, 127, 972-985.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[31]
Tseng, C.H.; Tung, C.W.; Peng, S.I.; Chen, Y.L.; Tzeng, C.C.; Cheng, C.M. Discovery of pyrazolo[4,3-c]quinolines derivativesas potential anti-inflammatory agents through inhibiting of NO production. Molecules, 2018, 23(5), 1036.
[http://dx.doi.org/10.3390/molecules23051036] [PMID: 29710774]
[32]
Debnath, U.; Mukherjee, S.; Joardar, N.; Babu, S.S.P.; Jana, K.; Misra, A.K. Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur. J. Pharm. Sci., 2019, 134, 102-115.
[http://dx.doi.org/10.1016/j.ejps.2019.04.016] [PMID: 31002986]
[33]
Deaton, D.N.; Do, Y.; Holt, J.; Jeune, M.R.; Kramer, H.F.; Larkin, A.L.; Orband-Miller, L.A.; Peckham, G.E.; Poole, C.; Price, D.J.; Schaller, L.T.; Shen, Y.; Shewchuk, L.M.; Stewart, E.L.; Stuart, J.D.; Thomson, S.A.; Ward, P.; Wilson, J.W.; Xu, T.; Guss, J.H.; Musetti, C.; Rendina, A.R.; Affleck, K.; Anders, D.; Hancock, A.P.; Hobbs, H.; Hodgson, S.T.; Hutchinson, J.; Leveridge, M.V.; Nicholls, H.; Smith, I.E.D.; Somers, D.O.; Sneddon, H.F.; Uddin, S.; Cleasby, A.; Mortenson, P.N.; Richardson, C.; Saxty, G. The discovery of quinoline-3-carboxamides as hematopoietic prostaglandin D synthase (H-PGDS) inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1456-1478.
[http://dx.doi.org/10.1016/j.bmc.2019.02.017] [PMID: 30858025]
[34]
Mohsin, N.A.; Ahmad, M. Hybrid organic molecules as antiinflammatory agents; a review of structural features and biological activity. Turk. J. Chem., 2018, 42(42), 1-20.
[http://dx.doi.org/10.3906/kim-1706-58]
[35]
de Oliveira, M.C.V.A.; Viana, D.C.F.; Silva, A.A.; Pereira, M.C.; Duarte, F.S.; Pitta, M.G.R.; Pitta, I.R.; Pitta, M.G.R. Synthesis of novel thiazolidinic-phthalimide derivatives evaluated as new multi-target antiepileptic agents. Bioorg. Chem., 2022, 119, 105548.
[http://dx.doi.org/10.1016/j.bioorg.2021.105548] [PMID: 34959174]
[36]
Bozdag, O.; Kilcigil, A.G.; Tunçbilek, M.; Ertan, R. Studies on the synthesis of some substituted flavonyl thiazolidinedione derivatives-I. Turk. J. Chem., 1999, (23), 163-169.
[37]
Kanase, M.S.; Salunkhe, D.S.; Zambare, D.N.; Piste, P.B. Novel synthesis of some thiazolidinone derivatives. Int. J. Curr. Sci., 2014, (13), 104-108.
[38]
Santos, F.A.; Almeida, M.L.; Silva, V.A.S.; Viana, D.C.F.; Pereira, M.C.; Lucena, A.S.L.; Pitta, M.G.R.; Pitta, G.M.R.; de Rêgo, M.M.J.B.; da Pitta, R.I. Synthesis and biological activities of new phthalimide and thiazolidine derivatives. Med. Chem. Res., 2022, 31(1), 108-119.
[http://dx.doi.org/10.1007/s00044-021-02821-7]
[39]
Guarda, V.L.M.; Pereira, M.A.; De Simone, C.A.; Albuquerque, J.F.C.; Galdino, S.L.; Chantegrel, J.; Perrissin, M.; Beney, C.; Thomasson, F.; Pitta, I.R.; Luu-Duc, C. Synthesis and structural study of arylidene thiazolidine and benzothiazine compounds. Sulfur Letters, 2003, 26(1), 17-27.
[http://dx.doi.org/10.1080/0278611021000048712]
[40]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[41]
Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell viability assays; Assay Guidance Manual, 2016.
[42]
Bøyum, A. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol., 1976, 5(S5), 9-15.
[http://dx.doi.org/10.1111/j.1365-3083.1976.tb03851.x] [PMID: 1052391]
[43]
Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem., 2005, 51(12), 2415-2418.
[http://dx.doi.org/10.1373/clinchem.2005.051532] [PMID: 16179424]
[44]
Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Invest. Dermatol., 2013, 133(9), 1-3.
[http://dx.doi.org/10.1038/jid.2013.287] [PMID: 23949770]
[45]
Hornbeck, P.V. Enzyme-linked immunosorbent assays. Curr. Protoc. Immunol., 2015, 110(1), 1.1-, 23.
[http://dx.doi.org/10.1002/0471142735.im0201s110] [PMID: 26237010]
[46]
Guedes, I.A.; Barreto, A.M.S.; Marinho, D.; Krempser, E.; Kuenemann, M.A.; Sperandio, O.; Dardenne, L.E.; Miteva, M.A. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep., 2021, 11(1), 3198.
[http://dx.doi.org/10.1038/s41598-021-82410-1] [PMID: 33542326]
[47]
Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly flexible ligand docking: Benchmarking of the dockthor program on the LEADS-PEP protein–peptide data set. J. Chem. Inf. Model., 2020, 60(2), 667-683.
[http://dx.doi.org/10.1021/acs.jcim.9b00905] [PMID: 31922754]
[48]
de Magalhães, C.S.; Almeida, D.M.; Barbosa, H.J.C.; Dardenne, L.E. A dynamic niching genetic algorithm strategy for docking highly flexible ligands. Inf. Sci., 2014, 289, 206-224.
[http://dx.doi.org/10.1016/j.ins.2014.08.002]
[49]
Jang, J.Y.; Bae, H.; Lee, Y.J.; Choi, Y.I.; Kim, H.J.; Park, S.B.; Suh, S.W.; Kim, S.W.; Han, B.W. Structural basis for the enhanced anti-diabetic efficacy of lobeglitazone on PPARγ. Sci. Rep., 2018, 8(1), 31.
[http://dx.doi.org/10.1038/s41598-017-18274-1] [PMID: 29311579]
[50]
Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J.; Kiefer, J.R.; Carter, J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life. Bioorg. Med. Chem. Lett., 2010, 20(23), 7159-7163.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.054] [PMID: 20709553]
[51]
Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; Chun, M.; Li, P.; Gohara, D.W.; Dolinsky, T.; Konecny, R.; Koes, D.R.; Nielsen, J.E.; Head-Gordon, T.; Geng, W.; Krasny, R.; Wei, G.W.; Holst, M.J.; McCammon, J.A.; Baker, N.A. Improvements to the APBS biomolecular solvation software suite. Protein Sci., 2018, 27(1), 112-128.
[http://dx.doi.org/10.1002/pro.3280] [PMID: 28836357]
[52]
da Silva, J.C.; Mariz, H.A.; da Júnior, R.L.F.; de Oliveira, S.P.S.; Dantas, A.T.; Duarte, A.L.B.P.; da Pitta, R.I.; Galdino, S.L.; da Pitta, R.M.G. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics, 2013, 68(6), 766-771.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[53]
Jiang, C.; Ting, A.T.; Seed, B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662), 82-86.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[54]
Rigamonti, E.; Gbaguidi, C.G.; Staels, B. Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. Arterioscler. Thromb. Vasc. Biol., 2008, 28(6), 1050-1059.
[http://dx.doi.org/10.1161/ATVBAHA.107.158998] [PMID: 18323516]
[55]
Wang, W.; Xu, M.J.; Cai, Y.; Zhou, Z.; Cao, H.; Mukhopadhyay, P.; Pacher, P.; Zheng, S.; Gonzalez, F.J.; Gao, B. Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology, 2017, 66(1), 108-123.
[http://dx.doi.org/10.1002/hep.29129] [PMID: 28220523]
[56]
da Rocha Junior, L.F.; de Melo Rêgo, M.J.B.; Cavalcanti, M.B.; Pereira, M.C.; Pitta, M.G.R.; de Oliveira, P.S.S.; Gonçalves, S.M.C.; Duarte, A.L.B.P.; de Lima, M.C.A.; Pitta, I.R.; Pitta, M.G.R. Synthesis of a novel thiazolidinedione and evaluation of its modulatory effect on IFN- γ, IL-6, IL-17A, and IL-22 production in PBMCs from rheumatoid arthritis patients. BioMed Res. Int., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/926060] [PMID: 24078927]
[57]
Rêgo, M.J.B.M.; Azoubel-Antunes, A.; Bezerra, M.B.C.F.; Pereira, M.C.; Silva, J.C.; Lins, T.U.L.; Sarinho, E.S.C.; Amorim, C.A.C.; Lima, M.C.A.; Galdino-Pitta, M.R.; Pitta, I.R.; Pitta, M.G.R. Ability of two new thiazolidinediones to downregulate proinflammatory cytokines in peripheral blood mononuclear cells from children with asthma. Braz. J. Pharm. Sci., 2018, 54(3), 54.
[http://dx.doi.org/10.1590/s2175-97902018000300049]
[58]
Fox, R.I. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin. Arthritis Rheum., 1993, 23(S2), 82-91.
[http://dx.doi.org/10.1016/S0049-0172(10)80012-5] [PMID: 8278823]
[59]
Liang, Y.B.; Tang, H.; Chen, Z.B.; Zeng, L.J.; Wu, J.G.; Yang, W.; Li, Z.Y.; Ma, Z.F. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol. Med. Rep., 2017, 16(5), 6405-6411.
[http://dx.doi.org/10.3892/mmr.2017.7384] [PMID: 28901399]
[60]
Upadhyay, S. Noval route through O-C bond formation for the synthesis of diastereomeric 2, 4-disubstituted pyrano [2, 3-B] quinolines from 3formyl-2-quinolones via intramolecular electrophilic cyclization. Bullet. Pure Appl. Sci. Chem., 2018, 37c(2), 93-95.
[http://dx.doi.org/10.5958/2320-320X.2018.00035.3]
[61]
Yang, C.Y.; Hung, Y.L.; Tang, K.W.; Wang, S.C.; Tseng, C.H.; Tzeng, C.C.; Liu, P.L.; Li, C.Y.; Chen, Y.L. Discovery of 2-substituted 3-arylquinoline derivatives as potential anti-inflammatory agents through inhibition of LPS-induced inflammatory responses in macrophages. Molecules, 2019, 24(6), 1162.
[http://dx.doi.org/10.3390/molecules24061162] [PMID: 30909606]
[62]
Aguena, M.; Dalto Fanganiello, R.; Tissiani, L.A.L.; Ishiy, F.A.A.; Atique, R.; Alonso, N.; Bueno, P.M.R. Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem Cells Int., 2012, 2012, 1-7.
[http://dx.doi.org/10.1155/2012/303610] [PMID: 22550502]
[63]
Gregoire, F.M.; Smas, C.M.; Sul, H.S. Understanding Adipocyte differentiation; The American Physiological Society, 1998, pp. 783-809.
[64]
Villa, D.F.X.; Iturbide, D.N.A.; Zárraga, A.J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem., 2021, 106, 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[65]
Roberts, J.A.; Pea, F.; Lipman, J. The clinical relevance of plasma protein binding changes. Clin. Pharmacokinet., 2013, 52(1), 1-8.
[http://dx.doi.org/10.1007/s40262-012-0018-5] [PMID: 23150213]
[66]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[67]
Jiang, B.; Luo, J.; Guo, S.; Wang, L. Discovery of 5-(3-bromo-2-(2,3-dibromo-4,5-dimethoxybenzyl)-4,5-dimethoxybenzylidene)thiazolidine-2,4-dione as a novel potent protein tyrosine phosphatase 1B inhibitor with antidiabetic properties. Bioorg. Chem., 2021, 108, 104648.
[http://dx.doi.org/10.1016/j.bioorg.2021.104648] [PMID: 33493928]
[68]
Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature, 1998, 395(6698), 137-143.
[69]
Thangavel, N.; Bratty, A.M.; Javed, A.S.; Ahsan, W.; Alhazmi, H.A. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: Strategy for design of novel antidiabetic drugs. Int. J. Med. Chem., 2017, 2017, 1-20.
[http://dx.doi.org/10.1155/2017/1069718] [PMID: 28656106]
[70]
Barros, C.D.; Amato, A.A.; Oliveira, T.B.; Iannini, K.B.R. Synthesis and anti-inflamatory activity of new arylidene-thiazolidine-2,4-diones as PPARγ ligands. Bioorg. Med. Chem., 2010, 18(11), 3805-3811.
[71]
Blobaum, A.L.; Marnett, L.J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem., 2007, 50(7), 1425-1441.
[72]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; iyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644-648.
[http://dx.doi.org/10.1038/384644a0] [PMID: 8967954]
[73]
Wang, J.L.; Carter, J.; Kiefer, J.R.; Kurumbail, R.G.; Pawlitz, J.L.; Brown, D.; Hartmann, S.J.; Graneto, M.J.; Seibert, K.; Talley, J.J. The novel benzopyran class of selective cyclooxygenase-2 inhibitors-part I: The first clinical candidate. Bioorg. Med. Chem. Lett., 2010, 20(23), 7155-7158.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.053] [PMID: 21055613]
[74]
Zarghi, A.; Ghodsi, R. Design, synthesis, and biological evaluation of ketoprofen analogs as potent cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(16), 5855-5860.
[http://dx.doi.org/10.1016/j.bmc.2010.06.094] [PMID: 20650641]
[75]
Ghodsi, R.; Zarghi, A.; Daraei, B.; Hedayati, M. Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem., 2010, 18(3), 1029-1033.
[http://dx.doi.org/10.1016/j.bmc.2009.12.060] [PMID: 20061161]