Current Nanoscience

Author(s): Rasmirekha Pattanaik, Debapriya Pradhan and Suresh Kumar Dash*

DOI: 10.2174/0115734137296172240311112922

DownloadDownload PDF Flyer Cite As
A Brief Review on Solar Light Assisted Photocatalytic Degradation of Dyes using Double/Layered Perovskites

Page: [201 - 217] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

During the past few decades, great efforts have been devoted to developing non-toxic, low-cost, green and studied photocatalysts for the degradation of toxic dyes from surface water with the aid of sustainable, plentiful, and renewable solar light irradiation. Perovskite oxides with a wide range of applications, including photocatalytic water decontamination possess unique properties that make them suitable for performing efficiently in visible spectrum and facilitate catalytic reactions. This mini-review specifically specializes in double/layered perovskites and their associated materials and summarizes the recent improvement of double/layered perovskite photocatalysts and their packages in the degradation of organic dyes.

Keywords: Double/layered perovskites, cationic dyes, solar radiation, mechanism, photocatalysts, catalytic reactions.

Graphical Abstract

[1]
Obaideen, K.; Nooman, M.; Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A.G. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum solar park. Int. J. Thermofluids, 2021, 12, 100123.
[http://dx.doi.org/10.1016/j.ijft.2021.100123]
[2]
Bhatti, A.R.; Salam, Z.; Aziz, M.J.B.A.; Yee, K.P.; Ashique, R.H. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev., 2016, 54, 34-47.
[http://dx.doi.org/10.1016/j.rser.2015.09.091]
[3]
Ge, M.Z.; Cao, C.Y.; Huang, J.Y.; Li, S.H.; Zhang, S.N.; Deng, S.; Li, Q.S.; Zhang, K.Q.; Lai, Y.K. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: A review. Nanotechnol. Rev., 2016, 5(1), 75-112.
[http://dx.doi.org/10.1515/ntrev-2015-0049]
[4]
Kumar, A.; Kumar, A.; Krishnan, V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal., 2020, 10(17), 10253-10315.
[http://dx.doi.org/10.1021/acscatal.0c02947]
[5]
Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H.T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M.I.; Gao, Y.; Luo, X.; Wang, Y.; Gao, H.; Zhang, C.; Xu, J.; Zhu, J.; Sargent, E.H.; Tan, H. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy, 2020, 5(11), 870-880.
[http://dx.doi.org/10.1038/s41560-020-00705-5]
[6]
Park, N.G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy, 2016, 1(11), 16152.
[http://dx.doi.org/10.1038/nenergy.2016.152]
[7]
Aharon, S.; Etgar, L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett., 2016, 16(5), 3230-3235.
[http://dx.doi.org/10.1021/acs.nanolett.6b00665] [PMID: 27089497]
[8]
Katz, E.A. Perovskite: name puzzle and german‐russian odyssey of discovery. Helv. Chim. Acta, 2020, 103(6), e2000061.
[http://dx.doi.org/10.1002/hlca.202000061]
[9]
Bulemo, P.M.; Kim, I.D. Recent advances in ABO3 perovskites: Their gas-sensing performance as resistive-type gas sensors. J. Korean Ceramic Soc., 2020, 57(1), 24-39.
[http://dx.doi.org/10.1007/s43207-019-00003-1]
[10]
Khudyakov, D.V.; Ganin, D.V.; Lyashedko, A.D.; Frolova, L.A.; Troshin, P.A.; Lobach, A.S. Thin films of MAPbI3 and MA0.15FA0.75Cs0.1PbI3 perovskites under femtosecond laser irradiation: Nonlinear optical absorption and kinetics of photodegradation. Mendeleev Commun., 2021, 31(4), 456-458.
[http://dx.doi.org/10.1016/j.mencom.2021.07.006]
[11]
Yang, T.C.J.; Fiala, P.; Jeangros, Q.; Ballif, C. High-bandgap perovskite materials for multijunction solar cells. Joule, 2018, 2(8), 1421-1436.
[http://dx.doi.org/10.1016/j.joule.2018.05.008]
[12]
Saretta, E.; Caputo, P.; Frontini, F. A review study about energy renovation of building facades with BIPV in urban environment. Sustain Cities Soc., 2019, 44, 343-355.
[http://dx.doi.org/10.1016/j.scs.2018.10.002]
[13]
Zhang, J.; Mao, W.; Hou, X.; Duan, J.; Zhou, J.; Huang, S.; Ou-Yang, W.; Zhang, X.; Sun, Z.; Chen, X. Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells. Sol. Energy, 2018, 174, 1133-1141.
[http://dx.doi.org/10.1016/j.solener.2018.10.004]
[14]
Abe, R.; Sayama, K.; Sugihara, H. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-. J. Phys. Chem. B, 2005, 109(33), 16052-16061.
[http://dx.doi.org/10.1021/jp052848l] [PMID: 16853039]
[15]
Peng, K.; Fu, L.; Yang, H.; Ouyang, J. Perovskite LaFeO3/montmorillonite nanocomposites: Synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep., 2016, 6(1), 19723.
[http://dx.doi.org/10.1038/srep19723] [PMID: 26778180]
[16]
Kabanova, V.A.; Gribkova, O.L.; Tameev, A.R.; Nekrasov, A.A. Hole transporting electrodeposited PEDOT–polyelectrolyte layers for perovskite solar cells. Mendeleev Commun., 2021, 31(4), 454-455.
[http://dx.doi.org/10.1016/j.mencom.2021.07.005]
[17]
Lu, L.; Cai, R.; Gursoy, D. Developing and validating a service robot integration willingness scale. Int. J. Hospit. Manag., 2019, 80, 36-51.
[http://dx.doi.org/10.1016/j.ijhm.2019.01.005]
[18]
Ou, X.; Li, Z.; Fan, F.; Wang, H.; Wu, H. Long-range magnetic interaction and frustration in double perovskites Sr2NiIrO6 and Sr2ZnIrO6. Sci. Rep., 2014, 4(1), 7542.
[http://dx.doi.org/10.1038/srep07542] [PMID: 25519762]
[19]
Saini, N.; Jindal, R.; Tripathi, A. Study of lattice dynamics of Ruddlesden-Popper compounds Sr2RuO4 and Sr2TcO4. Indian J. Phys. Proc. Indian Assoc. Cultiv. Sci., 2022, 96(11), 3143-3149.
[http://dx.doi.org/10.1007/s12648-021-02241-8]
[20]
Wang, T.; Liu, X.; Ma, C.; Zhu, Z.; Liu, Y.; Liu, Z.; Wei, M.; Zhao, X.; Dong, H.; Huo, P.; Li, C.; Yan, Y. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity. J. Alloys Compd., 2018, 752, 106-114.
[http://dx.doi.org/10.1016/j.jallcom.2018.04.085]
[21]
Niu, S.; Zhang, R.; Zhang, X.; Xiang, J.; Guo, C. Morphology-dependent photocatalytic performance of Bi4Ti3O12. Ceram. Int., 2020, 46(5), 6782-6786.
[http://dx.doi.org/10.1016/j.ceramint.2019.11.169]
[22]
He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. J. Hazard. Mater., 2009, 162(2-3), 1477-1486.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.047] [PMID: 18674856]
[23]
Li, X.Y.; Yao, Z.F.; Zhang, L.Y.; Zheng, G.H.; Dai, Z.X.; Chen, K.Y. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving pH adjustment and use of surfactant. Appl. Surf. Sci., 2019, 480, 262-275.
[http://dx.doi.org/10.1016/j.apsusc.2019.02.115]
[24]
Lin, Y.; Mehrvar, M. Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: Optimization of photocatalytic reactions using surface response methodology. Catalysts, 2018, 8(10), 409.
[http://dx.doi.org/10.3390/catal8100409]
[25]
Khalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int., 2017, 43(17), 14552-14571.
[http://dx.doi.org/10.1016/j.ceramint.2017.08.143]
[26]
Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G.G.; Phanichphant, S.; Nattestad, A. Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci. Rep., 2017, 7(1), 8929.
[http://dx.doi.org/10.1038/s41598-017-09514-5] [PMID: 28827594]
[27]
Pavithra, K.G.; Jaikumar, V.J. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem., 2019, 75, 1-9.
[http://dx.doi.org/10.1016/j.jiec.2019.02.011]
[28]
Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng., 2019, 7(5), 103248.
[http://dx.doi.org/10.1016/j.jece.2019.103248]
[29]
Adeel, M.; Saeed, M.; Khan, I.; Muneer, M.; Akram, N. Synthesis and characterization of Co-Zno and evaluation of its photocatalytic activity for photodegradation of methyl orange. ACS Omega, 2021, 6(2), 1426-1435.
[http://dx.doi.org/10.1021/acsomega.0c05092] [PMID: 33490802]
[30]
Zou, J.P.; Wu, D.D.; Luo, J.; Xing, Q.J.; Luo, X.B.; Dong, W.H.; Luo, S.L.; Du, H.M.; Suib, S.L. A strategy for one-pot conversion of organic pollutants into useful hydrocarbons through coupling photodegradation of MB with photoreduction of CO2. ACS Catal., 2016, 6(10), 6861-6867.
[http://dx.doi.org/10.1021/acscatal.6b01729]
[31]
Liu, X.; Chen, C.; Chen, X.; Qian, G.; Wang, J.; Wang, C.; Cao, Z.; Liu, Q. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal. Today, 2018, 315, 155-161.
[http://dx.doi.org/10.1016/j.cattod.2018.02.037]
[32]
Jung, J.J.; Jang, J.W.; Park, J.W. Effect of generation growth on photocatalytic activity of nano TiO2-magnetic cored dendrimers. J. Ind. Eng. Chem., 2016, 44, 52-59.
[http://dx.doi.org/10.1016/j.jiec.2016.08.007]
[33]
Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study. Ultrason. Sonochem., 2016, 32, 387-397.
[http://dx.doi.org/10.1016/j.ultsonch.2016.04.007] [PMID: 27150785]
[34]
Abdi, M.; Mahdikhah, V.; Sheibani, S. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Opt. Mater., 2020, 102, 109803.
[http://dx.doi.org/10.1016/j.optmat.2020.109803]
[35]
Tuna, Ö.; Simsek, E.B. Anchoring LaFeO3 perovskites on the polyester filters for flowthrough photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. Chem., 2021, 418, 113405.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113405]
[36]
Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater, 2023, 4(1), 1-24.
[37]
Vijayaraghavan, T.; Althaf, R.; Babu, P.; Parida, K.M.; Vadivel, S.; Ashok, A.M. Visible light active LaFeO3 nano perovskite-RGO-NiO composite for efficient H2 evolution by photocatalytic water splitting and textile dye degradation. J. Environ. Chem. Eng., 2021, 9(1), 104675.
[http://dx.doi.org/10.1016/j.jece.2020.104675]
[38]
Domanski, K.; Correa-Baena, J.P.; Mine, N.; Nazeeruddin, M.K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6), 6306-6314.
[http://dx.doi.org/10.1021/acsnano.6b02613] [PMID: 27187798]
[39]
Christians, J.A.; Schulz, P.; Tinkham, J.S.; Schloemer, T.H.; Harvey, S.P.; Tremolet De Villers, B.J.; Sellinger, A.; Berry, J.J.; Luther, J.M. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy, 2018, 3(1), 68-74.
[http://dx.doi.org/10.1038/s41560-017-0067-y]
[40]
Li, C.; Wei, J.; Sato, M.; Koike, H.; Xie, Z.Z.; Li, Y.Q.; Kanai, K.; Kera, S.; Ueno, N.; Tang, J.X. Halide-substituted electronic properties of organometal halide perovskite films: Direct and inverse photoemission studies. ACS Appl. Mater. Interfaces, 2016, 8(18), 11526-11531.
[http://dx.doi.org/10.1021/acsami.6b02692] [PMID: 27101940]
[41]
Ji, K.; Yuan, J.; Li, F.; Shi, Y.; Ling, X.; Zhang, X.; Zhang, Y.; Lu, H.; Yuan, J.; Ma, W. High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(16), 8104-8112.
[http://dx.doi.org/10.1039/D0TA02743J]
[42]
Wang, G.; Lei, M.; Liu, J.; He, Q.; Zhang, W. Improving the stability and optoelectronic properties of all inorganic less‐Pb perovskites by B‐site doping for high‐performance inorganic perovskite solar cells. Sol. RRL, 2020, 4(12), 2000528.
[http://dx.doi.org/10.1002/solr.202000528]
[43]
Ma, D.; Wu, J.; Gao, M.; Xin, Y.; Sun, Y.; Ma, T. Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem. Eng. J., 2017, 313, 1567-1576.
[http://dx.doi.org/10.1016/j.cej.2016.11.036]
[44]
Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M.A.; Gupta, G.; Lou, J.; Ajayan, P.M.; Bedzyk, M.J.; Kanatzidis, M.G.; Mohite, A.D. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536(7616), 312-316.
[http://dx.doi.org/10.1038/nature18306] [PMID: 27383783]
[45]
Liu, J.; Leng, J.; Wu, K.; Zhang, J.; Jin, S. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc., 2017, 139(4), 1432-1435.
[http://dx.doi.org/10.1021/jacs.6b12581] [PMID: 28094931]
[46]
Lin, Y.; Fang, Y.; Zhao, J.; Shao, Y.; Stuard, S.J.; Nahid, M.M.; Ade, H.; Wang, Q.; Shield, J.E.; Zhou, N.; Moran, A.M.; Huang, J. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun., 2019, 10(1), 1008.
[http://dx.doi.org/10.1038/s41467-019-08958-9] [PMID: 30824699]
[47]
Blancon, J.C.; Tsai, H.; Nie, W.; Stoumpos, C.C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C.M.M.; Appavoo, K.; Sfeir, M.Y.; Tretiak, S.; Ajayan, P.M.; Kanatzidis, M.G.; Even, J.; Crochet, J.J.; Mohite, A.D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331), 1288-1292.
[http://dx.doi.org/10.1126/science.aal4211] [PMID: 28280250]
[48]
Naciri, Y.; Hsini, A.; Ahdour, A.; Akhsassi, B. Fritah; Ajmal, Z.; Djellabi, R.; Bouziani, A.; Taoufyq, A.; Bakiz, B.; Benlhachemi, A.; Sillanpää, M.; Li, H. Recent advances of bismuth titanate based photocatalysts engineering for enhanced organic contaminates oxidation in water: A review. Chemosphere, 2022, 300, 134622.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134622] [PMID: 35439491]
[49]
Pirgholi-Givi, G.; Farjami-Shayesteh, S.; Azizian-Kalandaragh, Y. The influence of preparation parameters on the photocatalytic performance of mixed bismuth titanate-based nanostructures. Physica B, 2019, 575, 311572.
[http://dx.doi.org/10.1016/j.physb.2019.07.007]
[50]
Nogueira, A.E.; Longo, E.; Leite, E.R.; Camargo, E.R. Synthesis and photocatalytic properties of bismuth titanate with different structures via oxidant peroxo method (OPM). J. Colloid Interface Sci., 2014, 415, 89-94.
[http://dx.doi.org/10.1016/j.jcis.2013.10.010] [PMID: 24267334]
[51]
Kallawar, G.A.; Barai, D.P.; Bhanvase, B.A. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges. J. Clean. Prod., 2021, 318, 128563.
[http://dx.doi.org/10.1016/j.jclepro.2021.128563]
[52]
Chen, J.; Mei, W.; Liu, C.; Hu, C.; Huang, Q.; Chen, N.; Chen, J.; Zhang, R.; Hou, W. Carbon-modified bismuth titanate with an enhanced photocatalytic activity under nature sunlight. Mater. Lett., 2016, 172, 184-187.
[http://dx.doi.org/10.1016/j.matlet.2016.03.002]
[53]
Yao, W.F.; Wang, H.; Shang, S.X.; Xu, X.H.; Yang, X.N.; Zhang, Y.; Wang, M. Photocatalytic property of Zn-modified bismuth titanate. J. Mol. Catal. Chem., 2003, 198(1-2), 343-348.
[http://dx.doi.org/10.1016/S1381-1169(02)00699-4]
[54]
Sheikh, T.; Nawale, V.; Pathoor, N.; Phadnis, C.; Chowdhury, A.; Nag, A. Molecular intercalation and electronic two dimensionality in layered hybrid perovskites. Angew. Chem. Int. Ed., 2020, 59(28), 11653-11659.
[http://dx.doi.org/10.1002/anie.202003509] [PMID: 32243656]
[55]
Belous, A.; Kobylianska, S.; V’yunov, O.; Torchyniuk, P.; Yukhymchuk, V.; Hreshchuk, O. Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3. Nanoscale Res. Lett., 2019, 14(1), 4.
[http://dx.doi.org/10.1186/s11671-018-2841-6] [PMID: 30612275]
[56]
Singhal, N.; Chakraborty, R.; Ghosh, P.; Nag, A. low‐bandgap Cs4 CuSb2Cl12 layered double perovskite: Synthesis, reversible thermal changes, and magnetic interaction. Chem. Asian J., 2018, 13(16), 2085-2092.
[http://dx.doi.org/10.1002/asia.201800635] [PMID: 29809310]
[57]
Wang, X.D.; Miao, N.H.; Liao, J.F.; Li, W.Q.; Xie, Y.; Chen, J.; Sun, Z.M.; Chen, H.Y.; Kuang, D.B. The top-down synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application. Nanoscale, 2019, 11(12), 5180-5187.
[http://dx.doi.org/10.1039/C9NR00375D] [PMID: 30843576]
[58]
Tang, G.; Xiao, Z.; Hosono, H.; Kamiya, T.; Fang, D.; Hong, J. Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications. J. Phys. Chem. Lett., 2018, 9(1), 43-48.
[http://dx.doi.org/10.1021/acs.jpclett.7b02829] [PMID: 29231743]
[59]
Singhal, N.; Chakraborty, R.; Ghosh, P.; Nag, A. Low-bandgap Cs4CuSb2Cl12 layered double perovskite: Synthesis, reversible thermal changes, and magnetic interaction. Chem. - An Asian J., 2018, 13(16), 2085-2092.
[60]
Wang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight. Appl. Catal. B: Environ., 2019, 240, 39-49.
[61]
Lebedev, A.; Anariba, F.; Li, X.; Seng, H.L.D.; Wu, P. Ag/Ag2O/BiNbO4 structure for simultaneous photocatalytic degradation of mixed cationic and anionic dyes. Solar Energy, 2019, 178, 257-267.
[62]
Pandey, A.; Naresh, G.; Mandal, T.K. Sunlight responsive new sillén-aurivillius A1X1 hybrid layered oxyhalides with enhanced photocatalytic activity. Solar Energy Mater. Solar Cells, 2017, 161, 197-205.
[63]
Majumdar, A.; Pal, A. Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. J. Environ. Chem. Eng., 2020, 8(1), 103645.
[64]
Ogawa, K.; Sakamoto, R.; Zhong, C.; Suzuki, H.; Kato, K.; Tomita, O.; Nakashima, K.; Yamakata, A.; Tachikawa, T.; Saeki, A.; Kageyama, H.; Abe, R. Manipulation of charge carrier flow in Bi4NbO8Cl nanoplate photocatalyst with metal loading. Chem. Sci., 2022, 13(11), 3118-3128.
[65]
Wang, T.; Liu, X.; Ma, C.; Zhu, Z.; Liu, Y.; Liu, Z.; Wei, M.; Zhao, X.; Dong, H.; Huo, P.; Li, C.; Yan, Y. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity. J. Alloys Compd., 2018, 752, 106-114.
[66]
Niu, S.; Zhang, R.; Zhang, X.; Xiang, J.; Guo, C. Morphology-dependent photocatalytic performance of Bi4Ti3O12. Ceramics Int., 2020, 46(5), 6782-6786.
[67]
He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. J. Hazardous Mater., 2009, 162(2–3), 1477-1486.
[68]
Mahmoudian, M.H.; Mesdaghinia, A.; Mahvi, A.H.; Nasseri, S.; Nabizadeh, R.; Dehghani, M.H. Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: Synthesis, characterization and response surface methodology-central composite design modeling. J. Environ. Health Sci. Eng., 2022, 20(2), 617-628.
[69]
He, Y.; Zhang, Y.; Huang, H.; Tian, N.; Guo, Y.; Luo, Y. A novel Bi-based oxybromide Bi4NbO8Br: Synthesis, characterization and visible-light-active photocatalytic activity. Colloids Surf. A Physicochem. Eng. Aspects, 2014, 462, 131-136.
[70]
Lee, C-H.; Kim, H.G.; Gu, Y.; Lim, D-H. A study of photocatalytic degradation of methylene blue in aqueous solution using perovskite structured PbBi2Nb2O9. Nanosci. Nanotechnol. Lett., 2018, 10(9), 1179-1186.
[71]
P. P, A.; Joshi, M.; Verma, D.; Jadhav, S.; Choudhury, A. R.; Jana, D. Layered Cs4CuSb2Cl12 nanocrystals for sunlight-driven photocatalytic degradation of pollutants. ACS Appl. Nano Mater., 2021, 4(2), 1305-1313.
[72]
Lin, X.; Huang, T.; Huang, F.; Wang, W.; Shi, J. Photocatalytic activity of a bi-based oxychloride Bi4NbO8Cl. J. Mater. Chem., 2007, 17(20), 2145.
[73]
Hossain, A.; Bandyopadhyay, P.; Roy, S. An overview of double Perovskites A2B′B″O6 with small ions at A site: Synthesis, structure and magnetic properties. J. Alloys Compd., 2018, 740, 414-427.
[74]
Zhang, M.; Jeerh, G.; Zou, P.; Lan, R.; Wang, M.; Wang, H.; Tao, S. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021, 49, 351-377.
[75]
Chen, X.; Xu, J.; Xu, Y.; Luo, F.; Du, Y. Rare earth double perovskites: A fertile soil in the field of perovskite oxides. Inorg. Chem. Frontiers, 2019, 6(9), 2226-2238.
[76]
Nguyen, V-H.; Do, H.H.; Van Nguyen, T.; Singh, P.; Raizada, P.; Sharma, A.; Sana, S.S.; Grace, A.N.; Shokouhimehr, M.; Ahn, S.H.; Xia, C.; Kim, S.Y.; Le, Q.V. Perovskite oxide-based photocatalysts for solar-driven hydrogen production: progress and perspectives. Solar Energy, 2020, 211, 584-599.
[77]
Gupta, A.; Silotia, H.; Kumari, A.; Dumen, M.; Goyal, S.; Tomar, R.; Wadehra, N.; Ayyub, P.; Chakraverty, S. KTaO3—the new kid on the spintronics block. Adv. Mater., 2022, 34(9)
[78]
Jana, R.; Rajaitha, P. M.; Hajra, S.; Kim, H. J. Advancements in visible-light-driven double perovskite nanoparticles for photodegradation. Micro Nano Syst. Lett., 2023, 11(1)
[79]
Angineni, R.; Venkataswamy, P.; Ramaswamy, K.; Raj, S.; Veldurthi, N.K.; Vithal, M. Preparation, characterization and photocatalytic activity studies of transition metal ion doped K2Ta2O6. Polyhedron, 2022, 214, 115620.
[80]
Angineni, R.; Perala, V.; Kadari, R.; Pallati, S.; Kurra, S.; Muga, V. Facile ion-exchange synthesis of Gd-doped K2Ta2O6 photocatalysts with enhanced visible light activity. J. Indian Chem. Soc., 2022, 99(6), 100495.
[81]
Krukowska, A.; Trykowski, G.; Lisowski, W.; Klimczuk, T.; Winiarski, M.J.; Zaleska-Medynska, A. Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation. J. Catal., 2018, 364, 371-381.
[82]
Li, X.Y.; Yao, Z.F.; Zhang, L.Y.; Zheng, G.H.; Dai, Z.X.; Chen, K.Y. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving ph adjustment and use of surfactant. Appl. Surface Sci., 2019, 480, 262-275.
[83]
Khan, H.; Swati, I.K. Fe3+-doped anatase TiO2 with d-d transition, oxygen vacancies and Ti3+ centers: Synthesis, characterization, UV-Vis photocatalytic and mechanistic studies. Industr Eng. Chem. Res., 2016, 55(23), 6619-6633.
[84]
Farzin, Y.A.; Babaei, A.; Ataie, A. Low-temperature synthesis of Sr2FeMoO6 double perovskite; structure, morphology, and magnetic properties. Ceramics Int., 2020, 46(10), 16867-16878.
[85]
Ghrib, T. Structural, dielectric, electrical, and thermal properties of the Ce-doped Ba2TiMoO6 double perovskite. J. Heat Transfer, 2022, 144(12)
[86]
Ghrib, T.; Al-Otaibi, A.; Ercan, F.; Manda, A.A.; Ozcelik, B.; Ercan, I. Structural, optical and photocatalytic properties of cerium doped Ba2TiMoO6 double perovskite. Phys. B: Condensed Matter., 2023, 649, 414454.
[87]
Majumdar, A.; Ghosh, U.; Pal, A. 2D-Bi4NbO8Cl nanosheet for efficient photocatalytic degradation of tetracycline in synthetic and real wastewater under visible-light: influencing factors, mechanism and degradation pathway. J. Alloys Compd., 2022, 900, 163400.
[88]
Angineni, R.; Venkataswamy, P.; Veldurthi, N.K.; Ramaswamy, K.; Sudheera, M.; Vithal, M. Photocatalytic degradation studies of carbon and sulfur-doped K2Ta2O6. J. Mater. Sci. Mater. Electr., 2023, 34(7)
[89]
Zhai, Y-Q.; Qiao, J.; Qiu, M-D. Research on degradation of dye acid red B by Sr2FeMoO6 synthesized by microwave sintering method. E-J. Chem., 2012, 9(2), 818-824.
[90]
Sharma, A.; Bhardwaj, U.; Kushwaha, H.S. Ba2TiMnO6 two-dimensional nanosheets for rhodamine B organic contaminant degradation using ultrasonic vibrations. Mater. Adv., 2021, 2(8), 2649-2657.
[91]
Li, K.; Li, S.; Zhang, W.; Shi, Z.; Wu, D.; Chen, X.; Lin, P.; Tian, Y.; Li, X. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. J. Colloid Interface Sci., 2021, 596, 376-383.
[92]
Zhai, Y-Q.; Qiao, J.; Qiu, M-D. Research on degradation of dye acid red B by Sr2FeMoO6 synthesized by microwave sintering method. E-Journal of Chemistry, 2012, 9(2), 818-824.
[93]
Shirazi, P.; Rahbar, M.; Behpour, M.; Ashrafi, M. La2MnTiO6 double perovskite nanostructures as highly efficient visible light photocatalysts. New J. Chem., 2020, 44(1), 231-238.
[94]
Talapatra, A.; Uberuaga, B.P.; Stanek, C.R.; Pilania, G. (2023, June 10). Band gap predictions of double perovskite oxides using machine learning. Commun. Mater., 2023, 4(1)
[95]
Zhou, C.; Tarasov, A.B.; Goodilin, E.A.; Chen, P.; Wang, H.; Chen, Q. Recent strategies to improve moisture stability in metal halide perovskites materials and devices. J. Energy Chem., 2022, 65, 219-235.
[96]
Bati, A. S. R.; Zhong, Y. L.; Burn, P. L.; Nazeeruddin, M. K.; Shaw, P. E.; Batmunkh, M. (2023, January 5). Next-generation applications for integrated perovskite solar cells. Commun. Materi., 2023, 4(1)
[97]
Muscarella, L.A.; Hutter, E.M. (2022, May 31). Halide double-perovskite semiconductors beyond photovoltaics. ACS Energy Lett., 2022, 7(6), 2128-2135.