[36]
Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater, 2023, 4(1), 1-24.
[59]
Singhal, N.; Chakraborty, R.; Ghosh, P.; Nag, A. Low-bandgap Cs4CuSb2Cl12 layered double perovskite: Synthesis, reversible thermal changes, and magnetic interaction. Chem. - An Asian J., 2018, 13(16), 2085-2092.
[60]
Wang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. 0D Bi nanodots/2D Bi3NbO7 nanosheets heterojunctions for efficient visible light photocatalytic degradation of antibiotics: Enhanced molecular oxygen activation and mechanism insight. Appl. Catal. B: Environ., 2019, 240, 39-49.
[61]
Lebedev, A.; Anariba, F.; Li, X.; Seng, H.L.D.; Wu, P. Ag/Ag2O/BiNbO4 structure for simultaneous photocatalytic degradation of mixed cationic and anionic dyes. Solar Energy, 2019, 178, 257-267.
[62]
Pandey, A.; Naresh, G.; Mandal, T.K. Sunlight responsive new sillén-aurivillius A1X1 hybrid layered oxyhalides with enhanced photocatalytic activity. Solar Energy Mater. Solar Cells, 2017, 161, 197-205.
[63]
Majumdar, A.; Pal, A. Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. J. Environ. Chem. Eng., 2020, 8(1), 103645.
[64]
Ogawa, K.; Sakamoto, R.; Zhong, C.; Suzuki, H.; Kato, K.; Tomita, O.; Nakashima, K.; Yamakata, A.; Tachikawa, T.; Saeki, A.; Kageyama, H.; Abe, R. Manipulation of charge carrier flow in Bi4NbO8Cl nanoplate photocatalyst with metal loading. Chem. Sci., 2022, 13(11), 3118-3128.
[65]
Wang, T.; Liu, X.; Ma, C.; Zhu, Z.; Liu, Y.; Liu, Z.; Wei, M.; Zhao, X.; Dong, H.; Huo, P.; Li, C.; Yan, Y. Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity. J. Alloys Compd., 2018, 752, 106-114.
[66]
Niu, S.; Zhang, R.; Zhang, X.; Xiang, J.; Guo, C. Morphology-dependent photocatalytic performance of Bi4Ti3O12. Ceramics Int., 2020, 46(5), 6782-6786.
[67]
He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z. Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. J. Hazardous Mater., 2009, 162(2–3), 1477-1486.
[68]
Mahmoudian, M.H.; Mesdaghinia, A.; Mahvi, A.H.; Nasseri, S.; Nabizadeh, R.; Dehghani, M.H. Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: Synthesis, characterization and response surface methodology-central composite design modeling. J. Environ. Health Sci. Eng., 2022, 20(2), 617-628.
[69]
He, Y.; Zhang, Y.; Huang, H.; Tian, N.; Guo, Y.; Luo, Y. A novel Bi-based oxybromide Bi4NbO8Br: Synthesis, characterization and visible-light-active photocatalytic activity. Colloids Surf. A Physicochem. Eng. Aspects, 2014, 462, 131-136.
[70]
Lee, C-H.; Kim, H.G.; Gu, Y.; Lim, D-H. A study of photocatalytic degradation of methylene blue in aqueous solution using perovskite structured PbBi2Nb2O9. Nanosci. Nanotechnol. Lett., 2018, 10(9), 1179-1186.
[71]
P. P, A.; Joshi, M.; Verma, D.; Jadhav, S.; Choudhury, A. R.; Jana, D. Layered Cs4CuSb2Cl12 nanocrystals for sunlight-driven photocatalytic degradation of pollutants. ACS Appl. Nano Mater., 2021, 4(2), 1305-1313.
[72]
Lin, X.; Huang, T.; Huang, F.; Wang, W.; Shi, J. Photocatalytic activity of a bi-based oxychloride Bi4NbO8Cl. J. Mater. Chem., 2007, 17(20), 2145.
[73]
Hossain, A.; Bandyopadhyay, P.; Roy, S. An overview of double Perovskites A2B′B″O6 with small ions at A site: Synthesis, structure and magnetic properties. J. Alloys Compd., 2018, 740, 414-427.
[74]
Zhang, M.; Jeerh, G.; Zou, P.; Lan, R.; Wang, M.; Wang, H.; Tao, S. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021, 49, 351-377.
[75]
Chen, X.; Xu, J.; Xu, Y.; Luo, F.; Du, Y. Rare earth double perovskites: A fertile soil in the field of perovskite oxides. Inorg. Chem. Frontiers, 2019, 6(9), 2226-2238.
[76]
Nguyen, V-H.; Do, H.H.; Van Nguyen, T.; Singh, P.; Raizada, P.; Sharma, A.; Sana, S.S.; Grace, A.N.; Shokouhimehr, M.; Ahn, S.H.; Xia, C.; Kim, S.Y.; Le, Q.V. Perovskite oxide-based photocatalysts for solar-driven hydrogen production: progress and perspectives. Solar Energy, 2020, 211, 584-599.
[77]
Gupta, A.; Silotia, H.; Kumari, A.; Dumen, M.; Goyal, S.; Tomar, R.; Wadehra, N.; Ayyub, P.; Chakraverty, S. KTaO3—the new kid on the spintronics block. Adv. Mater., 2022, 34(9)
[78]
Jana, R.; Rajaitha, P. M.; Hajra, S.; Kim, H. J. Advancements in visible-light-driven double perovskite nanoparticles for photodegradation. Micro Nano Syst. Lett., 2023, 11(1)
[79]
Angineni, R.; Venkataswamy, P.; Ramaswamy, K.; Raj, S.; Veldurthi, N.K.; Vithal, M. Preparation, characterization and photocatalytic activity studies of transition metal ion doped K2Ta2O6. Polyhedron, 2022, 214, 115620.
[80]
Angineni, R.; Perala, V.; Kadari, R.; Pallati, S.; Kurra, S.; Muga, V. Facile ion-exchange synthesis of Gd-doped K2Ta2O6 photocatalysts with enhanced visible light activity. J. Indian Chem. Soc., 2022, 99(6), 100495.
[81]
Krukowska, A.; Trykowski, G.; Lisowski, W.; Klimczuk, T.; Winiarski, M.J.; Zaleska-Medynska, A. Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation. J. Catal., 2018, 364, 371-381.
[82]
Li, X.Y.; Yao, Z.F.; Zhang, L.Y.; Zheng, G.H.; Dai, Z.X.; Chen, K.Y. Generation of oxygen vacancies on Sr2FeMoO6 to improve its photocatalytic performance through a novel preparation method involving ph adjustment and use of surfactant. Appl. Surface Sci., 2019, 480, 262-275.
[83]
Khan, H.; Swati, I.K. Fe3+-doped anatase TiO2 with d-d transition, oxygen vacancies and Ti3+ centers: Synthesis, characterization, UV-Vis photocatalytic and mechanistic studies. Industr Eng. Chem. Res., 2016, 55(23), 6619-6633.
[84]
Farzin, Y.A.; Babaei, A.; Ataie, A. Low-temperature synthesis of Sr2FeMoO6 double perovskite; structure, morphology, and magnetic properties. Ceramics Int., 2020, 46(10), 16867-16878.
[85]
Ghrib, T. Structural, dielectric, electrical, and thermal properties of the Ce-doped Ba2TiMoO6 double perovskite. J. Heat Transfer, 2022, 144(12)
[86]
Ghrib, T.; Al-Otaibi, A.; Ercan, F.; Manda, A.A.; Ozcelik, B.; Ercan, I. Structural, optical and photocatalytic properties of cerium doped Ba2TiMoO6 double perovskite. Phys. B: Condensed Matter., 2023, 649, 414454.
[87]
Majumdar, A.; Ghosh, U.; Pal, A. 2D-Bi4NbO8Cl nanosheet for efficient photocatalytic degradation of tetracycline in synthetic and real wastewater under visible-light: influencing factors, mechanism and degradation pathway. J. Alloys Compd., 2022, 900, 163400.
[88]
Angineni, R.; Venkataswamy, P.; Veldurthi, N.K.; Ramaswamy, K.; Sudheera, M.; Vithal, M. Photocatalytic degradation studies of carbon and sulfur-doped K2Ta2O6. J. Mater. Sci. Mater. Electr., 2023, 34(7)
[89]
Zhai, Y-Q.; Qiao, J.; Qiu, M-D. Research on degradation of dye acid red B by Sr2FeMoO6 synthesized by microwave sintering method. E-J. Chem., 2012, 9(2), 818-824.
[90]
Sharma, A.; Bhardwaj, U.; Kushwaha, H.S. Ba2TiMnO6 two-dimensional nanosheets for rhodamine B organic contaminant degradation using ultrasonic vibrations. Mater. Adv., 2021, 2(8), 2649-2657.
[91]
Li, K.; Li, S.; Zhang, W.; Shi, Z.; Wu, D.; Chen, X.; Lin, P.; Tian, Y.; Li, X. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. J. Colloid Interface Sci., 2021, 596, 376-383.
[92]
Zhai, Y-Q.; Qiao, J.; Qiu, M-D. Research on degradation of dye acid red B by Sr2FeMoO6 synthesized by microwave sintering method. E-Journal of Chemistry, 2012, 9(2), 818-824.
[93]
Shirazi, P.; Rahbar, M.; Behpour, M.; Ashrafi, M. La2MnTiO6 double perovskite nanostructures as highly efficient visible light photocatalysts. New J. Chem., 2020, 44(1), 231-238.
[94]
Talapatra, A.; Uberuaga, B.P.; Stanek, C.R.; Pilania, G. (2023, June 10). Band gap predictions of double perovskite oxides using machine learning. Commun. Mater., 2023, 4(1)
[95]
Zhou, C.; Tarasov, A.B.; Goodilin, E.A.; Chen, P.; Wang, H.; Chen, Q. Recent strategies to improve moisture stability in metal halide perovskites materials and devices. J. Energy Chem., 2022, 65, 219-235.
[96]
Bati, A. S. R.; Zhong, Y. L.; Burn, P. L.; Nazeeruddin, M. K.; Shaw, P. E.; Batmunkh, M. (2023, January 5). Next-generation applications for integrated perovskite solar cells. Commun. Materi., 2023, 4(1)
[97]
Muscarella, L.A.; Hutter, E.M. (2022, May 31). Halide double-perovskite semiconductors beyond photovoltaics. ACS Energy Lett., 2022, 7(6), 2128-2135.