Abstract

Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms “tegumentary leishmaniasis” AND “diagno”, revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.

[1]
de Vries, H.J.C.; Schallig, H.D. Cutaneous leishmaniasis: A 2022 updated narrative review into diagnosis and management developments. Am. J. Clin. Dermatol., 2022, 23(6), 823-840.
[http://dx.doi.org/10.1007/s40257-022-00726-8] [PMID: 36103050]
[2]
Yamey, G.; Torreele, E. The world’s most neglected diseases. BMJ, 2002, 325(7357), 176-177.
[http://dx.doi.org/10.1136/bmj.325.7357.176] [PMID: 12142292]
[3]
Freire, M.L.; Rêgo, F.D.; Cota, G.; Xavier, P.M.A.; Oliveira, E. Potential antigenic targets used in immunological tests for diagnosis of tegumentary leishmaniasis: A systematic review. PLoS One, 2021, 16(5), e0251956.
[http://dx.doi.org/10.1371/journal.pone.0251956] [PMID: 34043671]
[4]
PAHO/WHO. Leishmaniasis. Epidemiological report of the Americas. 2019. Available from: https://iris.paho.org/handle/10665.2/51734 (Accessed on: 04/17/2023).
[5]
World Health Organization. Leishmaniasis. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (Accessed on: 04/17/2023).
[6]
Mann, S.; Frasca, K.; Scherrer, S.; Martínez, H.A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132.
[http://dx.doi.org/10.1007/s40475-021-00232-7] [PMID: 33747716]
[7]
Salgado, V.R.; Queiroz, A.T.L.; Sanabani, S.S.; Oliveira, C.I.; Carvalho, E.M.; Costa, J.M.L.; Barral-Netto, M.; Barral, A. The microbiological signature of human cutaneous leishmaniasis lesions exhibits restricted bacterial diversity compared to healthy skin. Mem. Inst. Oswaldo Cruz, 2016, 111(4), 241-251.
[http://dx.doi.org/10.1590/0074-02760150436] [PMID: 27074253]
[8]
Sharma, U.; Singh, S. Insect vectors of Leishmania: Distribution, physiology and their control. J. Vector Borne Dis., 2008, 45(4), 255-272.
[PMID: 19248652]
[9]
Teixeira, D.E.; Benchimol, M.; Rodrigues, J.C.F.; Crepaldi, P.H.; Pimenta, P.F.P.; de Souza, W. The cell biology of Leishmania: How to teach using animations. PLoS Pathog., 2013, 9(10), e1003594.
[http://dx.doi.org/10.1371/journal.ppat.1003594] [PMID: 24130476]
[10]
Thakur, S.; Joshi, J.; Kaur, S. Leishmaniasis diagnosis: An update on the use of parasitological, immunological and molecular methods. J. Parasit. Dis., 2020, 44(2), 253-272.
[http://dx.doi.org/10.1007/s12639-020-01212-w] [PMID: 32419743]
[11]
Bates, P.A. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int. J. Parasitol., 2007, 37(10), 1097-1106.
[http://dx.doi.org/10.1016/j.ijpara.2007.04.003] [PMID: 17517415]
[12]
Uzcátegui, S.Y.D.V.; Dos Santos, V.T.; Silveira, F.T.; Ramos, P.K.S.; Santos, D.E.J.M.; Póvoa, M.M. Phlebotomines (Diptera: Psychodidae) from a Urban park of belém, Pará State, Northern Brazil and potential implications in the transmission of American cutaneous leishmaniasis. J. Med. Entomol., 2020, 57(1), 281-288.
[http://dx.doi.org/10.1093/jme/tjz153] [PMID: 31550368]
[13]
Bailey, M.S.; Lockwood, D.N.J. Cutaneous leishmaniasis. Clin. Dermatol., 2007, 25(2), 203-211.
[http://dx.doi.org/10.1016/j.clindermatol.2006.05.008] [PMID: 17350500]
[14]
Scorza, B.; Carvalho, E.; Wilson, M. Cutaneous manifestations of human and murine leishmaniasis. Int. J. Mol. Sci., 2017, 18(6), 1296.
[http://dx.doi.org/10.3390/ijms18061296] [PMID: 28629171]
[15]
Temel, B.A.; Murrell, D.F.; Uzun, S. Cutaneous leishmaniasis: A neglected disfiguring disease for women. Int. J. Womens Dermatol., 2019, 5(3), 158-165.
[http://dx.doi.org/10.1016/j.ijwd.2019.01.002] [PMID: 31360749]
[16]
Machado, G.U.; Prates, F.V.; Machado, P.R.L. Disseminated leishmaniasis: Clinical, pathogenic, and therapeutic aspects. An. Bras. Dermatol., 2019, 94(1), 9-16.
[17]
Bennis, I.; De Brouwere, V.; Belrhiti, Z.; Sahibi, H.; Boelaert, M. Psychosocial burden of localised cutaneous Leishmaniasis: A scoping review. BMC Public Health, 2018, 18(1), 358.
[http://dx.doi.org/10.1186/s12889-018-5260-9] [PMID: 29544463]
[18]
Martins, A.L.; Barreto, J.A.; Lauris, J.R.; Martins, A.C. American tegumentary leishmaniasis: Correlations among immunological, histopathological and clinical parameters. An Bras Dermatol., 2014, 89(1), 52-58.
[19]
de Cavalcanti, P.M.; de Morais, R.C.S.; Silva, P.R.; Silva, T.L.A.M.; Albuquerque, G.S.C.; Tavares, D.H.C.; Castro, B.M.C.A.; Silva, R.F.; Pereira, V.R.A. Leishmaniases diagnosis: An update on the use of immunological and molecular tools. Cell Biosci., 2015, 5(1), 31.
[http://dx.doi.org/10.1186/s13578-015-0021-2] [PMID: 26097678]
[20]
Al-Hucheimi, S.N.; Sultan, B.A.; Dhalimi, A.M.A. A comparative study of the diagnosis of Old World cutaneous leishmaniasis in Iraq by polymerase chain reaction and microbiologic and histopathologic methods. Int. J. Dermatol., 2009, 48(4), 404-408.
[http://dx.doi.org/10.1111/j.1365-4632.2009.03903.x] [PMID: 19335428]
[21]
Weigle, K.A.; Molineros, R.; Heredia, P.; D’Alessandro, A.; Saravia, N.G.; de Davalos, M. Diagnosis of cutaneous and mucocutaneous leishmaniasis in Colombia: A comparison of seven methods. Am. J. Trop. Med. Hyg., 1987, 36(3), 489-496.
[http://dx.doi.org/10.4269/ajtmh.1987.36.489] [PMID: 2437815]
[22]
Erber, A.C.; Sandler, P.J.; de Avelar, D.M.; Swoboda, I.; Cota, G.; Walochnik, J. Diagnosis of visceral and cutaneous leishmaniasis using loop-mediated isothermal amplification (LAMP) protocols: A systematic review and meta-analysis. Parasit. Vectors, 2022, 15(1), 34.
[http://dx.doi.org/10.1186/s13071-021-05133-2] [PMID: 35073980]
[23]
Veasey, J.V.; Zampieri, R.A.; Lellis, R.F.; Freitas, T.H.P.; Winter, L.M.F. Identification of leishmania species by high-resolution DNA dissociation in cases of American cutaneous leishmaniasis. An. Bras. Dermatol., 2020, 95(4), 459-468.
[http://dx.doi.org/10.1016/j.abd.2020.02.003] [PMID: 32518010]
[24]
Bracamonte, M.E.; Álvarez, A.M.; Sosa, A.M.; Hoyos, C.L.; Lauthier, J.J.; Cajal, S.P.; Juarez, M.; Uncos, R.E.; Valdéz, S.F.J.; Acuña, L.; Diosque, P.; Basombrío, M.A.; Nasser, J.R.; Hashiguchi, Y.; Korenaga, M.; Barroso, P.A.; Marco, J.D. High performance of an enzyme linked immunosorbent assay for American tegumentary leishmaniasis diagnosis with Leishmania (Viannia) braziliensis amastigotes membrane crude antigens. PLoS One, 2020, 15(5), e0232829.
[http://dx.doi.org/10.1371/journal.pone.0232829] [PMID: 32379842]
[25]
Vale, D.L.; Machado, A.S.; Ramos, F.F.; Lage, D.P.; Freitas, C.S.; de Oliveira, D.; Galvani, N.C.; Luiz, G.P.; Fagundes, M.I.; Fernandes, B.B.; Silva, O.J.A.; Ludolf, F.; Tavares, G.S.V.; Guimarães, N.S.; Chaves, A.T.; Fumagalli, C.M.A.; Tupinambás, U.; Rocha, M.O.C.; Gonçalves, D.U.; Martins, V.T.; Ávila, M.R.A.; Coelho, E.A.F. Evaluation of a chimeric protein based on B cell epitopes for the serodiagnosis of tegumentary and visceral leishmaniasis. Microb. Pathog., 2022, 167, 105562.
[http://dx.doi.org/10.1016/j.micpath.2022.105562] [PMID: 35513293]
[26]
Ribeiro, P.A.F.; Souza, M.Q.; Dias, D.S.; Álvares, A.C.M.; Nogueira, L.M.; Machado, J.M.; dos Santos, J.C.; Godoi, R.R.; Nobrega, Y.K.M.; Paz, C.M.; de Freitas, S.M.; Felipe, M.S.S.; Torres, F.A.G.; Galdino, A.S. A custom-designed recombinant multiepitope protein for human cytomegalovirus diagnosis. Recent Pat. Biotechnol., 2019, 13(4), 316-328.
[http://dx.doi.org/10.2174/1872208313666190716093911] [PMID: 31333134]
[27]
Pagniez, J.; Petitdidier, E.; Parra-Zuleta, O.; Pissarra, J.; Gonçalves, B.R. A systematic review of peptide-based serological tests for the diagnosis of leishmaniasis. Parasite, 2023, 30, 10.
[http://dx.doi.org/10.1051/parasite/2023011] [PMID: 37010451]
[28]
Sidiq, Z.; Hanif, M.; Dwivedi, K.K.; Chopra, K.K. Benefits and limitations of serological assays in COVID-19 infection. Indian J. Tuberc., 2020, 67(4), S163-S166.
[http://dx.doi.org/10.1016/j.ijtb.2020.07.034] [PMID: 33308664]
[29]
Dipti, C.A.; Jain, S.K.; Navin, K. A novel multiepitope recombinant protein as a high sensitivity and specificity hepatitis C diagnostic intermediate. Protein Expr. Purif., 2006, 47, 319-328.
[http://dx.doi.org/10.1016/j.pep.2005.12.012] [PMID: 16504539]
[30]
de Souza, M.Q.; Galdino, A.S.; dos Santos, J.C.; Soares, M.V.; Nóbrega, Y.C.; Álvares, A.C.M.; de Freitas, S.M.; Torres, F.A.G.; Felipe, M.S.S. A recombinant multiepitope protein for hepatitis B diagnosis. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/148317] [PMID: 24294596]
[31]
AnandaRão, R.; Swaminathan, S.; Fernando, S.; Jana, A.M.; Khanna, N. Recombinant multiepitope protein for early detection of dengue infections. Clin. Vaccine Immunol., 2006, 13(1), 59-67.
[http://dx.doi.org/10.1128/CVI.13.1.59-67.2006] [PMID: 16426001]
[32]
Taherkhani, R.; Farshadpour, F.; Makvandi, M. Design and production of a multiepitope construct derived from hepatitis E virus capsid protein. J. Med. Virol., 2015, 87(7), 1225-1234.
[http://dx.doi.org/10.1002/jmv.24171] [PMID: 25784455]
[33]
Thomasini, R.L.; Souza, H.G.A.; Bruna-Romero, O.; Totola, A.H.; Gonçales, N.S.L.; Lima, C.X. Evaluation of recombinant multiepitope antigens for hepatitis C virus diagnosis: A lower cost alternative for antigen production. J. Clin. Lab. Anal., 2018, 32, e22410.
[http://dx.doi.org/10.1002/jcla.22410] [PMID: 29453831]
[34]
Yengo, B.N.; Shintouo, C.M.; Hotterbeekx, A.; Yaah, N.E.; Shey, R.A.; Quanico, J.; Baggerman, G.; Ayong, L.; Vanhamme, L.; Njemini, R.; Souopgui, J.; Colebunders, R.; Ghogomu, S.M. Immunoinformatics design and assessment of a multiepitope antigen (OvMCBL02) for onchocerciasis diagnosis and monitoring. Diagnostics, 2022, 12(6), 1440.
[http://dx.doi.org/10.3390/diagnostics12061440] [PMID: 35741250]
[35]
Faria, A.R.; de Veloso, C.L.; Vital, C.W.; Reis, A.B.; Damasceno, L.M.; Gazzinelli, R.T.; Andrade, H.M. New recombinant multiepitope proteins for the diagnosis of asymptomatic dogs infected with Leishmania infantum. PLoS Negl. Trop. Dis., 2015, 9(1), e3429.
[http://dx.doi.org/10.1371/journal.pntd.0003429] [PMID: 25569685]
[36]
Jameie, F.; Dalimi, A.; Pirestani, M.; Mohebali, M. Detection of leishmania infantum infection in reservoir dogs using a multiepitope recombinant protein (PQ10). Arch. Razi Inst., 2020, 75(3), 327-338.
[PMID: 33025773]
[37]
Machado, J.M.; Pereira, I.A.G.; Maia, A.C.G.; Francisco, M.F.C.; Nogueira, L.M.; Gandra, I.B.; Ribeiro, A.J.; Silva, K.A.; Resende, C.A.A.; da Silva, J.O.; dos Santos, M.; Gonçalves, A.A.M.; Tavares, G.S.V.; Fumagalli, C.M.A.; da-Paz, C.M.; Giunchetti, R.C.; Rocha, M.O.C.; Chaves, A.T.; Coelho, E.A.F.; Galdino, A.S. Proof of concept of a novel multiepitope recombinant protein for the serodiagnosis of patients with chagas disease. Pathogens, 2023, 12(2), 312.
[http://dx.doi.org/10.3390/pathogens12020312] [PMID: 36839584]
[38]
Link, J.S.; Alban, S.M.; Soccol, C.R.; Pereira, G.V.M.; Soccol, T.V. Synthetic peptides as potential antigens for cutaneous leishmaniosis diagnosis. J. Immunol. Res., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/5871043] [PMID: 28367456]
[39]
Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[40]
Gomes, C.M.; de Paula, N.A.; Cesetti, M.V.; Roselino, A.M.; Sampaio, R.N. Mucocutaneous leishmaniasis: Accuracy and molecular validation of non-invasive procedures in an endemic area for L. (V.) braziliensis. Diagn. Microbiol. Infect. Dis., 2014, 79(4), 413-418.
[http://dx.doi.org/10.1016/j.diagmicrobio.2014.05.002] [PMID: 24923211]
[41]
Garcia, G.C.; Carvalho, A.M.R.S.; Duarte, M.C.; Silva, M.F.C.; Medeiros, F.A.C.; Coelho, E.A.F.; de Franco, M.D.M.; Gonçalves, D.U.; de Mendes, O.T.A.; Souza, M.D. Development of a chimeric protein based on a proteomic approach for the serological diagnosis of human tegumentary leishmaniasis. Appl. Microbiol. Biotechnol., 2021, 105(18), 6805-6817.
[http://dx.doi.org/10.1007/s00253-021-11518-1] [PMID: 34432132]
[43]
Do, H.D.; Vandermies, M.; Fickers, P.; Theron, C.W. Unconventional Yeast Species to Produce Recombinant Proteins and Metabolites, Biological Sciences Reference Module; Elsevier, 2019.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.20885-6]
[44]
Camussone, C.; Gonzalez, V.; Belluzo, M.S.; Pujato, N.; Ribone, M.E.; Lagier, C.M.; Marcipar, I.S. Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. Clin. Vaccine Immunol., 2009, 16(6), 899-905.
[http://dx.doi.org/10.1128/CVI.00005-09] [PMID: 19339486]
[45]
Santos, E.F.; Silva, Â.A.O.; Freitas, N.E.M.; Leony, L.M.; Daltro, R.T.; Santos, C.A.S.T.; Almeida, M.C.C.; Araújo, F.L.V.; Celedon, P.A.F.; Krieger, M.A.; Zanchin, N.I.T.; Reis, M.G.; Santos, F.L.N. Performance of chimeric Trypanosoma cruzi antigens in serological screening for chagas disease in blood banks. Front. Med., 2022, 9, 852864.
[http://dx.doi.org/10.3389/fmed.2022.852864] [PMID: 35330587]
[46]
Simonson, P.; Bhattacharyya, T.; El-Safi, S.; Miles, M.A. Linear and conformational determinants of visceral leishmaniasis diagnostic antigens rK28 and rK39. Parasit. Vectors, 2022, 15(1), 387.
[http://dx.doi.org/10.1186/s13071-022-05495-1] [PMID: 36273150]
[47]
Yan, Y.H.; Li, M.C.; Liu, H.C.; Xiao, T.Y.; Li, N.; Lou, Y.L.; Wan, K.L. Cellular immunity evaluation of five mycobacterium tuberculosis recombinant proteins and their compositions. Chinese J. Prev. Med., 2020, 54(5), 539-545.
[http://dx.doi.org/10.3760/cma.j.cn112150-20191119-00872]
[48]
Kotresha, D.; Noordin, R. Recombinant proteins in the diagnosis of toxoplasmosis. Acta Pathol. Microbiol. Scand. Suppl., 2010, 118(8), 529-542.
[http://dx.doi.org/10.1111/j.1600-0463.2010.02629.x] [PMID: 20666734]
[49]
Chao, C.C.; Zhang, Z.; Belinskaya, T.; Thipmontree, W.; Tantibhedyangkul, W.; Silpasakorn, S.; Wongsawat, E.; Suputtamongkol, Y.; Ching, W.M. An ELISA assay using a combination of recombinant proteins from multiple strains of Orientia tsutsugamushi offers an accurate diagnosis for scrub typhus. BMC Infect. Dis., 2017, 17(1), 413.
[http://dx.doi.org/10.1186/s12879-017-2512-8] [PMID: 28601091]
[50]
da Rosa, M.C.; Martins, G.; Rocha, B.R.; Correia, L.; Ferronato, G.; Lilenbaum, W.; Dellagostin, O.A. Assessment of the immunogenicity of the leptospiral LipL32, LigAni, and LigBrep recombinant proteins in the sheep model. Comp. Immunol. Microbiol. Infect. Dis., 2019, 65, 176-180.
[http://dx.doi.org/10.1016/j.cimid.2019.05.012] [PMID: 31300110]
[51]
Zhang, K.; Lin, G.; Han, Y.; Li, J. Serological diagnosis of toxoplasmosis and standardization. Clin. Chim. Acta, 2016, 461, 83-89.
[http://dx.doi.org/10.1016/j.cca.2016.07.018] [PMID: 27470936]
[52]
Ai, J.W.; Zhou, X.; Xu, T.; Yang, M.; Chen, Y.; He, G.Q.; Pan, N.; Cai, Y.; Li, Y.; Wang, X.; Su, H.; Wang, T.; Zeng, W.; Zhang, W.H. Rapid and ultrasensitive CRISPR-based diagnostic test for Mycobacterium tuberculosis. Emerg. Microbes Infect., 2019, 8(1), 1361-1369.
[http://dx.doi.org/10.1080/22221751.2019.1664939] [PMID: 31522608]
[53]
Shahid, I.; Alzahrani, A.R.; Al-Ghamdi, S.S.; Alanazi, I.M.; Rehman, S.; Hassan, S.; Hepatitis, C. Hepatitis C diagnosis: Simplified solutions, predictive barriers, and future promises. Diagnostics, 2021, 11(7), 1253.
[http://dx.doi.org/10.3390/diagnostics11071253] [PMID: 34359335]
[54]
GME. Peptides diagnostics market size. 2023. Available from: https://www.globalmarketestimates.com/market-report/peptides-diagnostics-market-3737 (Accessed on: May 18, 2023).
[55]
Trier, N.H.; Holm, B.E.; Heiden, J.; Slot, O.; Locht, H.; Lindegaard, H.; Svendsen, A.; Nielsen, C.T.; Jacobsen, S.; Theander, E.; Houen, G. Antibodies to a strain-specific citrullinated Epstein-Barr virus peptide diagnoses rheumatoid arthritis. Sci. Rep., 2018, 8(1), 3684.
[http://dx.doi.org/10.1038/s41598-018-22058-6] [PMID: 29487382]
[56]
Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci., 2022, 23(3), 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[57]
Hansen, P.R.; Oddo, A. Fmoc solid-phase peptide synthesis. Methods Mol. Biol., 2015, 1348, 33-50.
[http://dx.doi.org/10.1007/978-1-4939-2999-3_5] [PMID: 26424261]
[58]
Florez, M.M.; de Oliveira, C.I.; Puerta, C.; Guzman, F.; Ayala, M.; Montoya, G.; Delgado, G. Synthetic peptides derived from ribosomal proteins of Leishmania spp. in mucocutaneous leishmaniasis: Diagnostic usefulness. Protein Pept. Lett., 2018, 24(10), 982-988.
[http://dx.doi.org/10.2174/0929866524666170728143924] [PMID: 28758598]
[59]
Costa, M.M.; Penido, M.; dos Santos, M.S.; Doro, D.; de Freitas, E.; Michalick, M.S.M.; Grimaldi, G.; Gazzinelli, R.T.; Fernandes, A.P. Improved canine and human visceral leishmaniasis immunodiagnosis using combinations of synthetic peptides in enzyme-linked immunosorbent assay. PLoS Negl. Trop. Dis., 2012, 6(5), e1622.
[http://dx.doi.org/10.1371/journal.pntd.0001622] [PMID: 22629475]
[60]
Salles, B.C.S.; Dias, D.S.; Steiner, B.T.; Lage, D.P.; Ramos, F.F.; Ribeiro, P.A.F.; Santos, T.T.O.; Lima, M.P.; Costa, L.E.; Chaves, A.T.; Fumagalli, C.M.A.; Fujiwaraa, R.T.; Buenoa, L.L.; Caligiorne, R.B.; de Soares, M.D.F.; Silveira, J.A.G.; Ávila, M.R.A.; Gonçalves, D.U.; Coelho, E.A.F. Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology, 2019, 224(1), 163-171.
[http://dx.doi.org/10.1016/j.imbio.2018.09.003] [PMID: 30266201]
[61]
Tabatabaei, M.S.; Ahmed, M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol. Biol., 2022, 2508, 115-134.
[http://dx.doi.org/10.1007/978-1-0716-2376-3_10] [PMID: 35737237]
[62]
Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 2015, 72, 4-15.
[http://dx.doi.org/10.1016/j.peptides.2015.04.012] [PMID: 25908411]
[63]
Lin, A.V. Direct ELISA. Methods Mol. Biol., 2015, 1318, 61-67.
[http://dx.doi.org/10.1007/978-1-4939-2742-5_6] [PMID: 26160564]
[64]
Montoya, Y.; Leon, C.; Talledo, M.; Nolasco, O.; Padilla, C.; Najar, M.U.; Barker, D.C. Recombinant antigens for specific and sensitive serodiagnosis of Latin American tegumentary leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 1997, 91(6), 674-676.
[http://dx.doi.org/10.1016/S0035-9203(97)90520-4] [PMID: 9580116]
[65]
Rey-Ladino, J.A.; Joshi, P.B.; Singh, B.; Gupta, R.; Reiner, N.E. Leishmania major: Molecular cloning, sequencing, and expression of the heat shock protein 60 gene reveals unique carboxy terminal peptide sequences. Exp. Parasitol., 1997, 85(3), 249-263.
[http://dx.doi.org/10.1006/expr.1996.4137] [PMID: 9085922]
[66]
Celeste, B.J.; Angel, S.O.; Castro, L.G.M.; Gidlund, M.; Goto, H. Leishmania infantum heat shock protein 83 for the serodiagnosis of tegumentary leishmaniasis. Braz. J. Med. Biol. Res., 2004, 37(11), 1591-1593.
[http://dx.doi.org/10.1590/S0100-879X2004001100001] [PMID: 15517072]
[67]
Souza, A.P.; Soto, M.; Costa, J.M.L.; Boaventura, V.S.; de Oliveira, C.I.; Cristal, J.R.; Netto, B.M.; Barral, A. Towards a more precise serological diagnosis of human tegumentary leishmaniasis using Leishmania recombinant proteins. PLoS One, 2013, 8(6), e66110.
[http://dx.doi.org/10.1371/journal.pone.0066110] [PMID: 23776617]
[68]
Menezes-Souza, D.; Mendes, T.A.O.; Gomes, M.S.; Reis-Cunha, J.L.; Nagem, R.A.P.; Carneiro, C.M.; Coelho, E.A.F.; Galvão, L.M.C.; Fujiwara, R.T.; Bartholomeu, D.C. Epitope mapping of the HSP83.1 protein of Leishmania braziliensis discloses novel targets for immunodiagnosis of tegumentary and visceral clinical forms of leishmaniasis. Clin. Vaccine Immunol., 2014, 21(7), 949-959.
[http://dx.doi.org/10.1128/CVI.00151-14] [PMID: 24807053]
[69]
Souza, M.D.; de Mendes, O.T.A.; de Leão, A.A.C.; de Gomes, S.M.; Fujiwara, R.T.; Bartholomeu, D.C. Linear B-cell epitope mapping of MAPK3 and MAPK4 from Leishmania braziliensis: Implications for the serodiagnosis of human and canine leishmaniasis. Appl. Microbiol. Biotechnol., 2015, 99(3), 1323-1336.
[http://dx.doi.org/10.1007/s00253-014-6168-7] [PMID: 25359475]
[70]
Celeste, B.J.; Sanchez, A.M.C.; Sanchez, R.E.M.; Castro, L.G.M.; Costa, L.F.A.; Goto, H. Recombinant Leishmania infantum heat shock protein 83 for the serodiagnosis of cutaneous, mucosal, and visceral leishmaniases. Am. J. Trop. Med. Hyg., 2014, 90(5), 860-865.
[http://dx.doi.org/10.4269/ajtmh.13-0623] [PMID: 24615136]
[71]
Coelho, E.A.F.; Costa, L.E.; Lage, D.P.; Martins, V.T.; Garde, E.; de Pereira, J.N.C.; Lopes, E.G.P.; Borges, L.F.N.M.; Duarte, M.C.; Souza, M.D.; de Soares, M.D.F.; Fumagalli, C.M.A.; Soto, M.; Tavares, C.A.P. Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Vet. Parasitol., 2016, 215, 63-71.
[http://dx.doi.org/10.1016/j.vetpar.2015.11.006] [PMID: 26790739]
[72]
Duarte, M.C.; Pimenta, D.C.; Souza, M.D.; Magalhães, R.D.M.; Diniz, J.L.C.P.; Costa, L.E.; Fumagalli, C.M.A.; Lage, P.S.; Bartholomeu, D.C.; Alves, M.J.M.; Fernandes, A.P.; Soto, M.; Tavares, C.A.P.; Gonçalves, D.U.; Rocha, M.O.C.; Coelho, E.A.F. Proteins selected in leishmania (Viannia) braziliensis by an immunoproteomic approach with potential serodiagnosis applications for tegumentary leishmaniasis. Clin. Vaccine Immunol., 2015, 22(11), 1187-1196.
[http://dx.doi.org/10.1128/CVI.00465-15] [PMID: 26376929]
[73]
Lima, M.P.; Costa, L.E.; Duarte, M.C.; Souza, M.D.; Salles, B.C.S.; de Santos, O.T.T.; Ramos, F.F.; Fumagalli, C.M.A.; Kursancew, A.C.S.; Ambrósio, R.P.; Roatt, B.M.; Ávila, M.R.A.; Gonçalves, D.U.; Coelho, E.A.F. Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitol. Res., 2017, 116(4), 1197-1206.
[http://dx.doi.org/10.1007/s00436-017-5397-y] [PMID: 28150041]
[74]
Carvalho, A.M.R.S.; Costa, L.E.; Salles, B.C.S.; Santos, T.T.O.; Ramos, F.F.; Lima, M.P.; Fumagalli, C.M.A.; Silvestre, B.T.; Portela, Á.S.B.; Roatt, B.M.; Silveira, J.A.G.; Gonçalves, D.U.; Soares, M.D.F.; Duarte, M.C.; Souza, M.D.; Coelho, E.A.F. An ELISA immunoassay employing a conserved Leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cell. Immunol., 2017, 318, 42-48.
[http://dx.doi.org/10.1016/j.cellimm.2017.06.001] [PMID: 28602279]
[75]
Sato, C.M.; Sanchez, M.C.A.; Celeste, B.J.; Duthie, M.S.; Guderian, J.; Reed, S.G.; de Brito, M.E.F.; Campos, M.B.; de Encarnação, S.H.V.; Guerra, J.; de Mesquita, T.G.R.; Pinheiro, S.K.; Ramasawmy, R.; Silveira, F.T.; de Assis Souza, M.; Goto, H. Use of recombinant antigens for sensitive serodiagnosis of American tegumentary leishmaniasis caused by different leishmania species. J. Clin. Microbiol., 2017, 55(2), 495-503.
[http://dx.doi.org/10.1128/JCM.01904-16] [PMID: 27927927]
[76]
Lima, M.P.; Costa, L.E.; Lage, D.P.; Dias, D.S.; Ribeiro, P.A.F.; Machado, A.S.; Ramos, F.F.; Salles, B.C.S.; Fagundes, M.I.; Carvalho, G.B.; Franklin, M.L.; Fumagalli, C.M.A.; Ávila, M.R.A.; Souza, M.D.; Duarte, M.C.; Teixeira, A.L.; Gonçalves, D.U.; Coelho, E.A.F. Diagnostic application of recombinant Leishmania proteins and evaluation of their in vitro immunogenicity after stimulation of immune cells collected from tegumentary leishmaniasis patients and healthy individuals. Cell. Immunol., 2018, 334, 61-69.
[http://dx.doi.org/10.1016/j.cellimm.2018.09.006] [PMID: 30287082]
[77]
Ribeiro, P.A.F.; Dias, D.S.; Lage, D.P.; Costa, L.E.; Salles, B.C.S.; Steiner, B.T.; Ramos, F.F.; Lima, M.P.; Santos, T.T.O.; Chaves, A.T.; Fumagalli, C.M.A.; Fujiwara, R.T.; Bueno, L.L.; Caligiorne, R.B.; de Soares, M.D.F.; Silveira, J.A.G.; Ávila, M.R.A.; Gonçalves, D.U.; Coelho, E.A.F. A conserved Leishmania hypothetical protein evaluated for the serodiagnosis of canine and human visceral and tegumentary leishmaniasis, as well as a serological marker for the posttreatment patient follow-up. Diagn. Microbiol. Infect. Dis., 2018, 92(3), 196-203.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.05.026] [PMID: 29941364]
[78]
Medeiros, R.M.T.E.; Carvalho, A.M.R.S.; Ferraz, I.A.; Medeiros, F.A.C.; Cruz, L.R.; Rocha, M.O.C.; Coelho, E.A.F.; Gonçalves, D.U.; Mendes, T.A.O.; Duarte, M.C.; Souza, M.D. Mapping linear B-cell epitopes of the Tryparedoxin Peroxidase and its implications in the serological diagnosis of tegumentary leishmaniasis. Acta Trop., 2022, 232, 106521.
[http://dx.doi.org/10.1016/j.actatropica.2022.106521] [PMID: 35595092]
[79]
Galvani, N.C.; Machado, A.S.; Lage, D.P.; Martins, V.T.; de Oliveira, D.; Freitas, C.S.; Vale, D.L.; Fernandes, B.B.; Silva, O.J.A.; Reis, T.A.R.; Santos, T.T.O.; Ramos, F.F.; Bandeira, R.S.; Ludolf, F.; Tavares, G.S.V.; Guimarães, N.S.; Tupinambás, U.; Fumagalli, C.M.A.; Humbert, M.V.; Gonçalves, D.U.; Christodoulides, M.; Ávila, M.R.A.; Coelho, E.A.F. Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microb. Pathog., 2022, 162, 105341.
[http://dx.doi.org/10.1016/j.micpath.2021.105341] [PMID: 34883228]
[80]
Costa, L.E.; Salles, B.C.S.; Alves, P.T.; Dias, A.C.S.; Vaz, E.R.; Ramos, F.F.; Menezes-Souza, D.; Duarte, M.C.; Roatt, B.M.; Fumagalli, C.M.A.; Tavares, C.A.P.; Gonçalves, D.U.; Rocha, M.O.C.; Goulart, L.R.; Coelho, E.A.F. New serological tools for improved diagnosis of human tegumentary leishmaniasis. J. Immunol. Methods, 2016, 434, 39-45.
[http://dx.doi.org/10.1016/j.jim.2016.04.005] [PMID: 27090730]
[81]
Manual of procedures for leishmaniases surveillance and control in the Americas; Pan American Health Organization: Washington, D.C., 2019. https://iris.paho.org/handle/10665.2/51838
[82]
de Carvalho, B.C.; Vital, T.; Osiro, J.; Gomes, C.M.; Noronha, E.; Dallago, B.; Rosa, A.C.; Carvalho, J.L.; Hagström, L.; Hecht, M.; Nitz, N. Multiparametric analysis of host and parasite elements in new world tegumentary leishmaniasis. Front. Cell. Infect. Microbiol., 2022, 12, 956112.
[http://dx.doi.org/10.3389/fcimb.2022.956112] [PMID: 36017367]
[83]
Zanetti, A.S.; Sato, C.M.; Longhi, F.G.; Ferreira, S.M.B.; Espinosa, O.A. Diagnostic accuracy of enzyme-linked immunosorbent assays to detect anti-leishmania antibodies in patients with American tegumentary leishmaniasis: A systematic review. Rev. Inst. Med. Trop. São Paulo, 2019, 61, e42.
[http://dx.doi.org/10.1590/s1678-9946201961042] [PMID: 31432991]
[84]
Reimão, J.Q.; Coser, E.M.; Lee, M.R.; Coelho, A.C. Laboratory diagnosis of cutaneous and visceral leishmaniasis: Current and future methods. Microorganisms, 2020, 8(11), 1632.
[http://dx.doi.org/10.3390/microorganisms8111632] [PMID: 33105784]
[85]
Zheng, X.; Duan, R.; Gong, F.; Wei, X.; Dong, Y.; Chen, R.; yue Liang, M.; Tang, C.; Lu, L. Accuracy of serological tests for COVID-19: A systematic review and meta-analysis. Front. Public Health, 2022, 10, 923525.
[http://dx.doi.org/10.3389/fpubh.2022.923525] [PMID: 36589993]
[86]
Kubar, J.; Fragaki, K. Recombinant DNA-derived leishmania proteins: From the laboratory to the field. Lancet Infect. Dis., 2005, 5(2), 107-114.
[http://dx.doi.org/10.1016/S1473-3099(05)70085-2] [PMID: 15680780]
[87]
Romero, G.A.S.; Orge, M.G.O.; Guerra, M.V.F.; Paes, M.G.; Macêdo, V.O.; Carvalho, E.M. Antibody response in patients with cutaneous leishmaniasis infected by Leishmania (Viannia) braziliensis or Leishmania (Viannia) guyanensis in Brazil. Acta Trop., 2005, 93(1), 49-56.
[http://dx.doi.org/10.1016/j.actatropica.2004.09.005] [PMID: 15589797]
[88]
Santi, A.M.M.; Murta, S.M.F. Impact of genetic diversity and genome plasticity of Leishmania spp. in treatment and the search for novel chemotherapeutic targets. Front. Cell. Infect. Microbiol., 2022, 12, 826287.
[http://dx.doi.org/10.3389/fcimb.2022.826287] [PMID: 35141175]
[89]
Tilaki, H.K. Sample size estimation in diagnostic test studies of biomedical informatics. J. Biomed. Inform., 2014, 48, 193-204.
[http://dx.doi.org/10.1016/j.jbi.2014.02.013] [PMID: 24582925]
[90]
González, U. Cochrane reviews on neglected diseases: The case of cutaneous leishmaniasis. Cochrane Database Syst. Rev., 2013, 2013(3), ED000055.
[http://dx.doi.org/10.1002/14651858.ED000055] [PMID: 23641479]
[91]
Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev., 2013, 42(2), 450-457.
[http://dx.doi.org/10.1039/C2CS35255A] [PMID: 23032871]
[92]
Olejnik, B.; Kozioł, A.; Brzozowska, E.; Sieczkowska, F.M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev. Mol. Diagn., 2021, 21(9), 925-937.
[http://dx.doi.org/10.1080/14737159.2021.1957833] [PMID: 34289786]
[93]
Bharadwaj, M.; Bengtson, M.; Golverdingen, M.; Waling, L.; Dekker, C. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl. Trop. Dis., 2021, 15(6), e0009405.
[http://dx.doi.org/10.1371/journal.pntd.0009405] [PMID: 34138846]
[94]
Alhajj, M.; Zubair, M.; Farhana, A. Enzyme linked immunosorbent assay. In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2023.
[95]
Feng, S.; Sun, P.; Qu, C.; Wu, X.; Yang, L.; Yang, T.; Wang, S.; Fang, Y.; Chen, J. Exploring the core genes of schizophrenia based on bioinformatics analysis. Genes, 2022, 13(6), 967.
[http://dx.doi.org/10.3390/genes13060967] [PMID: 35741729]
[96]
Doytchinova, I.A.; Flower, D.R. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J., 2008, 1(1), 22-26.
[http://dx.doi.org/10.2174/1875035400801010022]
[97]
Schirrmann, T.; Meyer, T.; Schütte, M.; Frenzel, A.; Hust, M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules, 2011, 16(1), 412-426.
[http://dx.doi.org/10.3390/molecules16010412] [PMID: 21221060]
[98]
Anand, T.; Virmani, N.; Bera, B.C.; Vaid, R.K.; Vashisth, M.; Bardajatya, P.; Kumar, A.; Tripathi, B.N. Phage display technique as a tool for diagnosis and antibody selection for coronaviruses. Curr. Microbiol., 2021, 78(4), 1124-1134.
[http://dx.doi.org/10.1007/s00284-021-02398-9] [PMID: 33687511]
[99]
Jaroszewicz, W.; Orłowska, M.J.; Pierzynowska, K.; Gaffke, L.; Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev., 2022, 46(2), fuab052.
[http://dx.doi.org/10.1093/femsre/fuab052] [PMID: 34673942]
[100]
Morgado, F.N.; Silva, C.F.; Pimentel, M.I.F.; Porrozzi, R. Advancement in leishmaniasis diagnosis and therapeutics. Trop. Med. Infect. Dis., 2023, 8(5), 270.
[http://dx.doi.org/10.3390/tropicalmed8050270] [PMID: 37235318]