Beyond Conventional Therapies: Molecular Dynamics of Alzheimer's Treatment through CLOCK/BMAL1 Interactions

Page: [862 - 874] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Alzheimer's Disease (AD) represents a neurodegenerative disorder characterized by cognitive and behavioral impairments significantly hindering social and occupational functioning. Melatonin, a hormone pivotal in regulating the body's intrinsic circadian rhythm, also acts as a catalyst in the breakdown of beta-amyloid deposits, offering a promising therapeutic approach for AD. The upregulation of Brain and Muscle ARNT-Like 1 (Bmal1) gene expression, stimulated by melatonin, emerges as a potential contributor to AD intervention. Current pharmacological interventions, such as FDA-approved cholinesterase inhibitors and the recently authorized monoclonal antibody, Lecanemab, are utilized in AD management. However, the connection between these medications and Bmal1 remains insufficiently explored.

Objective: This study aims to investigate the molecular effects of FDA-endorsed drugs on the CLOCK: Bmal1 dimer. Furthermore, considering the interactions between melatonin and Bmal1, this research explores the potential synergistic efficacy of combining these pharmaceutical agents with melatonin for AD treatment.

Methods: Using molecular docking and MM/PBSA methodologies, this research determines the binding affinities of drugs within the Bmal1 binding site, constructing interaction profiles.

Results: The findings reveal that, among FDA-approved drugs, galanthamine and donepezil demonstrate notably similar binding energy values to melatonin, interacting within the Bmal1 binding site through analogous amino acid residues and functional groups.

Conclusion: A novel therapeutic approach emerges, suggesting the combination of melatonin with Lecanemab as a monoclonal antibody therapy. Importantly, prior research has not explored the effects of FDA-approved drugs on Bmal1 expression or their potential for synergistic effects.

[1]
Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of alzheimer’s disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[2]
Wang, M.; Yu, H.; Li, S.; Xiang, Y.; Le, W. Altered biological rhythm and alzheimer’s disease: A bidirectional relationship. Curr. Alzheimer Res., 2021, 18(9), 667-675.
[http://dx.doi.org/10.2174/1567205018666211124104710] [PMID: 34819005]
[3]
Ahmad, F.; Sachdeva, P.; Sarkar, J.; Izhaar, R. Circadian dysfunction and Alzheimer’s disease – An updated review. Aging Med., 2023, 6(1), 71-81.
[http://dx.doi.org/10.1002/agm2.12221] [PMID: 36911088]
[4]
Wong, S.D.; Wright, K.P., Jr; Spencer, R.L.; Vetter, C.; Hicks, L.M.; Jenni, O.G.; LeBourgeois, M.K. Development of the circadian system in early life: Maternal and environmental factors. J. Physiol. Anthropol., 2022, 41(1), 22.
[http://dx.doi.org/10.1186/s40101-022-00294-0] [PMID: 35578354]
[5]
Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J. Pharmacokinet. Pharmacodyn., 2021, 48(3), 321-338.
[http://dx.doi.org/10.1007/s10928-021-09751-2] [PMID: 33797011]
[6]
Stranahan, A.M. Chronobiological approaches to Alzheimer’s disease. Curr. Alzheimer Res., 2012, 9(1), 93-98.
[http://dx.doi.org/10.2174/156720512799015028] [PMID: 22329654]
[7]
Fan, R.; Peng, X.; Xie, L.; Dong, K.; Ma, D.; Xu, W.; Shi, X.; Zhang, S.; Chen, J.; Yu, X.; Yang, Y. Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell, 2022, 21(10), e13704.
[http://dx.doi.org/10.1111/acel.13704] [PMID: 36056774]
[8]
Zhang, W.; Xiong, Y.; Tao, R.; Panayi, A.C.; Mi, B.; Liu, G. Emerging insight into the role of circadian clock gene bmal1 in cellular senescence. Front. Endocrinol., 2022, 13, 915139.
[http://dx.doi.org/10.3389/fendo.2022.915139] [PMID: 35733785]
[9]
Juliana, N.; Azmi, L.; Effendy, N.M.; Teng, M.F.N.I.; Abu, I.F.; Abu Bakar, N.N.; Azmani, S.; Yazit, N.A.A.; Kadiman, S.; Das, S. Effect of circadian rhythm disturbance on the human musculoskeletal system and the importance of nutritional strategies. Nutrients, 2023, 15(3), 734.
[http://dx.doi.org/10.3390/nu15030734] [PMID: 36771440]
[10]
Lananna, B.V.; Musiek, E.S. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol. Dis., 2020, 139, 104832.
[http://dx.doi.org/10.1016/j.nbd.2020.104832] [PMID: 32179175]
[11]
Alexander, R.K.; Liou, Y.H.; Knudsen, N.H.; Starost, K.A.; Xu, C.; Hyde, A.L.; Liu, S.; Jacobi, D.; Liao, N.S.; Lee, C.H. Bmal1 integrates mitochondrial metabolism and macrophage activation. eLife, 2020, 9, e54090.
[http://dx.doi.org/10.7554/eLife.54090] [PMID: 32396064]
[12]
Ahmad, K.; Baig, M.H.; Mushtaq, G.; Kamal, M.A.; Greig, N.H.; Choi, I. Commonalities in biological pathways, genetics, and cellular mechanism between alzheimer disease and other neurodegenerative diseases: An in silico-updated overview. Curr. Alzheimer Res., 2017, 14(11), 1190-1197.
[http://dx.doi.org/10.2174/1567205014666170203141151] [PMID: 28164765]
[13]
Fowler, S.; Hoedt, E.C.; Talley, N.J.; Keely, S.; Burns, G.L. Circadian rhythms and melatonin metabolism in patients with disorders of gut-brain interactions. Front. Neurosci., 2022, 16, 825246.
[http://dx.doi.org/10.3389/fnins.2022.825246] [PMID: 35356051]
[14]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[15]
Homolak, J.; Mudrovčić, M.; Vukić, B.; Toljan, K. Circadian rhythm and alzheimer’s disease. Med. Sci., 2018, 6(3), 52.
[http://dx.doi.org/10.3390/medsci6030052] [PMID: 29933646]
[16]
Hoyt, K.R.; Obrietan, K. Circadian clocks, cognition, and Alzheimer’s disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol. Neurodegener., 2022, 17(1), 35.
[http://dx.doi.org/10.1186/s13024-022-00537-9] [PMID: 35525980]
[17]
Poeggeler, B.; Miravalle, L.; Zagorski, M.G.; Wisniewski, T.; Chyan, Y.J.; Zhang, Y.; Shao, H.; Thomas, B.T.; Vidal, R.; Frangione, B.; Ghiso, J.; Pappolla, M.A. Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry, 2001, 40(49), 14995-15001.
[http://dx.doi.org/10.1021/bi0114269] [PMID: 11732920]
[18]
Singh, P.; Gupta, S.; Sharma, B. Melatonin receptor and KATP channel modulation in experimental vascular dementia. Physiol. Behav., 2015, 142, 66-78.
[http://dx.doi.org/10.1016/j.physbeh.2015.02.009] [PMID: 25659733]
[19]
Gupta, S.; Sharma, B. Pharmacological benefits of agomelatine and vanillin in experimental model of Huntington’s disease. Pharmacol. Biochem. Behav., 2014, 122, 122-135.
[http://dx.doi.org/10.1016/j.pbb.2014.03.022] [PMID: 24704436]
[20]
Li, Y.; Zhang, J.; Wan, J.; Liu, A.; Sun, J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed. Pharmacother., 2020, 132, 110887.
[http://dx.doi.org/10.1016/j.biopha.2020.110887] [PMID: 33254429]
[21]
Pappolla, M.A.; Matsubara, E.; Vidal, R.; Quinto, P.J.; Poeggeler, B.; Zagorski, M.; Sambamurti, K. Melatonin treatment enhances Aβ lymphatic clearance in a transgenic mouse model of amyloidosis. Curr. Alzheimer Res., 2018, 15(7), 637-642.
[http://dx.doi.org/10.2174/1567205015666180411092551] [PMID: 29637859]
[22]
Riedel, G.; Klein, J.; Niewiadomska, G.; Kondak, C.; Schwab, K.; Lauer, D.; Magbagbeolu, M.; Steczkowska, M.; Zadrozny, M.; Wydrych, M.; Cranston, A.; Melis, V.; Santos, R.X.; Theuring, F.; Harrington, C.R.; Wischik, C.M. Mechanisms of anticholinesterase interference with tau aggregation inhibitor activity in a tau-transgenic mouse model. Curr. Alzheimer Res., 2020, 17(3), 285-296.
[http://dx.doi.org/10.2174/1567205017666200224120926] [PMID: 32091331]
[23]
Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6] [PMID: 24944370]
[24]
Lavecchia, A.; Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[25]
Doruk, Y.U.; Yarparvar, D.; Akyel, Y.K.; Gul, S.; Taskin, A.C.; Yilmaz, F.; Baris, I.; Ozturk, N.; Türkay, M.; Ozturk, N.; Okyar, A.; Kavakli, I.H. A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. J. Biol. Chem., 2020, 295(11), 3518-3531.
[http://dx.doi.org/10.1074/jbc.RA119.011332] [PMID: 32019867]
[26]
van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; Froelich, L.; Katayama, S.; Sabbagh, M.; Vellas, B.; Watson, D.; Dhadda, S.; Irizarry, M.; Kramer, L.D.; Iwatsubo, T. Lecanemab in early alzheimer’s disease. N. Engl. J. Med., 2023, 388(1), 9-21.
[http://dx.doi.org/10.1056/NEJMoa2212948] [PMID: 36449413]
[27]
Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res., 2006, 34(Web Server), W116-W118.
[http://dx.doi.org/10.1093/nar/gkl282] [PMID: 16844972]
[28]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[29]
Erdag, E.; Haskologlu, I.C.; Mercan, M.; Abacioglu, N.; Sehirli, A.O. An in silico investigation: Can melatonin serve as an adjuvant in NR1D1-linked chronotherapy for amyotrophic lateral sclerosis? Chronobiol. Int., 2023, 40(10), 1395-1403.
[http://dx.doi.org/10.1080/07420528.2023.2265476] [PMID: 37781884]
[30]
Rastelli, G.; Rio, A.D.; Degliesposti, G.; Sgobba, M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem., 2010, 31(4), 797-810.
[http://dx.doi.org/10.1002/jcc.21372] [PMID: 19569205]
[31]
Kozakov, D.; Hall, D.R.; Beglov, D.; Brenke, R.; Comeau, S.R.; Shen, Y.; Li, K.; Zheng, J.; Vakili, P.; Paschalidis, I.C.; Vajda, S. Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins, 2010, 78(15), 3124-3130.
[http://dx.doi.org/10.1002/prot.22835] [PMID: 20818657]
[32]
Brenke, R.; Hall, D.R.; Chuang, G.Y.; Comeau, S.R.; Bohnuud, T.; Beglov, D.; Furman, S.O.; Vajda, S.; Kozakov, D. Application of asymmetric statistical potentials to antibody–protein docking. Bioinformatics, 2012, 28(20), 2608-2614.
[http://dx.doi.org/10.1093/bioinformatics/bts493] [PMID: 23053206]
[33]
Xia, B.; Vajda, S.; Kozakov, D. Accounting for pairwise distance restraints in FFT-based protein–protein docking. Bioinformatics, 2016, 32(21), 3342-3344.
[http://dx.doi.org/10.1093/bioinformatics/btw306] [PMID: 27357172]
[34]
Hastings, M.H.; Goedert, M. Circadian clocks and neurodegenerative diseases: Time to aggregate? Curr. Opin. Neurobiol., 2013, 23(5), 880-887.
[http://dx.doi.org/10.1016/j.conb.2013.05.004] [PMID: 23797088]
[35]
McKee, C.A.; Lee, J.; Cai, Y.; Saito, T.; Saido, T.; Musiek, E.S. Astrocytes deficient in circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque burden. Sci. Rep., 2022, 12(1), 1796.
[http://dx.doi.org/10.1038/s41598-022-05862-z] [PMID: 35110643]
[36]
Kress, G.J.; Liao, F.; Dimitry, J.; Cedeno, M.R.; FitzGerald, G.A.; Holtzman, D.M.; Musiek, E.S. Regulation of amyloid-β dynamics and pathology by the circadian clock. J. Exp. Med., 2018, 215(4), 1059-1068.
[http://dx.doi.org/10.1084/jem.20172347] [PMID: 29382695]
[37]
Lee, J.; Kim, D.E.; Griffin, P.; Sheehan, P.W.; Kim, D.H.; Musiek, E.S.; Yoon, S.Y. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell, 2020, 19(2), e13078.
[http://dx.doi.org/10.1111/acel.13078] [PMID: 31800167]
[38]
Schurhoff, N.; Toborek, M. Circadian rhythms in the blood–brain barrier: Impact on neurological disorders and stress responses. Mol. Brain, 2023, 16(1), 5.
[http://dx.doi.org/10.1186/s13041-023-00997-0] [PMID: 36635730]
[39]
Nakazato, R.; Kawabe, K.; Yamada, D.; Ikeno, S.; Mieda, M.; Shimba, S.; Hinoi, E.; Yoneda, Y.; Takarada, T. Disruption of Bmal1 impairs blood–brain barrier integrity via pericyte dysfunction. J. Neurosci., 2017, 37(42), 10052-10062.
[http://dx.doi.org/10.1523/JNEUROSCI.3639-16.2017] [PMID: 28912161]
[40]
Zhu, L.Q.; Wang, S.H.; Ling, Z.Q.; Wang, D.L.; Wang, J.Z. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J. Pineal Res., 2004, 37(2), 71-77.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00136.x] [PMID: 15298664]
[41]
Hulme, B.; Didikoglu, A.; Bradburn, S.; Robinson, A.; Canal, M.; Payton, A.; Pendleton, N.; Murgatroyd, C. Epigenetic regulation of BMAL1 with sleep disturbances and alzheimer’s disease. J. Alzheimers Dis., 2020, 77(4), 1783-1792.
[http://dx.doi.org/10.3233/JAD-200634] [PMID: 32925059]
[42]
Gradisnik, L.; Velnar, T. Astrocytes in the central nervous system and their functions in health and disease: A review. World J. Clin. Cases, 2023, 11(15), 3385-3394.
[http://dx.doi.org/10.12998/wjcc.v11.i15.3385] [PMID: 37383914]
[43]
Mirzaei, N.; Davis, N.; Chau, T.W.; Sastre, M. Astrocyte reactivity in alzheimer’s disease: Therapeutic opportunities to promote repair. Curr. Alzheimer Res., 2022, 19(1), 1-15.
[http://dx.doi.org/10.2174/1567205018666211029164106] [PMID: 34719372]
[44]
Viveros, M.L.; Gutierrez, M.C.; Castro, C.C.; Covarrubias, E.Q.; Montellier, E.; Vázquez, C.E.; Noriega, L.G.; Villegas, V.L.A.; Tovar, A.R.; Corsi, S.P.; Arnal, A.L.; Solis, O.R. Astrocytic circadian clock control of energy expenditure by transcriptional stress responses in the ventromedial hypothalamus. Glia, 2023, 71(7), 1626-1647.
[http://dx.doi.org/10.1002/glia.24360] [PMID: 36919670]
[45]
Iweka, C.A.; Seigneur, E.; Hernandez, A.L.; Paredes, S.H.; Cabrera, M.; Blacher, E.; Pasternak, C.T.; Longo, F.M.; De Lecea, L.; Andreasson, K.I. Myeloid deficiency of the intrinsic clock protein BMAL1 accelerates cognitive aging by disrupting microglial synaptic pruning. J. Neuroinflammation, 2023, 20(1), 48.
[http://dx.doi.org/10.1186/s12974-023-02727-8] [PMID: 36829230]
[46]
Mayo, B.O.; Espinal, P.M.; Follert, P.; Armirotti, A.; Berdondini, L.; De Tonelli, P.D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun., 2017, 8(1), 14336.
[http://dx.doi.org/10.1038/ncomms14336] [PMID: 28186121]
[47]
Musiek, E.S.; Lim, M.M.; Yang, G.; Bauer, A.Q.; Qi, L.; Lee, Y.; Roh, J.H.; Gonzalez, O.X.; Dearborn, J.T.; Culver, J.P.; Herzog, E.D.; Hogenesch, J.B.; Wozniak, D.F.; Dikranian, K.; Giasson, B.I.; Weaver, D.R.; Holtzman, D.M.; FitzGerald, G.A. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Invest., 2013, 123(12), 5389-5400.
[http://dx.doi.org/10.1172/JCI70317] [PMID: 24270424]
[48]
Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of melatonin in alleviating alzheimer’s disease. Curr. Neuropharmacol., 2017, 15(7), 1010-1031.
[http://dx.doi.org/10.2174/1570159X15666170313123454] [PMID: 28294066]
[49]
Roy, J.; Tsui, K.C.; Ng, J.; Fung, M.L.; Lim, L.W. Regulation of melatonin and neurotransmission in alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(13), 6841.
[http://dx.doi.org/10.3390/ijms22136841] [PMID: 34202125]
[50]
Nous, A.; Engelborghs, S.; Smolders, I. Melatonin levels in the Alzheimer’s disease continuum: A systematic review. Alzheimers Res. Ther., 2021, 13(1), 52.
[http://dx.doi.org/10.1186/s13195-021-00788-6] [PMID: 33622399]
[51]
Hossain, M.F.; Wang, N.; Chen, R.; Li, S.; Roy, J.; Uddin, M.G.; Li, Z.; Lim, L.W.; Song, Y.Q. Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer’s disease neuropathology. Ageing Res. Rev., 2021, 67, 101304.
[http://dx.doi.org/10.1016/j.arr.2021.101304] [PMID: 33610813]
[52]
Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci., 2006, 26(35), 9057-9068.
[http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006] [PMID: 16943564]
[53]
Butterfield, D.A.; Drake, J.; Pocernich, C.; Castegna, A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid β-peptide. Trends Mol. Med., 2001, 7(12), 548-554.
[http://dx.doi.org/10.1016/S1471-4914(01)02173-6] [PMID: 11733217]
[54]
Andrade, M.K.; Souza, L.C.; Azevedo, E.M.; Bail, E.L.; Zanata, S.M.; Andreatini, R.; Vital, M.A.B.F. Melatonin reduces β-amyloid accumulation and improves short-term memory in streptozotocin-induced sporadic Alzheimer’s disease model. IBRO Neurosci. Rep., 2023, 14, 264-272.
[http://dx.doi.org/10.1016/j.ibneur.2023.01.005] [PMID: 36926592]
[55]
Wu, Y.H.; Zhou, J.N.; Van Heerikhuize, J.; Jockers, R.; Swaab, D.F. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol. Aging, 2007, 28(8), 1239-1247.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.002] [PMID: 16837102]
[56]
Savaskan, E.; Ayoub, M.A.; Ravid, R.; Angeloni, D.; Fraschini, F.; Meier, F.; Eckert, A.; Spahn, M.F.; Jockers, R. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J. Pineal Res., 2005, 38(1), 10-16.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00169.x] [PMID: 15617532]
[57]
Song, J. Pineal gland dysfunction in Alzheimer’s disease: Relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol. Neurodegener., 2019, 14(1), 28.
[http://dx.doi.org/10.1186/s13024-019-0330-8] [PMID: 31296240]
[58]
Matsubara, E.; Thomas, B.T.; Quinto, P.J.; Henry, T.L.; Poeggeler, B.; Herbert, D.; Sanchez, C.F.; Chyan, Y.J.; Smith, M.A.; Perry, G.; Shoji, M.; Abe, K.; Leone, A.; Ikbal, G.I.; Wilson, G.L.; Ghiso, J.; Williams, C.; Refolo, L.M.; Pappolla, M.A.; Chain, D.G.; Neria, E. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J. Neurochem., 2003, 85(5), 1101-1108.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01654.x] [PMID: 12753069]
[59]
Cheng, Y.; Feng, Z.; Zhang, Q.; Zhang, J. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol. Sin., 2006, 27(2), 129-139.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00267.x] [PMID: 16412260]
[60]
Wang, L.M.; Suthana, N.A.; Chaudhury, D.; Weaver, D.R.; Colwell, C.S. Melatonin inhibits hippocampal long-term potentiation. Eur. J. Neurosci., 2005, 22(9), 2231-2237.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04408.x] [PMID: 16262661]
[61]
Zhu, D.; Yang, N.; Liu, Y.Y.; Zheng, J.; Ji, C.; Zuo, P.P. M2 macrophage transplantation ameliorates cognitive dysfunction in amyloid-β-treated rats through regulation of microglial polarization. J. Alzheimers Dis., 2016, 52(2), 483-495.
[http://dx.doi.org/10.3233/JAD-151090] [PMID: 27003214]
[62]
Yao, K.; Zu, H. Microglial polarization: Novel therapeutic mechanism against Alzheimer’s disease. Inflammopharmacology, 2020, 28(1), 95-110.
[http://dx.doi.org/10.1007/s10787-019-00613-5] [PMID: 31264132]
[63]
Wongchitrat, P.; Lansubsakul, N.; Kamsrijai, U.; Sae-Ung, K.; Mukda, S.; Govitrapong, P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem. Int., 2016, 100, 97-109.
[http://dx.doi.org/10.1016/j.neuint.2016.09.006] [PMID: 27620814]
[64]
Kamsrijai, U.; Wongchitrat, P.; Nopparat, C.; Satayavivad, J.; Govitrapong, P. Melatonin attenuates streptozotocin-induced Alzheimer-like features in hyperglycemic rats. Neurochem. Int., 2020, 132, 104601.
[http://dx.doi.org/10.1016/j.neuint.2019.104601] [PMID: 31726088]
[65]
Musiek, E.S.; Xiong, D.D.; Holtzman, D.M. Sleep, circadian rhythms, and the pathogenesis of Alzheimer Disease. Exp. Mol. Med., 2015, 47(3), e148.
[http://dx.doi.org/10.1038/emm.2014.121] [PMID: 25766617]
[66]
Satlin, A.; Volicer, L.; Stopa, E.G.; Harper, D. Circadian locomotor activity and core-body temperature rhythms in Alzheimer’s disease. Neurobiol. Aging, 1995, 16(5), 765-771.
[http://dx.doi.org/10.1016/0197-4580(95)00059-N] [PMID: 8532109]
[67]
van Someren, E.J.W.; Hagebeuk, E.E.O.; Lijzenga, C.; Scheltens, P.; de Rooij, S.E.J.A.; Jonker, C.; Pot, A.M.; Mirmiran, M.; Swaab, D.F. Circadian rest—activity rhythm disturbances in alzheimer’s disease. Biol. Psychiatry, 1996, 40(4), 259-270.
[http://dx.doi.org/10.1016/0006-3223(95)00370-3] [PMID: 8871772]
[68]
Lee, J.H.; Bliwise, D.L.; Ansari, F.P.; Goldstein, F.C.; Cellar, J.S.; Lah, J.J.; Levey, A.I. Daytime sleepiness and functional impairment in Alzheimer disease. Am. J. Geriatr. Psychiatry, 2007, 15(7), 620-626.
[http://dx.doi.org/10.1097/JGP.0b013e3180381521] [PMID: 17586786]
[69]
Merlino, G.; Piani, A.; Gigli, G.L.; Cancelli, I.; Rinaldi, A.; Baroselli, A.; Serafini, A.; Zanchettin, B.; Valente, M. Daytime sleepiness is associated with dementia and cognitive decline in older Italian adults: A population-based study. Sleep Med., 2010, 11(4), 372-377.
[http://dx.doi.org/10.1016/j.sleep.2009.07.018] [PMID: 20219426]
[70]
Lee, J.H.; Friedland, R.; Whitehouse, P.J.; Woo, J.I. Twenty-four-hour rhythms of sleep-wake cycle and temperature in Alzheimer’s disease. J. Neuropsychiatry Clin. Neurosci., 2004, 16(2), 192-198.
[http://dx.doi.org/10.1176/jnp.16.2.192] [PMID: 15260371]
[71]
Hatfield, C.F.; Herbert, J.; van Someren, E.J.; Hodges, J.R.; Hastings, M.H. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain, 2004, 127(5), 1061-1074.
[http://dx.doi.org/10.1093/brain/awh129] [PMID: 14998915]
[72]
Hartmann, A.; Veldhuis, J.D.; Deuschle, M.; Standhardt, H.; Heuser, I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiol. Aging, 1997, 18(3), 285-289.
[http://dx.doi.org/10.1016/S0197-4580(97)80309-0] [PMID: 9263193]
[73]
Cermakian, N.; Lamont, W.E.; Boudreau, P.; Boivin, D.B. Circadian clock gene expression in brain regions of Alzheimer 's disease patients and control subjects. J. Biol. Rhythms, 2011, 26(2), 160-170.
[http://dx.doi.org/10.1177/0748730410395732] [PMID: 21454296]
[74]
Stopa, E.G.; Volicer, L.; Leblanc, K.V.; Harper, D.; Lathi, D.; Tate, B.; Satlin, A. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol., 1999, 58(1), 29-39.
[http://dx.doi.org/10.1097/00005072-199901000-00004] [PMID: 10068311]
[75]
Zhou, J.; Hofman, M.A.; Swaab, D.F. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol. Aging, 1995, 16(4), 571-576.
[http://dx.doi.org/10.1016/0197-4580(95)00043-E] [PMID: 8544907]
[76]
Schmidt, C.; Peigneux, P.; Cajochen, C. Age-related changes in sleep and circadian rhythms: Impact on cognitive performance and underlying neuroanatomical networks. Front. Neurol., 2012, 3, 118.
[http://dx.doi.org/10.3389/fneur.2012.00118] [PMID: 22855682]
[77]
Huang, N.; Chelliah, Y.; Shan, Y.; Taylor, C.A.; Yoo, S.H.; Partch, C.; Green, C.B.; Zhang, H.; Takahashi, J.S. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science, 2012, 337(6091), 189-194.
[http://dx.doi.org/10.1126/science.1222804] [PMID: 22653727]