Mini-Reviews in Medicinal Chemistry

Author(s): Diego Quiroga* and Carlos Coy-Barrera

DOI: 10.2174/0113895575275799240306105615

Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions

Page: [1651 - 1684] Pages: 34

  • * (Excluding Mailing and Handling)

Abstract

Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.

Graphical Abstract

[1]
Kou, S.G.; Peters, L.; Mucalo, M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr. Polym., 2022, 282, 119132.
[http://dx.doi.org/10.1016/j.carbpol.2022.119132] [PMID: 35123764]
[2]
Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[3]
Zargar, V.; Asghari, M.; Dashti, A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev., 2015, 2(3), 204-226.
[http://dx.doi.org/10.1002/cben.201400025]
[4]
Kumirska, J.; Weinhold, M.X.; Thöming, J.; Stepnowski, P. Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of n-acetylation. Polymers, 2011, 3(4), 1875-1901.
[http://dx.doi.org/10.3390/polym3041875]
[5]
Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan nanoparticles: A promising system in novel drug delivery. Chem. Pharm. Bull., 2010, 58(11), 1423-1430.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[6]
Dias, A.M.; dos Santos Cabrera, M.P.; Lima, A.M.F.; Taboga, S.R.; Vilamaior, P.S.L.; Tiera, M.J.; de Oliveira Tiera, V.A. Insights on the antifungal activity of amphiphilic derivatives of diethylaminoethyl chitosan against Aspergillus flavus. Carbohydr. Polym., 2018, 196, 433-444.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.032] [PMID: 29891316]
[7]
Ziani, K.; Fernández-Pan, I.; Royo, M.; Maté, J.I. Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll., 2009, 23(8), 2309-2314.
[http://dx.doi.org/10.1016/j.foodhyd.2009.06.005]
[8]
Congur, G.; Eksin, E.; Erdem, A. Chitosan modified graphite electrodes developed for electrochemical monitoring of interaction between daunorubicin and DNA. Sens. Biosensing Res., 2019, 22, 100255.
[http://dx.doi.org/10.1016/j.sbsr.2018.100255]
[9]
Aher, P.D.; Patil, Y.D.; Waysal, S.M.; Bhoi, A.M. Critical review on biopolymer composites used in concrete. Mater. Today Proc., 2023, S2214785323040828.
[http://dx.doi.org/10.1016/j.matpr.2023.07.212]
[10]
Platnieks, O.; Beluns, S.; Briede, S.; Jurinovs, M.; Gaidukovs, S. Cellulose synergetic interactions with biopolymers: Functionalization for sustainable and green material design. Ind. Crops Prod., 2023, 204, 117310.
[http://dx.doi.org/10.1016/j.indcrop.2023.117310]
[11]
Wang, X.; Zhang, H.J.; Yang, Y.; Chen, Y.; Zhu, X.; You, X. Biopolymer-based self-healing hydrogels: A short review. Giant, 2023, 16, 100188.
[http://dx.doi.org/10.1016/j.giant.2023.100188]
[12]
Patel, D.K.; Jung, E.; Priya, S.; Won, S.Y.; Han, S.S. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr. Polym., 2024, 323, 121408.
[http://dx.doi.org/10.1016/j.carbpol.2023.121408] [PMID: 37940291]
[13]
Ilman, B.; Balkis, A.P. Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties. J. Build. Eng., 2023, 76, 107220.
[http://dx.doi.org/10.1016/j.jobe.2023.107220]
[14]
Xiao, R.; Zhou, G.; Wen, Y.; Ye, J.; Li, X.; Wang, X. Recent advances on stimuli-responsive biopolymer-based nanocomposites for drug delivery. Compos., Part B Eng., 2023, 266, 111018.
[http://dx.doi.org/10.1016/j.compositesb.2023.111018]
[15]
Kumar, A.; Mishra, R.K.; Verma, K.; Aldosari, S.M.; Maity, C.K.; Verma, S.; Patel, R.; Thakur, V.K. A comprehensive review of various biopolymer composites and their applications: From biocompatibility to self-healing. Mat. Today Sustay, 2023, 23, 100431.
[http://dx.doi.org/10.1016/j.mtsust.2023.100431]
[16]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001]
[17]
Riaz Rajoka, M.S.; Zhao, L.; Mehwish, H.M.; Wu, Y.; Mahmood, S. Chitosan and its derivatives: Synthesis, biotechnological applications, and future challenges. Appl. Microbiol. Biotechnol., 2019, 103(4), 1557-1571.
[http://dx.doi.org/10.1007/s00253-018-9550-z] [PMID: 30607489]
[18]
Pawłowski, Ł.; Bartmański, M.; Strugała, G.; Mielewczyk-Gryń, A.; Jażdżewska, M.; Zieliński, A. Electrophoretic deposition and characterization of chitosan/eudragit e 100 coatings on titanium substrate. Coatings, 2020, 10(7), 607.
[http://dx.doi.org/10.3390/coatings10070607]
[19]
Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 2011, 36(8), 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[20]
Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res., 1997, 14(10), 1431-1436.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[21]
Muzzarelli, R.; El Mehtedi, M.; Bottegoni, C.; Aquili, A.; Gigante, A. Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar. Drugs, 2015, 13(12), 7314-7338.
[http://dx.doi.org/10.3390/md13127068] [PMID: 26690453]
[22]
Facchinatto, W.M.; Santos, D.M.; Fiamingo, A.; Bernardes-Filho, R.; Campana-Filho, S.P.; Azevedo, E.R.; Colnago, L.A. Evaluation of chitosan crystallinity: A high-resolution solid-state NMR spectroscopy approach. Carbohydr. Polym., 2020, 250, 116891.
[http://dx.doi.org/10.1016/j.carbpol.2020.116891] [PMID: 33049828]
[23]
Alhusaiki Alghamdi, H.M. Structural, morphological, optical, and electrical characteristics of polyethylene oxide/chitosan-copper oxide nanoparticles for optoelectronic applications. Opt. Mater., 2022, 134, 113101.
[http://dx.doi.org/10.1016/j.optmat.2022.113101]
[24]
Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 2005, 30(1), 38-70.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.11.002]
[25]
Acosta-Ferreira, S.; Castillo, O.S.; Madera-Santana, J.T.; Mendoza-García, D.A.; Núñez-Colín, C.A.; Grijalva-Verdugo, C.; Villa-Lerma, A.G.; Morales-Vargas, A.T.; Rodríguez-Núñez, J.R. Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnol. Rep. , 2020, 28, e00554.
[http://dx.doi.org/10.1016/j.btre.2020.e00554] [PMID: 33209590]
[26]
Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm., 2012, 437(1-2), 110-119.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.001] [PMID: 22903048]
[27]
Xie, W. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr. Polym., 2002, 50(1), 35-40.
[http://dx.doi.org/10.1016/S0144-8617(01)00370-8]
[28]
Harish Prashanth, K. Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr. Polym., 2002, 50(1), 27-33.
[http://dx.doi.org/10.1016/S0144-8617(01)00371-X]
[29]
Mi, F.L.; Sung, H.W.; Shyu, S.S.; Su, C.C.; Peng, C.K. Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer, 2003, 44(21), 6521-6530.
[http://dx.doi.org/10.1016/S0032-3861(03)00620-7]
[30]
Osman, Z.; Arof, A.K. FTIR studies of chitosan acetate based polymer electrolytes. Electrochim. Acta, 2003, 48(8), 993-999.
[http://dx.doi.org/10.1016/S0013-4686(02)00812-5]
[31]
Sun, R.; Fang, L.; Lv, X.; Fang, J.; Wang, Y.; Chen, D.; Wang, L.; Chen, J.; Qi, Y.; Tang, Z.; Zhang, J.; Tian, Y. In vitro and in vivo evaluation of self-assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor. Drug Deliv., 2021, 28(1), 2071-2084.
[http://dx.doi.org/10.1080/10717544.2021.1983077] [PMID: 34595970]
[32]
Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer−clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater., 2003, 15(20), 3774-3780.
[http://dx.doi.org/10.1021/cm0343047]
[33]
Jayasekara, R.; Harding, I.; Bowater, I.; Christie, G.B.Y.; Lonergan, G.T. Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym. Test., 2004, 23(1), 17-27.
[http://dx.doi.org/10.1016/S0142-9418(03)00049-7]
[34]
Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir, 2013, 29(5), 1657-1668.
[http://dx.doi.org/10.1021/la304696y] [PMID: 23301870]
[35]
Wu, J.; Zhong, F.; Li, Y.; Shoemaker, C.F.; Xia, W. Preparation and characterization of pullulan–chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocoll., 2013, 30(1), 82-91.
[http://dx.doi.org/10.1016/j.foodhyd.2012.04.002]
[36]
Auta, M.; Hameed, B.H. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J., 2014, 237, 352-361.
[http://dx.doi.org/10.1016/j.cej.2013.09.066]
[37]
Tanhaei, B.; Ayati, A.; Lahtinen, M.; Sillanpää, M. Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chem. Eng. J., 2015, 259, 1-10.
[http://dx.doi.org/10.1016/j.cej.2014.07.109]
[38]
Gong, X.; Lu, W.; Paau, M.C.; Hu, Q.; Wu, X.; Shuang, S.; Dong, C.; Choi, M.M.F. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Anal. Chim. Acta, 2015, 861, 74-84.
[http://dx.doi.org/10.1016/j.aca.2014.12.045] [PMID: 25702277]
[39]
Hosseini, M.; Amiri, M.; Ghanbari, M.; Mahdi, M.A.; Abdulsahib, W.K.; Salavati-Niasari, M. Drug delivery based on chitosan, β-cyclodextrin and sodium carboxymethyl cellulose as well as nanocarriers for advanced leukemia treatment. Biomed. Pharmacother., 2022, 153, 113369.
[http://dx.doi.org/10.1016/j.biopha.2022.113369] [PMID: 35780615]
[40]
Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr. Polym., 2017, 163, 81-91.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.016] [PMID: 28267521]
[41]
Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem., 2019, 272, 306-312.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.041] [PMID: 30309548]
[42]
Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem., 2019, 275, 113-122.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.085] [PMID: 30724177]
[43]
Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr. Polym., 2020, 227, 115348.
[http://dx.doi.org/10.1016/j.carbpol.2019.115348] [PMID: 31590881]
[44]
Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J., 2020, 393, 124728.
[http://dx.doi.org/10.1016/j.cej.2020.124728]
[45]
Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym., 2020, 236, 116075.
[http://dx.doi.org/10.1016/j.carbpol.2020.116075] [PMID: 32172888]
[46]
Arshad, N.; Khan, M.; Waseem, M.; Afzal, M.; Alarifi, A.; Zaib Saleem, R.S. Functionalization of surfactant templated magnetite by chitosan and PEGylated/Chitosan – In vitro studies on drug loading, release and anti-proliferative activity. J. Saudi Chem. Soc., 2023, 27(6), 101744.
[http://dx.doi.org/10.1016/j.jscs.2023.101744]
[47]
Lal, J.S.; Radha, D.; Devaky, K.S. Drug release studies of metformin hydrochloride from chitosan: Mango leaf extract microspheres. J. Drug Deliv. Sci. Technol., 2023, 84, 104524.
[http://dx.doi.org/10.1016/j.jddst.2023.104524]
[48]
Tahir, I.; Millevania, J.; Wijaya, K. Mudasir; Wahab, R.A.; Kurniawati, W. Optimization of thiamine chitosan nanoemulsion production using sonication treatment. Result Engine., 2023, 17, 100919.
[http://dx.doi.org/10.1016/j.rineng.2023.100919]
[49]
Yı̇pel, M.; Tekeli, İ.O.; Altinok-Yı̇pel, F.; Coşkun, P.; Aslan, A.; Güvenç, M.; Beyazit, N.; Özsoy, Ş.Y. The protective effect of Boswellic acid and Ellagic acid loaded, colon targeted, and pH-sensitive N-succinyl chitosan in ulcerative colitis rat model. J. Drug Deliv. Sci. Technol., 2022, 68, 103023.
[http://dx.doi.org/10.1016/j.jddst.2021.103023]
[50]
Tian, X.; Yin, H.; Zhang, S.; Luo, Y.; Xu, K.; Ma, P.; Sui, C.; Meng, F.; Liu, Y.; Jiang, Y.; Fang, J. Bufalin loaded biotinylated chitosan nanoparticles: An efficient drug delivery system for targeted chemotherapy against breast carcinoma. Eur. J. Pharm. Biopharm., 2014, 87(3), 445-453.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.010] [PMID: 24846793]
[51]
Mahaninia, M.H.; Wang, Z.; Rajabi-Abhari, A.; Yan, N. Self-healing, flame-retardant, and antimicrobial chitosan-based dynamic covalent hydrogels. Int. J. Biol. Macromol., 2023, 252, 126422.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126422] [PMID: 37598822]
[52]
Evans, C.; Morimitsu, Y.; Hisadome, T.; Inomoto, F.; Yoshida, M.; Takei, T. Optimized hydrophobically modified chitosan cryogels for strength and drug delivery systems. J. Biosci. Bioeng., 2021, 132(1), 81-87.
[http://dx.doi.org/10.1016/j.jbiosc.2021.03.008] [PMID: 33853755]
[53]
Radivojša Matanović, M.; Grabnar, I.; Gosenca, M.; Ahlin Grabnar, P. Prolonged subcutaneous delivery of low molecular weight heparin based on thermoresponsive hydrogels with chitosan nanocomplexes: Design, in vitro evaluation, and cytotoxicity studies. Int. J. Pharm., 2015, 488(1-2), 127-135.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.063] [PMID: 25912230]
[54]
Phunpee, S.; Suktham, K.; Surassmo, S.; Jarussophon, S.; Rungnim, C.; Soottitantawat, A.; Puttipipatkhachorn, S.; Ruktanonchai, U.R. Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. Int. J. Pharm., 2018, 538(1-2), 21-29.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.016] [PMID: 29225100]
[55]
Yang, I.H.; Lin, I.E.; Chen, T.C.; Chen, Z.Y.; Kuan, C.Y.; Lin, J.N.; Chou, Y.C.; Lin, F.H. Synthesis, characterization, and evaluation of BDDE crosslinked chitosan-TGA hydrogel encapsulated with genistein for vaginal atrophy. Carbohydr. Polym., 2021, 260, 117832.
[http://dx.doi.org/10.1016/j.carbpol.2021.117832] [PMID: 33712170]
[56]
Zagórska-Dziok, M.; Kleczkowska, P.; Olędzka, E.; Figat, R.; Sobczak, M. Poly(chitosan-ester-ether-urethane) hydrogels as highly controlled genistein release systems. Int. J. Mol. Sci., 2021, 22(7), 3339.
[http://dx.doi.org/10.3390/ijms22073339] [PMID: 33805204]
[57]
Huang, P.; Yang, C.; Liu, J.; Wang, W.; Guo, S.; Li, J.; Sun, Y.; Dong, H.; Deng, L.; Zhang, J.; Liu, J.; Dong, A. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 4021-4033.
[http://dx.doi.org/10.1039/C4TB00273C] [PMID: 32261653]
[58]
Liang, N.; Sun, S.; Hong, J.; Tian, J.; Fang, L.; Cui, F. In vivo pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on α -tocopherol succinate-modified chitosan. Drug Deliv., 2016, 23(8), 2651-2660.
[http://dx.doi.org/10.3109/10717544.2015.1045103] [PMID: 26165423]
[59]
Nemati Shizari, L.; Mohamadpour Dounighi, N.; Bayat, M.; Mosavari, N. A new amphotericin b-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on candida albicans biofilm. Arch. Razi Inst., 2020, 76(3), 571-586.
[http://dx.doi.org/10.22092/ari.2020.342702.1477]
[60]
Chhonker, Y.S.; Prasad, Y.D.; Chandasana, H.; Vishvkarma, A.; Mitra, K.; Shukla, P.K.; Bhatta, R.S. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int. J. Biol. Macromol., 2015, 72, 1451-1458.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.014] [PMID: 25453292]
[61]
Lonappan, D. Formulation of para-coumaric acid loaded chitosan nanoparticles: In vitro neuroprotective effect against neuroblastoma cell line. Res. J. Pharm. Technol., 2021, 2286-2290.
[http://dx.doi.org/10.52711/0974-360X.2021.00404]
[62]
Radwan-Pragłowska, J.; Janus, Ł.; Piątkowski, M.; Sierakowska, A.; Szajna, E.; Matýsek, D.; Bogdał, D. Development of stimuli-responsive chitosan/zno nps transdermal systems for controlled cannabidiol delivery. Polymers, 2021, 13(2), 211.
[http://dx.doi.org/10.3390/polym13020211] [PMID: 33435623]
[63]
Senthil Kumar, C.; Thangam, R.; Mary, S.A.; Kannan, P.R.; Arun, G.; Madhan, B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr. Polym., 2020, 231, 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[64]
Balan, P.; Indrakumar, J.; Murali, P.; Korrapati, P.S. Bi-faceted delivery of phytochemicals through chitosan nanoparticles impregnated nanofibers for cancer therapeutics. Int. J. Biol. Macromol., 2020, 142, 201-211.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.093] [PMID: 31604079]
[65]
Sheorain, J.; Mehra, M.; Thakur, R.; Grewal, S.; Kumari, S. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int. J. Biol. Macromol., 2019, 125, 1069-1074.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.095] [PMID: 30552929]
[66]
Bektas, N.; Şenel, B.; Yenilmez, E.; Özatik, O.; Arslan, R. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharm. J., 2020, 28(1), 87-94.
[http://dx.doi.org/10.1016/j.jsps.2019.11.008] [PMID: 31933527]
[67]
Berni, E.; Barbosa, R.M.; Durán, N. Chitosan-coated poly (Ɛ-caprolactone) nanoparticles as acaricide carriers. Ticks Tick Borne Dis., 2022, 13(1), 101849.
[http://dx.doi.org/10.1016/j.ttbdis.2021.101849] [PMID: 34656044]
[68]
Sari, M.T.; Kaban, J.; Alfian, Z. Comparison of morphology and compatibility of chitosan membrane and Chi-Pec-Gp. In: AIP Conference Proceedings; , 2018; p. 2049.
[http://dx.doi.org/10.1063/1.5082453]
[69]
Patil, S.; Pandit, A.; Godbole, A.; Dandekar, P.; Jain, R. Chitosan based co-processed excipient for improved tableting. Carbo. Poly. Techno. Appl., 2021, 2, 100071.
[http://dx.doi.org/10.1016/j.carpta.2021.100071]
[70]
Di Gioia, S.; Trapani, A.; Mandracchia, D.; De Giglio, E.; Cometa, S.; Mangini, V.; Arnesano, F.; Belgiovine, G.; Castellani, S.; Pace, L.; Lavecchia, M.A.; Trapani, G.; Conese, M.; Puglisi, G.; Cassano, T. Intranasal delivery of dopamine to the striatum using glycol chitosan/sulfobutylether-β-cyclodextrin based nanoparticles. Eur. J. Pharm. Biopharm., 2015, 94, 180-193.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.019] [PMID: 26032293]
[71]
Rasool, B.K.; Aziz, U.S.; Abu-Gharbieh, E.; Khan, S.A. Development and evaluation of sustained oral ketorolac tromethamine particulate matrix via bioadhesive chitosan based freeze-dried solid dispersions. Curr. Drug Deliv., 2016, 13(2), 275-286.
[http://dx.doi.org/10.2174/1567201812666151012114006] [PMID: 26456210]
[72]
Notario-Pérez, F.; Martín-Illana, A.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bedoya, L.M.; Tamayo, A.; Rubio, J.; Veiga, M.D. Influence of chitosan swelling behaviour on controlled release of tenofovir from mucoadhesive vaginal systems for prevention of sexual transmission of HIV. Mar. Drugs, 2017, 15(2), 50.
[http://dx.doi.org/10.3390/md15020050] [PMID: 28230790]
[73]
Real, D.; Hoffmann, S.; Leonardi, D.; Salomon, C.; Goycoolea, F.M. Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS One, 2018, 13(12), e0207625.
[http://dx.doi.org/10.1371/journal.pone.0207625] [PMID: 30540811]
[74]
M, G.A.; S, A.T.; Ayyavu, M.; A, S.; Kandasamy, R. Synthesis and characterization of cystamine conjugated chitosan-SS-mPEG based 5-Fluorouracil loaded polymeric nanoparticles for redox responsive drug release. Eur. J. Pharm. Sci., 2018, 116, 37-47.
[http://dx.doi.org/10.1016/j.ejps.2017.10.035] [PMID: 29080854]
[75]
Sultanova, E.M.; Salakhutdinova, M.K.; Oshchepkova, Y.I.; Asrorov, A.M.; Oripova, M.J.; Ishimov, U.J.; Salikhov, S.I. Chitosan hydrogel improves bioavailability of megosin. Eur. Pharm. J., 2020, 67(1), 1-6.
[http://dx.doi.org/10.2478/afpuc-2020-0006]
[76]
Liu, F.; Wang, L.; Zhai, X.; Ji, S.; Ye, J.; Zhu, Z.; Teng, C.; Dong, W.; Wei, W. A multi-functional double cross-linked chitosan hydrogel with tunable mechanical and antibacterial properties for skin wound dressing. Carbohydr. Polym., 2023, 322, 121344.
[http://dx.doi.org/10.1016/j.carbpol.2023.121344] [PMID: 37839832]
[77]
Malik, N.S.; Ahmad, M.; Alqahtani, M.S.; Mahmood, A.; Barkat, K.; Khan, M.T.; Tulain, U.R.; Rashid, A. β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: Design, characterization, safety, and pharmacokinetic evaluation. Drug Deliv., 2021, 28(1), 1093-1108.
[http://dx.doi.org/10.1080/10717544.2021.1921074] [PMID: 34114907]
[78]
Addo, R.T.; Yeboah, K.G.; Siwale, R.C.; Siddig, A.; Jones, A.; Ubale, R.V.; Akande, J.; Nettey, H.; Patel, N.J.; Addo, E.; D’Souza, M.J. Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. J. Pharm. Sci., 2015, 104(5), 1677-1690.
[http://dx.doi.org/10.1002/jps.24380] [PMID: 25652269]
[79]
Mirzaeei, S.; Taghe, S.; Asare-Addo, K.; Nokhodchi, A. Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/eudragit rl100 multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: An in vitro and in vivo evaluation. AAPS PharmSciTech, 2021, 22(5), 170.
[http://dx.doi.org/10.1208/s12249-021-02051-5] [PMID: 34085150]
[80]
Abd El Hady, W.E.; Soliman, O.A.E.A.; El Sabbagh, H.M.; Mohamed, E.A. Glutaraldehyde-crosslinked chitosan-polyethylene oxide nanofibers as a potential gastroretentive delivery system of nizatidine for augmented gastroprotective activity. Drug Deliv., 2021, 28(1), 1795-1809.
[http://dx.doi.org/10.1080/10717544.2021.1971796] [PMID: 34470551]
[81]
Xue, M.; Hu, S.; Lu, Y.; Zhang, Y.; Jiang, X.; An, S.; Guo, Y.; Zhou, X.; Hou, H.; Jiang, C. Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor. Int. J. Pharm., 2015, 495(2), 771-782.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.056] [PMID: 26428629]
[82]
Das, S.; Priyadarshani, N.; Basak, P.; Maitra, P.; Bhattacharya, S.; Bhattacharya, S.S. Capsaicin derived from endemic chili landraces combats Shigella pathogen: Insights on intracellular inhibition mechanism. Microb. Pathog., 2023, 181, 106210.
[http://dx.doi.org/10.1016/j.micpath.2023.106210] [PMID: 37343896]
[83]
Kaiser, M.; Pereira, S.; Pohl, L.; Ketelhut, S.; Kemper, B.; Gorzelanny, C.; Galla, H.J.; Moerschbacher, B.M.; Goycoolea, F.M. Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Sci. Rep., 2015, 5(1), 10048.
[http://dx.doi.org/10.1038/srep10048] [PMID: 25970096]
[84]
Gomathi, T.; Govindarajan, C.; Rose H R, M.H. Sudha, P.N.; Imran, P.K.; Venkatesan, J.; Kim, S.K. Studies on drug-polymer interaction, in vitro release and cytotoxicity from chitosan particles excipient. Int. J. Pharm., 2014, 468(1-2), 214-222.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.026] [PMID: 24742716]
[85]
Tang, H.; Wei, W.; Wang, W.; Zha, Z.; Li, T.; Zhang, Z.; Luo, C.; Yin, H.; Huang, F.; Wang, Y. Effects of cultured Cordyceps mycelia polysaccharide A on tumor neurosis factor-α induced hepatocyte injury with mitochondrial abnormality. Carbohydr. Polym., 2017, 163, 43-53.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.019] [PMID: 28267517]
[86]
Bhuiyan, M.H.; Clarkson, A.N.; Ali, M.A. Optimization of thermoresponsive chitosan/β-glycerophosphate hydrogels for injectable neural tissue engineering application. Colloids Surf. B Biointerfaces, 2023, 224, 113193.
[http://dx.doi.org/10.1016/j.colsurfb.2023.113193] [PMID: 36773410]
[87]
Li, Y.; He, J.; Lyu, X.; Yuan, Y.; Wang, G.; Zhao, B. Chitosan-based thermosensitive hydrogel for nasal delivery of exenatide: Effect of magnesium chloride. Int. J. Pharm., 2018, 553(1-2), 375-385.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.071] [PMID: 30389472]
[88]
Jose, S.; Fangueiro, J.F.; Smitha, J.; Cinu, T.A.; Chacko, A.J.; Premaletha, K.; Souto, E.B. Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur. J. Med. Chem., 2013, 60, 249-253.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.011] [PMID: 23313633]
[89]
Piatkowski, M.; Kitala, D.; Radwan-Praglowska, J.; Janus, L.; Klama-Baryla, A.; Labus, W.; Tomanek, E.; Glik, J.; Matysek, D.; Kawecki, M. Chitosan/aminoacid hydrogels with antimicrobial and bioactive properties as new scaffolds for human mesenchymal stem cells culture applicable in wound healing. Express Polym. Lett., 2018, 12(1), 100-112.
[http://dx.doi.org/10.3144/expresspolymlett.2018.8]
[90]
Yasrebi, N.; Zarmi, A.H.; Larypoor, M.; Zeynali, M.; Ebrahimi-Hosseinzadeh, B.; Mokhtari-Hosseini, Z.B.; Alvandi, H. In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor. J. Polym. Res., 2021, 28(10), 399.
[http://dx.doi.org/10.1007/s10965-021-02773-x]
[91]
Jiang, L.; Zhang, M.; Bai, Y.; Cui, F.; Zhang, C.; Wang, Z.; Si, S.; Yang, L.; Wang, Y.; Zhang, Y.; Li, L.; Liu, S.; Wei, X.; Wang, Y.; Xu, Y.; Meng, J. O-carboxymethyl chitosan based pH/hypoxia-responsive micelles relieve hypoxia and induce ROS in tumor microenvironment. Carbohydr. Polym., 2022, 275, 118611.
[http://dx.doi.org/10.1016/j.carbpol.2021.118611] [PMID: 34742454]
[92]
Yu, N.; Li, Y.; Wang, Y.; Xu, H.; Ye, F.; Fu, Q. Healing effect of carboxymethyl chitosan-plantamajoside hydrogel on burn wound skin. Burns, 2022, 48(4), 902-914.
[http://dx.doi.org/10.1016/j.burns.2022.01.019] [PMID: 35153110]
[93]
Jiang, Y.; Huang, J.; Wu, X.; Ren, Y.; Li, Z.; Ren, J. Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. Int. J. Biol. Macromol., 2020, 149, 148-157.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.221] [PMID: 31982523]
[94]
Yun, Y.P.; Yang, D.H.; Kim, S.W.; Park, K.; Ohe, J.Y.; Lee, B.S.; Choi, B.J.; Kim, S.E. Local delivery of recombinant human bone morphogenic protein-2 (rhBMP-2) from rhBMP-2/heparin complex fixed to a chitosan scaffold enhances osteoblast behavior. Tissue Eng. Regen. Med., 2014, 11(2), 163-170.
[http://dx.doi.org/10.1007/s13770-014-0049-0]
[95]
Hild, M.; Toskas, G.; Aibibu, D.; Wittenburg, G.; Meissner, H.; Cherif, C.; Hund, R.D. Chitosan/gelatin micro/nanofiber 3D composite scaffolds for regenerative medicine. Compos. Interfaces, 2014, 21(4), 301-308.
[http://dx.doi.org/10.1080/15685543.2014.852016]
[96]
Przekora, A.; Ginalska, G. Biological properties of novel chitosan-based composites for medical application as bone substitute. Open Life Sci., 2014, 9(6), 634-641.
[http://dx.doi.org/10.2478/s11535-014-0297-y]
[97]
Giretova, M.; Medvecky, L.; Stulajterova, R.; Sopcak, T.; Briancin, J.; Tatarkova, M. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response. J. Mater. Sci. Mater. Med., 2016, 27(12), 181.
[http://dx.doi.org/10.1007/s10856-016-5801-7] [PMID: 27770394]
[98]
Ye, Y.; Pang, Y.; Zhang, Z.; Wu, C.; Jin, J.; Su, M.; Pan, J.; Liu, Y.; Chen, L.; Jin, K. Decellularized periosteum‐covered chitosan globule composite for bone regeneration in rabbit femur condyle bone defects. Macromol. Biosci., 2018, 18(9), 1700424.
[http://dx.doi.org/10.1002/mabi.201700424] [PMID: 29931763]
[99]
Gholap, A.D.; Rojekar, S.; Kapare, H.S.; Vishwakarma, N.; Raikwar, S.; Garkal, A.; Mehta, T.A.; Jadhav, H.; Prajapati, M.K.; Annapure, U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr. Polym., 2024, 323, 121394.
[http://dx.doi.org/10.1016/j.carbpol.2023.121394] [PMID: 37940287]
[100]
Sumathra, M.; Rajan, M.; Munusamy, M.A. A phosphorylated chitosan armed hydroxyapatite nanocomposite for advancing activity on osteoblast and osteosarcoma cells. New J. Chem., 2018, 42(15), 12457-12466.
[http://dx.doi.org/10.1039/C8NJ01316K]
[101]
Miah, M.J.; Paul, S.C.; Babafemi, A.J.; Panda, B. Strength properties of sustainable mortar containing waste steel slag and waste clay brick: Effect of temperature. Materials, 2021, 14(9), 2113.
[http://dx.doi.org/10.3390/ma14092113] [PMID: 33921989]
[102]
Skop, N.B.; Calderon, F.; Levison, S.W.; Gandhi, C.D.; Cho, C.H. Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater., 2013, 9(6), 6834-6843.
[http://dx.doi.org/10.1016/j.actbio.2013.02.043] [PMID: 23467042]
[103]
Dhurai, B.; Saraswathy, N.; Maheswaran, R.; Sethupathi, P.; Vanitha, P.; Vigneshwaran, S.; Rameshbabu, V. Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front. Mater. Sci., 2013, 7(4), 350-361.
[http://dx.doi.org/10.1007/s11706-013-0222-8]
[104]
Ribeiro, M.P.; Morgado, P.I.; Miguel, S.P.; Coutinho, P.; Correia, I.J. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater. Sci. Eng. C, 2013, 33(5), 2958-2966.
[http://dx.doi.org/10.1016/j.msec.2013.03.025] [PMID: 23623119]
[105]
Kashyap, M.; Archana, D.; Semwal, A.; Dutta, J.; Dutta, P.K. Chitosan: a promising substrate for regenerative medicine in drug formulation. In: In Chitin and Chitosan for Regenerative Medicine Springer Series on Polymer and Composite Materials; Dutta, P.K., Ed.; Springer India: New Delhi, 2016; pp. 261-277.
[http://dx.doi.org/10.1007/978-81-322-2511-9_10]
[106]
Kufelt, O.; El-Tamer, A.; Sehring, C.; Meißner, M.; Schlie-Wolter, S.; Chichkov, B.N. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater., 2015, 18, 186-195.
[http://dx.doi.org/10.1016/j.actbio.2015.02.025] [PMID: 25749294]
[107]
Solin, S.L.; Shive, H.R.; Woolard, K.D.; Essner, J.J.; McGrail, M. Rapid tumor induction in zebrafish by TALEN-mediated somatic inactivation of the retinoblastoma1 tumor suppressor rb1. Sci. Rep., 2015, 5(1), 13745.
[http://dx.doi.org/10.1038/srep13745] [PMID: 26345384]
[108]
Vivcharenko, V.; Benko, A.; Palka, K.; Wojcik, M.; Przekora, A. Elastic and biodegradable chitosan/agarose film revealing slightly acidic pH for potential applications in regenerative medicine as artificial skin graft. Int. J. Biol. Macromol., 2020, 164, 172-183.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.099] [PMID: 32682040]
[109]
Noor, N.M.; Abdul-Aziz, A.; Sheikh, K.; Somavarapu, S.; Taylor, K.M.G. In Vitro performance of dutasteride-nanostructured lipid carriers coated with lauric acid-chitosan oligomer for dermal delivery. Pharmaceutics, 2020, 12(10), 994.
[http://dx.doi.org/10.3390/pharmaceutics12100994] [PMID: 33092119]
[110]
Wasko, J.; Fraczyk, J.; Becht, A.; Kaminski, Z.J.; Flinčec Grgac, S.; Tarbuk, A.; Kaminska, M.; Dudek, M.; Gliscinska, E.; Draczynski, Z.; Kolesinska, B. Conjugates of chitosan and calcium alginate with oligoproline and oligohydroxyproline derivatives for potential use in regenerative medicine. Materials, 2020, 13(14), 3079.
[http://dx.doi.org/10.3390/ma13143079] [PMID: 32664253]
[111]
Goller, S.; Turner, N.J. The antimicrobial effectiveness and cytotoxicity of the antibiotic-loaded chitosan: Ecm scaffolds. Appl. Sci., 2020, 10(10), 3446.
[http://dx.doi.org/10.3390/app10103446]
[112]
Grebenik, E.A.; Surin, A.M.; Bardakova, K.N.; Demina, T.S.; Minaev, N.V.; Veryasova, N.N.; Artyukhova, M.A.; Krasilnikova, I.A.; Bakaeva, Z.V.; Sorokina, E.G.; Boyarkin, D.P.; Akopova, T.A.; Pinelis, V.G.; Timashev, P.S. Chitosan-g-oligo(L,L-lactide) copolymer hydrogel for nervous tissue regeneration in glutamate excitotoxicity: In vitro feasibility evaluation. Biomed. Mater., 2020, 15(1), 015011.
[http://dx.doi.org/10.1088/1748-605X/ab6228] [PMID: 31841999]
[113]
Kowalczyk, P.; Podgórski, R.; Wojasiński, M.; Gut, G.; Bojar, W.; Ciach, T. Chitosan-human bone composite granulates for guided bone regeneration. Int. J. Mol. Sci., 2021, 22(5), 2324.
[http://dx.doi.org/10.3390/ijms22052324] [PMID: 33652598]
[114]
Toullec, C.; Le Bideau, J.; Geoffroy, V.; Halgand, B.; Buchtova, N.; Molina-Peña, R.; Garcion, E.; Avril, S.; Sindji, L.; Dube, A.; Boury, F.; Jérôme, C. Curdlan–chitosan electrospun fibers as potential scaffolds for bone regeneration. Polymers, 2021, 13(4), 526.
[http://dx.doi.org/10.3390/polym13040526] [PMID: 33578913]
[115]
Zheng, K.; Feng, G.; Zhang, J.; Xing, J.; Huang, D.; Lian, M.; Zhang, W.; Wu, W.; Hu, Y.; Lu, X.; Feng, X. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int. J. Neurosci., 2021, 131(7), 625-633.
[http://dx.doi.org/10.1080/00207454.2020.1744592] [PMID: 32186218]
[116]
Yoncheva, K.; Merino, M.; Shenol, A.; Daskalov, N.T.; Petkov, P.S.; Vayssilov, G.N.; Garrido, M.J. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model. Int. J. Pharm., 2019, 556, 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.070] [PMID: 30529664]
[117]
Bhatt, H.; Bahadur, J.; Checker, R.; Ajgaonkar, P.; Vishwakarma, S.R.; Sen, D. Influence of molecular interactions on structure, controlled release and cytotoxicity of curcumin encapsulated chitosan: Silica nanostructured microspheres. Colloids Surf. B Biointerfaces, 2021, 208, 112067.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112067] [PMID: 34500202]
[118]
Li, X.; Dong, W.; Nalin, A.P.; Wang, Y.; Pan, P.; Xu, B.; Zhang, Y.; Tun, S.; Zhang, J.; Wang, L.S.; He, X.; Caligiuri, M.A.; Yu, J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. OncoImmunology, 2018, 7(6), e1431085.
[http://dx.doi.org/10.1080/2162402X.2018.1431085] [PMID: 29872557]
[119]
Joseph, J.J.; Sangeetha, D.; Gomathi, T. Sunitinib loaded chitosan nanoparticles formulation and its evaluation. Int. J. Biol. Macromol., 2016, 82, 952-958.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.079] [PMID: 26522243]
[120]
Malekshah, R.E.; Shakeri, F.; Khaleghian, A.; Salehi, M. Developing a biopolymeric chitosan supported Schiff-base and Cu(II), Ni(II) and Zn(II) complexes and biological evaluation as pro-drug. Int. J. Biol. Macromol., 2020, 152, 846-861.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.245] [PMID: 32101766]
[121]
Sivakamavalli, J.; Pandiselvi, K.; Park, K.; Kwak, I.S. Garcinia cambogia assisted synthesis of zno nanoparticles coupled with chitosan for antibacterial, antibiofilm, cytotoxic, anticancer and ecotoxicity assessment. J. Cluster Sci., 2022, 33(5), 2249-2264.
[http://dx.doi.org/10.1007/s10876-021-02032-5]
[122]
Hassan, Y.A.; Alfaifi, M.Y.; Shati, A.A.; Elbehairi, S.E.I.; Elshaarawy, R.F.M.; Kamal, I. Co-delivery of anticancer drugs via poly(ionic crosslinked chitosan-palladium) nanocapsules: Targeting more effective and sustainable cancer therapy. J. Drug Deliv. Sci. Technol., 2022, 69, 103151.
[http://dx.doi.org/10.1016/j.jddst.2022.103151]
[123]
Atun, S. Characterization of nanoparticles produced by chloroform fraction of kaempferia rotunda rhizome loaded with alginic acid and chitosan and its biological activity test. Asian J. Pharm. Clin. Res., 2017, 10(5), 399.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.16936]
[124]
Tran, T.H.; Nguyen, T.D.; Poudel, B.K.; Nguyen, H.T.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Development and evaluation of artesunate-loaded chitosan-coated lipid nanocapsule as a potential drug delivery system against breast cancer. AAPS PharmSciTech, 2015, 16(6), 1307-1316.
[http://dx.doi.org/10.1208/s12249-015-0311-3] [PMID: 25787869]
[125]
Yang, P.; Li, B.; Yin, Q.F.; Wang, Y.J. Carboxymethyl chitosan nanoparticles coupled with CD59-specific ligand peptide for targeted delivery of C-phycocyanin to HeLa cells. Tumour Biol., 2017, 39(3)
[http://dx.doi.org/10.1177/1010428317692267] [PMID: 28347253]
[126]
Ristovski Trifunović, J.; Žižak, Ž.; Marković, S.; Janković, N.; Ignjatović, N. Chitosan nanobeads loaded with Biginelli hybrids as cell-selective toxicity systems with a homogeneous distribution of the cell cycle in cancer treatment. RSC Advances, 2020, 10(68), 41542-41550.
[http://dx.doi.org/10.1039/D0RA08085C] [PMID: 35516580]
[127]
Tang, K.; Sui, L.; Hao, Y.; Wang, X.; Xu, G. A synergic fabrication of chitosan-coated salinomycin-loaded hydroxyapatite potential nanocarriers for the treatment of liver cancer. J. Polym. Environ., 2022, 30(5), 1772-1786.
[http://dx.doi.org/10.1007/s10924-021-02281-5]
[128]
Niu, S.; Zhang, X.; Williams, G.R.; Wu, J.; Gao, F.; Fu, Z.; Chen, X.; Lu, S.; Zhu, L.M. Hollow mesoporous silica nanoparticles gated by chitosan-copper sulfide composites as theranostic agents for the treatment of breast cancer. Acta Biomater., 2021, 126, 408-420.
[http://dx.doi.org/10.1016/j.actbio.2021.03.024] [PMID: 33731303]
[129]
Zeng, X.; Zhu, X.; Tian, Q.; Tan, X.; Sun, N.; Yan, M.; Zhao, J.; Wu, X.; Li, R.; Zhang, Z.; Zeng, H. Celastrol-conjugated chitosan oligosaccharide for the treatment of pancreatic cancer. Drug Deliv., 2022, 29(1), 89-98.
[http://dx.doi.org/10.1080/10717544.2021.2018521] [PMID: 34964425]
[130]
He, C.; Guo, Y.; Karmakar, B.; El-kott, A.; Ahmed, A.E.; Khames, A. Decorated silver nanoparticles on biodegradable magnetic chitosan/starch composite: Investigation of its cytotoxicity, antioxidant and anti-human breast cancer properties. J. Environ. Chem. Eng., 2021, 9(6), 106393.
[http://dx.doi.org/10.1016/j.jece.2021.106393]
[131]
Ganguly, K.; Kulkarni, A.R.; Aminabhavi, T.M. In vitro cytotoxicity and in vivo efficacy of 5-fluorouracil-loaded enteric-coated PEG-cross-linked chitosan microspheres in colorectal cancer therapy in rats. Drug Deliv., 2016, 23(8), 2838-2851.
[http://dx.doi.org/10.3109/10717544.2015.1105324] [PMID: 26530807]
[132]
Pandya, V.M.; Joshi, S.A. Fabrication of novel anticancer polyoxometalate [COW11O39(CPTI)]7- -chitosan nano-composite, its toxicity reduction and sustained release. Asian J. Pharm. Clin. Res., 2017, 10(4), 278.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i4.16721]
[133]
Cheng, M.; Ma, D.; Zhi, K.; Liu, B.; Zhu, W. Synthesis of biotin-modified galactosylated chitosan nanoparticles and their characteristics in vitro and in vivo. Cell. Physiol. Biochem., 2018, 50(2), 569-584.
[http://dx.doi.org/10.1159/000494169] [PMID: 30308481]
[134]
Bor, G.; Üçüncü, M.; Emrullahoğlu, M.; Tomak, A.; Şanlı-Mohamed, G. BODIPY-conjugated chitosan nanoparticles as a fluorescent probe. Drug Chem. Toxicol., 2017, 40(4), 375-382.
[http://dx.doi.org/10.1080/01480545.2016.1238481] [PMID: 27866417]
[135]
Ahmad, M.I.; Nakpheng, T.; Srichana, T. The safety of ethambutol dihydrochloride dry powder formulations containing chitosan for the possibility of treating lung tuberculosis. Inhal. Toxicol., 2014, 26(14), 908-917.
[http://dx.doi.org/10.3109/08958378.2014.975875] [PMID: 25472479]
[136]
Calvo, N.L.; Svetaz, L.A.; Alvarez, V.A.; Quiroga, A.D.; Lamas, M.C.; Leonardi, D. Chitosan-hydroxypropyl methylcellulose tioconazole films: A promising alternative dosage form for the treatment of vaginal candidiasis. Int. J. Pharm., 2019, 556, 181-191.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.011] [PMID: 30553009]
[137]
Şenyiğit, Z.A.; Karavana, S.Y.; Eraç, B.; Gürsel, Ö.; Limoncu, M.H.; Baloğlu, E. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm., 2014, 64(2), 139-156.
[http://dx.doi.org/10.2478/acph-2014-0013] [PMID: 24914716]
[138]
Grisin, T.; Bories, C.; Bombardi, M.; Loiseau, P.M.; Rouffiac, V.; Solgadi, A.; Mallet, J.M.; Ponchel, G.; Bouchemal, K. Supramolecular chitosan micro-platelets synergistically enhance anti-candida albicans activity of amphotericin B using an immunocompetent murine model. Pharm. Res., 2017, 34(5), 1067-1082.
[http://dx.doi.org/10.1007/s11095-017-2117-3] [PMID: 28168390]
[139]
Verma, P.; Ahuja, M. Optimization, characterization and evaluation of chitosan-tailored cubic nanoparticles of clotrimazole. Int. J. Biol. Macromol., 2015, 73, 138-145.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.065] [PMID: 25463320]
[140]
Simonaitiene, D.; Brink, I.; Sipailiene, A.; Leskauskaite, D. The effect of chitosan and whey proteins–chitosan films on the growth of Penicillium expansum in apples. J. Sci. Food Agric., 2015, 95(7), 1475-1481.
[http://dx.doi.org/10.1002/jsfa.6846] [PMID: 25074824]
[141]
Vijayan, S.; Divya, K.; Varghese, S.; Jisha, M.S. Antifungal efficacy of chitosan-stabilized biogenic silver nanoparticles against pathogenic candida spp. Isolated from human. Bionanoscience, 2020, 10(4), 974-982.
[http://dx.doi.org/10.1007/s12668-020-00781-7]
[142]
Kumar, H.; Dutta, P.K. Thioglycolic acid modified chitosan: A template for in-situ synthesis of CdSe QDs for cell imaging. J. Macromol. Sci. Part A Pure Appl. Chem., 2020, 57(10), 711-724.
[http://dx.doi.org/10.1080/10601325.2020.1766981]
[143]
Abdelaal, M.Y.; Sobahi, T.R.; Al-Shareef, H.F. Modification of chitosan derivatives of environmental and biological interest: A green chemistry approach. Int. J. Biol. Macromol., 2013, 55, 231-239.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.01.013] [PMID: 23376358]
[144]
Ali, S.S.; Kenawy, E.R.; Sonbol, F.I.; Sun, J.; Al-Etewy, M.; Ali, A.; Huizi, L.; El-Zawawy, N.A. Pharmaceutical potential of a novel chitosan derivative schiff base with special reference to antibacterial, anti-biofilm, antioxidant, anti-inflammatory, hemocompatibility and cytotoxic activities. Pharm. Res., 2019, 36(1), 5.
[http://dx.doi.org/10.1007/s11095-018-2535-x] [PMID: 30406460]
[145]
Tyliszczak, B.; Drabczyk, A.; Kudłacik-Kramarczyk, S.; Bialik-Wąs, K.; Kijkowska, R.; Sobczak-Kupiec, A. Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf. B Biointerfaces, 2017, 160, 325-330.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.044] [PMID: 28950197]
[146]
Hoang Thi, T.T.; Trinh, B.D.T.; Le Thi, P.; Tran, D.L.; Park, K.D.; Nguyen, D.H. Self-antibacterial chitosan/Aloe barbadensis Miller hydrogels releasing nitrite for biomedical applications. J. Ind. Eng. Chem., 2021, 103, 175-186.
[http://dx.doi.org/10.1016/j.jiec.2021.07.029]
[147]
Sarhan, W.A.; Azzazy, H.M.E. High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym., 2015, 122, 135-143.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.051] [PMID: 25817652]
[148]
Holubnycha, V.; Pogorielov, M.; Korniienko, V.; Kalinkevych, O.; Ivashchenko, O.; Peplinska, B.; Jarek, M. Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution. 2017 IEEE 7th International Conference Nanomaterials: Application Properties (NAP); , 2017, pp. 101-104.
[http://dx.doi.org/10.1109/NAP.2017.8190323]
[149]
Haitao, Y.; Yifan, C.; Mingchao, S.; Shuaijuan, H. A novel polymeric nanohybrid antimicrobial engineered by antimicrobial peptide mccj25 and chitosan nanoparticles exerts strong antibacterial and anti-inflammatory activities. Front. Immunol., 2022, 12, 811381.
[http://dx.doi.org/10.3389/fimmu.2021.811381] [PMID: 35126369]
[150]
Karthik, C.S.; Manukumar, H.M.; Ananda, A.P.; Nagashree, S.; Rakesh, K.P.; Mallesha, L.; Qin, H.L.; Umesha, S.; Mallu, P.; Krishnamurthy, N.B. Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory candidate: A molecular docking studies. Int. J. Biol. Macromol., 2018, 108, 489-502.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.045] [PMID: 29225179]
[151]
Majumdar, S.; Mandal, T.; Dasgupta Mandal, D. Comparative performance evaluation of chitosan based polymeric microspheres and nanoparticles as delivery system for bacterial β-carotene derived from Planococcus sp. TRC1. Int. J. Biol. Macromol., 2022, 195, 384-397.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.167] [PMID: 34863970]
[152]
Liu, M.; Min, L.; Zhu, C.; Rao, Z.; Liu, L.; Xu, W.; Luo, P.; Fan, L. Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan. Int. J. Biol. Macromol., 2017, 104(Pt A), 732-738.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.071] [PMID: 28629858]
[153]
Kaczmarek, H.; Tafelska-Kaczmarek, A.; Roszek, K.; Czarnecka, J.; Jędrzejewska, B.; Zblewska, K. Fluorescent chitosan modified with heterocyclic aromatic dyes. Materials, 2021, 14(21), 6429.
[http://dx.doi.org/10.3390/ma14216429] [PMID: 34771955]
[154]
Chen, W.; Cheng, H.; Jiang, Q.; Xia, W. The characterization and biological activities of synthetic N, O-selenized chitosan derivatives. Int. J. Biol. Macromol., 2021, 173, 504-512.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.084] [PMID: 33460653]
[155]
Cabral, F.V.; Pelegrino, M.T.; Sauter, I.P.; Seabra, A.B.; Cortez, M.; Ribeiro, M.S. Nitric oxide-loaded chitosan nanoparticles as an innovative antileishmanial platform. Nitric Oxide, 2019, 93, 25-33.
[http://dx.doi.org/10.1016/j.niox.2019.09.007] [PMID: 31541732]
[156]
Wu, Y.; Zhang, R.; Tran, H.D.N.; Kurniawan, N.D.; Moonshi, S.S.; Whittaker, A.K.; Ta, H.T. Chitosan nanococktails containing both ceria and superparamagnetic iron oxide nanoparticles for reactive oxygen species-related theranostics. ACS Appl. Nano Mater., 2021, 4(4), 3604-3618.
[http://dx.doi.org/10.1021/acsanm.1c00141]
[157]
Lopes, P.D.; Okino, C.H.; Fernando, F.S.; Pavani, C.; Casagrande, V.M.; Lopez, R.F.V.; Montassier, M.F.S.; Montassier, H.J. Inactivated infectious bronchitis virus vaccine encapsulated in chitosan nanoparticles induces mucosal immune responses and effective protection against challenge. Vaccine, 2018, 36(19), 2630-2636.
[http://dx.doi.org/10.1016/j.vaccine.2018.03.065] [PMID: 29653848]
[158]
He, X.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. The improved antiviral activities of amino-modified chitosan derivatives on Newcastle virus. Drug Chem. Toxicol., 2021, 44(4), 335-340.
[http://dx.doi.org/10.1080/01480545.2019.1620264] [PMID: 31179762]
[159]
Lin, T.; Lu, Y.; Zhang, X.; Gong, L.; Wei, C. Treatment of dry eye by intracanalicular injection of a thermosensitive chitosan-based hydrogel: Evaluation of biosafety and availability. Biomater. Sci., 2018, 6(12), 3160-3169.
[http://dx.doi.org/10.1039/C8BM01047A] [PMID: 30357138]
[160]
Zhang, J.; Fu, X.; Zhang, Y.; Zhu, W.; Zhou, Y.; Yuan, G.; Liu, X.; Ai, T.; Zeng, L.; Su, J. Chitosan and anisodamine improve the immune efficacy of inactivated infectious spleen and kidney necrosis virus vaccine in Siniperca chuatsi. Fish Shellfish Immunol., 2019, 89, 52-60.
[http://dx.doi.org/10.1016/j.fsi.2019.03.040] [PMID: 30904683]
[161]
Zhao, K.; Li, S.; Li, W.; Yu, L.; Duan, X.; Han, J.; Wang, X.; Jin, Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv., 2017, 24(1), 1574-1586.
[http://dx.doi.org/10.1080/10717544.2017.1388450] [PMID: 29029568]
[162]
Moreno, J.A.S.; Panou, D.A.; Stephansen, K.; Chronakis, I.S.; Boisen, A.; Mendes, A.C.; Nielsen, L.H. Preparation and characterization of an oral vaccine formulation using electrosprayed chitosan microparticles. AAPS PharmSciTech, 2018, 19(8), 3770-3777.
[http://dx.doi.org/10.1208/s12249-018-1190-1] [PMID: 30280354]