One-Pot Multicomponent Synthesis of Pyrano[2,3-c]pyrazole and 2-Amino-4Hbenzo[ b]pyrans Catalyzed by Hercynite@SiO2@Tris as Novel and Efficient Nanocatalyst

Page: [777 - 788] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

In this study, magnetic hercynite nanoparticles (FeAl2O4, MNPs) were functionalized by cheap and readily available tris(hydroxymethyl)aminomethane (Tris) as an organocatalyst. Various techniques, including Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Thermogravimetric Analysis (TG) were employed to determine the morphology, particle size, physical properties, and magnetic properties of the nanoparticles. Additionally, Fourier transform infrared spectroscopy (FT-IR) techniques were used to investigate the presence of the functional group. The activity of this new catalyst as a magnetically recoverable nanocatalyst was investigated in the synthesis of oxygen and nitrogencontaining heterocyclic compounds. Pyranoprazole and 2-amino-4H-benzo[b]pyrans compounds were synthesized with high efficiency in a short time. FeAl2O4@SiO2@Tris can be separated using magnetic attraction and reused up to 5 consecutive times without a significant decrease in the yield of target products or catalytic activity.

Graphical Abstract

[1]
Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci., 2020, 281, 102165.
[http://dx.doi.org/10.1016/j.cis.2020.102165] [PMID: 32361408]
[2]
Isidro-Llobet, A.; Kenworthy, M.N.; Mukherjee, S.; Kopach, M.E.; Wegner, K.; Gallou, F.; Smith, A.G.; Roschangar, F. Sustainability challenges in peptide synthesis and purification: From R&D to production. J. Org. Chem., 2019, 84(8), 4615-4628.
[http://dx.doi.org/10.1021/acs.joc.8b03001] [PMID: 30900880]
[3]
Sharma, J.; Kumar, P.; Sillanpaa, M.; Kumar, D.; Nemiwal, M. Immobilized ionic liquids on Fe3O4 nanoparticles: A potential catalyst for organic synthesis. Inorg. Chem. Commun., 2022, 1, 10055.
[4]
Schnitzer, T.; Vantomme, G. Synthesis of complex molecular systems-the foreseen role of organic chemists. ACS Cent. Sci., 2020, 6(11), 2060-2070.
[http://dx.doi.org/10.1021/acscentsci.0c00974] [PMID: 33274282]
[5]
Farshbaf, S.; Sreerama, L.; Khodayari, T.; Vessally, E. Propargylic ureas as powerful and versatile building blocks in the synthesis of various key medicinal heterocyclic compounds. Chem Rev Lett, 2018, 2, 56.
[6]
Norouzi, M.; Choghamarani, G.A.; Nikoorazm, M. Heterogeneous Cu(II)/L-His@Fe3O4 nanocatalyst: A novel, efficient and magnetically-recoverable catalyst for organic transformations in green solvents. RSC Adv., 2016, 6(95), 92387-92401.
[http://dx.doi.org/10.1039/C6RA19776K]
[7]
Choghamarani, G.A.; Norouzi, M. Synthesis of copper (II)-supported magnetic nanoparticle and study of its catalytic activity for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J. Mol. Catal. Chem., 2014, 395, 172-179.
[http://dx.doi.org/10.1016/j.molcata.2014.08.013]
[8]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Moradi, P. Copper and nickel immobilized on cytosine@MCM‐41: As highly efficient, reusable and organic-inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2020, 34(11), e5919.
[http://dx.doi.org/10.1002/aoc.5919]
[9]
Kamalzare, M.; Ahghari, M.R.; Bayat, M.; Maleki, A. Fe3O4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles. Sci. Rep., 2021, 11(1), 20021.
[http://dx.doi.org/10.1038/s41598-021-99121-2] [PMID: 34625599]
[10]
Al-Jumaili, M.H.A.; Hamad, A.A.; Hashem, H.E.; Hussein, A.D.; Muhaidi, M.J.; Ahmed, M.A.; Albanaa, A.H.A.; Siddique, F.; Bakr, E.A. Comprehensive review on the Bis-heterocyclic compounds and their anticancer efficacy. J. Mol. Struct., 2023, 1271, 133970.
[http://dx.doi.org/10.1016/j.molstruc.2022.133970]
[11]
Gao, G.; Di, J.Q.; Zhang, H.Y.; Mo, L.P.; Zhang, Z.H. A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. J. Catal., 2020, 387, 39-46.
[http://dx.doi.org/10.1016/j.jcat.2020.04.013]
[12]
Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[13]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[14]
Deng, Q.; Shen, Y.; Zhu, H.; Tu, T. A magnetic nanoparticle-supported N-heterocyclic carbene-palladacycle: an efficient and recyclable solid molecular catalyst for Suzuki-Miyaura cross-coupling of 9-chloroacridine. Chem. Commun., 2017, 53(97), 13063-13066.
[http://dx.doi.org/10.1039/C7CC06958H] [PMID: 29165443]
[15]
Angelopoulou, A.; Ntoukas, K.A.; Fytas, C.; Avgoustakis, K. Folic acid-functionalized, condensed magnetic nanoparticles for targeted delivery of doxorubicin to tumor cancer cells overexpressing the folate receptor. ACS Omega, 2019, 4(26), 22214-22227.
[http://dx.doi.org/10.1021/acsomega.9b03594] [PMID: 31891105]
[16]
Gloag, L.; Mehdipour, M.; Chen, D.; Tilley, R.D.; Gooding, J.J. Advances in the application of magnetic nanoparticles for sensing. Adv. Mater., 2019, 31(48), 1904385.
[http://dx.doi.org/10.1002/adma.201904385] [PMID: 31538371]
[17]
Martins, P.M.; Lima, A.C.; Ribeiro, S.; Mendez, L.S.; Martins, P. Magnetic nanoparticles for biomedical applications: From the soul of the earth to the deep history of ourselves. ACS Appl. Bio Mater., 2021, 4(8), 5839-5870.
[http://dx.doi.org/10.1021/acsabm.1c00440] [PMID: 35006927]
[18]
Choghamarani, G.A.; Norouzi, M. Palladium supported on modified magnetic nanoparticles: A phosphine‐free and heterogeneous catalyst for Suzuki and Stille reactions. Appl. Organomet. Chem., 2016, 30(3), 140-147.
[http://dx.doi.org/10.1002/aoc.3409]
[19]
Darwesh, O.M.; Matter, I.A.; Eida, M.F. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J. Environ. Chem. Eng., 2019, 7(1), 102805.
[http://dx.doi.org/10.1016/j.jece.2018.11.049]
[20]
Ma, Z.; Mohapatra, J.; Wei, K.; Liu, J.P.; Sun, S. Magnetic nanoparticles: Synthesis, anisotropy, and applications. Chem. Rev., 2023, 123(7), 3904-3943.
[http://dx.doi.org/10.1021/acs.chemrev.1c00860] [PMID: 34968046]
[21]
Shasha, C.; Krishnan, K.M. Nonequilibrium dynamics of magnetic nanoparticles with applications in biomedicine. Adv. Mater., 2021, 33(23), 1904131.
[http://dx.doi.org/10.1002/adma.201904131] [PMID: 32557879]
[22]
Zhang, Q.; Yang, X.; Guan, J. Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl. Nano Mater., 2019, 2(8), 4681-4697.
[http://dx.doi.org/10.1021/acsanm.9b00976]
[23]
Mohammadi, M.; Choghamarani, G.A. Hercynite silica sulfuric acid: A novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations. RSC Advances, 2022, 12(40), 26023-26041.
[http://dx.doi.org/10.1039/D2RA03481F] [PMID: 36199605]
[24]
Chobtham, C.; Kongkarat, S. Synthesis of hercynite from aluminium dross at 1550 C: Implication for industrial waste recycling. Mater. Sci. Forum, 2020, 977, 223-228.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.977.223]
[25]
Mohammadi, M.; Choghamarani, G.A. A novel hercynite‐supported tetradentate schiff base complex of manganese catalyzed one‐pot annulation reactions. Appl. Organomet. Chem., 2022, 36(12), e6905.
[http://dx.doi.org/10.1002/aoc.6905]
[26]
Chen, J.; Yu, L.; Sun, J.; Li, Y.; Xue, W. Synthesis of hercynite by reaction sintering. J. Eur. Ceram. Soc., 2011, 31(3), 259-263.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2010.09.017]
[27]
Millican, S.L.; Clary, J.M.; Musgrave, C.B.; Lany, S. Redox defect thermochemistry of FeAl2O4 hercynite in water splitting from first-principles methods. Chem. Mater., 2022, 34(2), 519-528.
[http://dx.doi.org/10.1021/acs.chemmater.1c01049]
[28]
Ghorbani-Choghamarani, A.; Mohammadi, M.; Shiri, L.; Taherinia, Z. Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed., 2019, 45(11), 5705-5723.
[http://dx.doi.org/10.1007/s11164-019-03930-0]
[29]
Öğüt, E.; Kip, Ç.; Gökçal, B.; Tuncel, A. Aggregation-resistant nanozyme containing accessible magnetite nanoparticles immobilized in monodisperse-porous silica microspheres for colorimetric assay of human genomic DNA. J. Colloid Interface Sci., 2019, 550, 90-98.
[http://dx.doi.org/10.1016/j.jcis.2019.04.089] [PMID: 31055141]
[30]
Hooshmand, S.E.; Kumar, S.; Bahadur, I.; Singh, T.; Varma, R.S. Deep eutectic solvents as reusable catalysts and promoter for the greener syntheses of small molecules: Recent advances. J. Mol. Liq., 2023, 371, 121013.
[http://dx.doi.org/10.1016/j.molliq.2022.121013]
[31]
Jamil, F.; Al-Haj, L.; Muhtaseb, A.A.H.; Al-Hinai, M.A.; Baawain, M.; Rashid, U.; Ahmad, M.N.M. Current scenario of catalysts for biodiesel production: A critical review. Rev. Chem. Eng., 2018, 34(2), 267-297.
[http://dx.doi.org/10.1515/revce-2016-0026]
[32]
Choghamarani, G.A.; Hajjami, M.; Norouzi, M.; Abbasityula, Y.; Eigner, V.; Dušek, M. Diastereoselective and one-pot synthesis of trans-isoquinolonic acids via three-component condensation of homophthalic anhydride, aldehydes, and ammonium acetate catalyzed by aspartic acid. Tetrahedron, 2013, 69(32), 6541-6544.
[http://dx.doi.org/10.1016/j.tet.2013.06.010]
[33]
Haji, F.R.; Maleki, A. L‐proline‐functionalized Fe3O4 nanoparticles as an efficient nanomagnetic organocatalyst for highly stereoselective one‐pot two‐step tandem synthesis of substituted cyclopropanes. ChemistrySelect, 2019, 4(3), 853-857.
[http://dx.doi.org/10.1002/slct.201802608]
[34]
Juaristi, E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron, 2021, 88, 132143.
[http://dx.doi.org/10.1016/j.tet.2021.132143]
[35]
Liu, Z.; Deng, X.; Lin, L.; Qiang, R.; Wang, Q.; Cheng, Q.; Yang, J.; Yang, X.; Ma, W.; Li, X.; Xu, M.; Wang, C.; Xin, Q.; Zhao, K. A tris(hydroxymethyl)aminomethane-modified polyimide membrane with efficient organic solvent resistant performance and high separation selectivity for dye/salt separation. Desalination, 2023, 549, 116325.
[http://dx.doi.org/10.1016/j.desal.2022.116325]
[36]
Kondratenko, Y.A.; Nikonorova, A.A.; Zolotarev, A.A.; Arsent’ev, M.Y.; Nyanikova, G.G.; Ugolkov, V.L.; Sysoev, E.I.; Kochina, T.A. Synthesis, structure and properties of tris(hydroxymethyl)aminomethane complexes with biogenic metal salts. Inorg. Chim. Acta, 2022, 530, 120705.
[http://dx.doi.org/10.1016/j.ica.2021.120705]
[37]
Li, X. Magnetic nanotechnology: Catalysis in synthesis of pyran scaffolds. Synth. Commun., 2021, 6, 811-834.
[38]
Singh, P.; Yadav, P.; Mishra, A.; Awasthi, S.K. Green and mechanochemical one-pot multicomponent synthesis of bioactive 2-amino-4-H-benzo[b]pyrans via highly efficient amine-functionalized SiO2@Fe3O4 nanoparticles. ACS Omega, 2020, 5(8), 4223-4232.
[http://dx.doi.org/10.1021/acsomega.9b04117] [PMID: 32149252]
[39]
Hou, F.; Zheng, W.; Yousefi, N. Design, characterization and application of the SCMNPs@ PC/VB1-Zn as a green and recyclable biocatalyst for synthesis of pyrano [2,3-c]pyrazole and 4H-benzo-[b]-pyran derivatives. Bull. Chem. React. Eng. Catal., 2020, 15(1), 199-212.
[http://dx.doi.org/10.9767/bcrec.15.1.6179.199-212]
[40]
Nawaz, A.; Aslam, S.; Ahmad, M.; Zahoor, A.F.; Naqvi, S.A.R. Synthetic strategies of pyran derivatives by multicomponent reaction (MCR) approach. J. Indian Chem. Soc., 2022, 19(9), 3721-3768.
[http://dx.doi.org/10.1007/s13738-022-02581-0]
[41]
Ghasemzadeh, M.A.; Eshkevari, M.B.; Basir, A.M.H. MIL‐53(Fe) metal-organic frameworks (MOFs) as an efficient and reusable catalyst for the one‐pot four‐component synthesis of pyrano[2,3‐c]‐pyrazoles. Appl. Organomet. Chem., 2019, 33(1), e4679.
[http://dx.doi.org/10.1002/aoc.4679]
[42]
Sikandar, S.; Zahoor, A.F. Synthesis of pyrano[2,3‐c]pyrazoles: A review. J. Heterocycl. Chem., 2021, 58(3), 685-705.
[http://dx.doi.org/10.1002/jhet.4191]
[43]
Parikh, P.H.; Timaniya, J.B.; Patel, M.J.; Patel, K.P. Microwave-assisted synthesis of pyrano[2,3-c]-pyrazole derivatives and their anti-microbial, anti-malarial, anti-tubercular, and anti-cancer activities. J. Mol. Struct., 2022, 1249, 131605.
[http://dx.doi.org/10.1016/j.molstruc.2021.131605]
[44]
Norouzi, M.; Beiranvand, S. Fe3O4@SiO2@BHA-Cu(II) as a new, effective, and magnetically recoverable catalyst for the synthesis of polyhydroquinoline and tetrazole derivatives. J. Chem. Sci., 2023, 135(3), 86.
[http://dx.doi.org/10.1007/s12039-023-02206-w]
[45]
Norouzi, M.; Choghamarani, G.A. Mild and highly efficient method for the oxidation of sulfides and protection of alcohols catalyzed by oxovanadium(IV) supported on modified magnetic nanoparticles as recyclable catalyst. React. Kinet. Mech. Catal., 2016, 119(2), 537-554.
[http://dx.doi.org/10.1007/s11144-016-1070-1]
[46]
Choghamarani, G.A.; Norouzi, M. Suzuki, Stille and Heck cross-coupling reactions catalyzed by Fe3O4@PTA-Pd as a recyclable and efficient nanocatalyst in green solvents. New J. Chem., 2016, 40(7), 6299-6307.
[http://dx.doi.org/10.1039/C6NJ00088F]
[47]
Norouzi, M.; Khanmoradi, M. Brønsted-acidic ionic liquid supported nanomagnetic: A novel and reusable catalyst for synthesis of oxygen-containing heterocyclic compounds. Res. Chem. Intermed., 2023, 49(11), 4785-4804.
[http://dx.doi.org/10.1007/s11164-023-05104-5]
[48]
Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M.L.; Padrón, R.D.; Luque, R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem. Soc. Rev., 2021, 50(20), 11191-11207.
[http://dx.doi.org/10.1039/D1CS00524C] [PMID: 34553208]
[49]
Wang, X.S.; Shi, D.Q.; Tu, S.J.; Yao, C.S. A convenient synthesis of 5-Oxo-5,6,7,8-tetrahydro-4H-benzo[b]pyran derivatives catalyzed by KF-Alumina. Synth. Commun., 2003, 33(1), 119-126.
[http://dx.doi.org/10.1081/SCC-120015567]
[50]
Alizadeh, A.; Khodaei, M.M.; Beygzadeh, M.; Kordestani, D.; Feyzi, M. Biguanide-functionalized Fe3O4/SiO2 magnetic nanoparticles: An efficient heterogeneous organosuperbase catalyst for various organic transformations in aqueous media. Bull. Korean Chem. Soc., 2012, 33(8), 2546-2552.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2546]
[51]
Maleki, B.; Baghayeri, M.; Abadi, J.S.A.; Tayebee, R.; Khojastehnezhad, A. Ultrasound promoted facile one pot synthesis of highly substituted pyran derivatives catalyzed by silica-coated magnetic NiFe2O4 nanoparticle-supported H14[NaP5W30O110] under mild conditions. RSC Adv., 2016, 6(99), 96644-96661.
[http://dx.doi.org/10.1039/C6RA20895A]
[52]
Mehrjardi, F.M.; Shirzadi, M.; Banitaba, S.H. A new basic ionic liquid supported on magnetite nanoparticles: An efficient phase-transfer catalyst for the green synthesis of 2-amino-3-cyano-4H-pyrans. Polycycl. Aromat. Compd., 2022, 42(5), 2198-2209.
[http://dx.doi.org/10.1080/10406638.2020.1830131]
[53]
Karami, S.; Dekamin, M.G.; Valiey, E.; Shakib, P. DABA MNPs: A new and efficient magnetic bifunctional nanocatalyst for the green synthesis of biologically active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. New J. Chem., 2020, 44(33), 13952-13961.
[http://dx.doi.org/10.1039/D0NJ02666B]
[54]
Babaei, E.; Mirjalili, B.B.F. An expedient and eco-friendly approach for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles using nano-Al 2 O3/BF3/Fe3O4 as reusable catalyst. Inorg. Nano-Met. Chem, 2020, 50(1), 16-21.
[http://dx.doi.org/10.1080/24701556.2019.1661458]
[55]
Patel, K.G.; Misra, N.M.; Vekariya, R.H.; Shettigar, R.R. One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste. Res. Chem. Intermed., 2018, 44(1), 289-304.
[http://dx.doi.org/10.1007/s11164-017-3104-3]
[56]
Basak, P.; Dey, S.; Ghosh, P. Sulfonated graphene‐oxide as metal‐free efficient carbocatalyst for the synthesis of 3‐methyl‐4‐(hetero)arylmethylene isoxazole‐5(4H)‐ones and substituted pyrazole. ChemistrySelect, 2020, 5(2), 626-636.
[http://dx.doi.org/10.1002/slct.201904164]
[57]
Nguyen, H.T.; Le, T.V.; Tran, P.H. AC-SO3H/[CholineCl][Urea]2 as a green catalytic system for the synthesis of pyrano[2,3-c]pyrazole scaffolds. J. Environ. Chem. Eng., 2021, 9(3), 105228.
[http://dx.doi.org/10.1016/j.jece.2021.105228]
[58]
Hassanzadeh-Afruzi, F.; Asgharnasl, S.; Mehraeen, S.; Khamakani, A.Z.; Maleki, A. Guanidinylated SBA-15/Fe3O4 mesoporous nanocomposite as an efficient catalyst for the synthesis of pyranopyrazole derivatives. Sci. Rep., 2021, 11(1), 19852.
[http://dx.doi.org/10.1038/s41598-021-99120-3] [PMID: 34615925]
[59]
Moghaddam, F.M.; Aghili, S.; Daneshfar, M.; Moghimi, H.; Daneshfar, Z. Bread waste in the form of CoFe2O4@TBW catalyst was used as a green biocatalyst to synthesize pyranopyrazole and tetraketone derivatives. Res. Chem. Intermed., 2023, 49(4), 1507-1543.
[http://dx.doi.org/10.1007/s11164-022-04934-z]
[60]
Babaee, S.; Zarei, M.; Sepehrmansourie, H.; Zolfigol, M.A.; Rostamnia, S. Synthesis of metal-organic frameworks MIL-101 (Cr)-NH2 containing phosphorous acid functional groups: Application for the synthesis of N-Amino-2-pyridone and pyrano[2,3-c]pyrazole derivatives via a cooperative vinylogous anomeric-based oxidation. ACS Omega, 2020, 5(12), 6240-6249.
[http://dx.doi.org/10.1021/acsomega.9b02133] [PMID: 32258858]
[61]
Kalantari, F.; Ramazani, A.; Heravi, P.M.R.; Aghahosseini, H.; Ślepokura, K. Magnetic nanoparticles functionalized with copper hydroxyproline complexes as an efficient, recoverable, and recyclable nanocatalyst: Synthesis and its catalytic application in a tandem knoevenagel-michael cyclocondensation reaction. Inorg. Chem., 2021, 60(19), 15010-15023.
[http://dx.doi.org/10.1021/acs.inorgchem.1c02470] [PMID: 34533947]
[62]
Amiri, A.M.; Pasha, G.F.; Tajbakhsh, M.; Asghari, S. Copper‐amine complex immobilized on nano NaY zeolite as a recyclable nanocatalyst for the environmentally friendly synthesis of 2‐amino‐4H‐chromenes. Appl. Organomet. Chem., 2022, 36(12), e6886.
[http://dx.doi.org/10.1002/aoc.6886]
[63]
Moghaddam, M.F.; Eslami, M.; Hoda, G. Cysteic acid grafted to magnetic graphene oxide as a promising recoverable solid acid catalyst for the synthesis of diverse 4H-chromene. Sci. Rep., 2020, 10(1), 20968.
[http://dx.doi.org/10.1038/s41598-020-77872-8] [PMID: 33262479]