Synthetic Strategies of Thiazolidine-2,4-dione Derivatives for the Development of New Anti-diabetic Agents: Compressive Review

Page: [885 - 928] Pages: 44

  • * (Excluding Mailing and Handling)

Abstract

Background: Thiazolidine-2,4-dione (2,4-TZD) is a flexible pharmacophore and a privileged platform and contains a five-membered ring with a 2-oxygen atom with double bond 2,4- position and one nitrogen atom as well as sulphur containing in the heterocyclic compound. A famous electron-rich nitrogen transporter combines invigorating electronic properties with the prospective for elemental applications. Thiazolidine-2,4-dione analogues have been synthesized using a variety of methods, all of which have shown to have a strong biological effect.

Objectives: The study of the biological activity of Thiazolidine-2,4-dione derivatives has been a fascinating field of pharmaceutical chemistry and has many purposes. This derivative described in the literature between 1995 to 2023 was the focus of this study. Thiazolidine-2,4-diones have been discussed in terms of their introduction, general method, synthetic scheme and antidiabetic significance in the current review.

Conclusion: Thiazolidine-2,4-diones are well-known heterocyclic compounds. The synthesis of Thiazolidine-2,4-diones has been described using a variety of methods. Antidiabetic activity has been discovered in several Thiazolidine-2,4-dione derivatives, which enhance further research. The use of Thiazolidine-2,4-diones to treat antidiabetics has piqued researchers' interest in learning more about thiazolidine-2,4-diones.

Graphical Abstract

[1]
Kendall, D.M. Thiazolidinediones. Diabetes Care, 2006, 29(1), 154-157.
[http://dx.doi.org/10.2337/diacare.29.01.06.dc05-0711] [PMID: 16373917]
[2]
Desai, N.C.; Pandit, U.P.; Dodiya, A. Thiazolidinedione compounds: A patent review (2010 – present). Expert Opin. Ther. Pat., 2015, 25(4), 479-488.
[http://dx.doi.org/10.1517/13543776.2014.1001738] [PMID: 25579106]
[3]
Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, D.K.; Agarwal, S. Saturated five-membered thiazolidines and their derivatives: From synthesis to biological applications. Top. Curr. Chem., 2020, 378(2), 34.
[http://dx.doi.org/10.1007/s41061-020-0298-4] [PMID: 32206929]
[4]
Chadha, N.; Bahia, M.S.; Kaur, M.; Silakari, O. Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem., 2015, 23(13), 2953-2974.
[http://dx.doi.org/10.1016/j.bmc.2015.03.071] [PMID: 25890697]
[5]
Mahapatra, M.K.; Saini, R.; Kumar, M. Synthesis, anti-hyperglycaemic activity, and in-silico studies of N-substituted 5-(furan-2-ylmethylene)thiazolidine-2,4-dione derivatives. Res. Chem. Intermed., 2016, 42(12), 8239-8251.
[http://dx.doi.org/10.1007/s11164-016-2592-x]
[6]
Alagawadi, K.R.; Alegaon, S.G. Synthesis, characterization and antimicrobial activity evaluation of new 2,4-Thiazolidinediones bearing imidazo[2,1-b][1,3,4]thiadiazole moiety. Arab. J. Chem., 2011, 4(4), 465-472.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.012]
[7]
Hu, C.F.; Zhang, P.L.; Sui, Y.F.; Lv, J.S.; Ansari, M.F.; Battini, N.; Li, S.; Zhou, C.H.; Geng, R.X. Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorg. Chem., 2020, 94, 103434.
[http://dx.doi.org/10.1016/j.bioorg.2019.103434] [PMID: 31812263]
[8]
Panigrahy, D.; Shen, L.Q.; Kieran, M.W.; Kaipainen, A. Therapeutic potential of thiazolidinediones as anticancer agents. Expert Opin. Investig. Drugs, 2003, 12(12), 1925-1937.
[http://dx.doi.org/10.1517/13543784.12.12.1925] [PMID: 14640937]
[9]
Galli, A.; Mello, T.; Ceni, E.; Surrenti, E.; Surrenti, C. The potential of antidiabetic thiazolidinediones for anticancer therapy. Expert Opin. Investig. Drugs, 2006, 15(9), 1039-1049.
[http://dx.doi.org/10.1517/13543784.15.9.1039] [PMID: 16916271]
[10]
Shaikh, F.M.; Patel, N.B.; Sanna, G.; Busonera, B.; La Colla, P.; Rajani, D.P. Synthesis of some new 2-amino-6-thiocyanato benzothiazole derivatives bearing 2,4-thiazolidinediones and screening of their in vitro antimicrobial, antitubercular and antiviral activities. Med. Chem. Res., 2015, 24(8), 3129-3142.
[http://dx.doi.org/10.1007/s00044-015-1358-0]
[11]
Nitsche, C.; Schreier, V.N.; Behnam, M.A.M.; Kumar, A.; Bartenschlager, R.; Klein, C.D. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J. Med. Chem., 2013, 56(21), 8389-8403.
[http://dx.doi.org/10.1021/jm400828u] [PMID: 24083834]
[12]
Trotsko, N. Antitubercular properties of thiazolidin-4-ones – A review. Eur. J. Med. Chem., 2021, 215, 113266.
[http://dx.doi.org/10.1016/j.ejmech.2021.113266] [PMID: 33588179]
[13]
Alegaon, S.G.; Alagawadi, K.R.; Sonkusare, P.V.; Chaudhary, S.M.; Dadwe, D.H.; Shah, A.S. Novel imidazo[2,1-b][1,3,4]thiadi-azole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1917-1921.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.052] [PMID: 22325950]
[14]
Bahare, R.S.; Ganguly, S.; Choowongkomon, K.; Seetaha, S. Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2,4-thiazolidinediones. Daru, 2015, 23(1), 6.
[http://dx.doi.org/10.1186/s40199-014-0086-1] [PMID: 25617150]
[15]
Sutinen, J. The effects of thiazolidinediones on metabolic complications and lipodystrophy in HIV-infected patients. PPAR Res., 2009, 2009, 1-15.
[http://dx.doi.org/10.1155/2009/373524] [PMID: 19096512]
[16]
Clajus, E.J.; Cote, N.; Dalloul, R.; DiMarco, G.M.; Eriksson, M.J.; Garcia, Y.; Gijsbers, N.A.; Kaila, J.H.; Malik, A.S.; Mohiuddin, M.I.; Mulk, A. Synthesis and styrene copolymerization of novel methoxy, methyl, halogen and oxy ring-disubstituted octyl phenylcyanoacrylates. chemrxiv, 2022.
[http://dx.doi.org/10.26434/chemrxiv-2022-xg6nz]
[17]
Rajagopalan, P.; Chandramoorthy, H.C. (2 E)-2-Benzylidene-4,7-dimethyl-2,3-dihydro-1 H -inden-1-one (MLT-401), a novel arylidene indanone derivative, scavenges free radicals and exhibits antiproliferative activity of Jurkat cells. Asian Biomed., 2019, 13(4), 131-139.
[http://dx.doi.org/10.1515/abm-2019-0052]
[18]
Kintscher, U.; Unger, T. Vascular protection in diabetes: A pharmacological view of angiotensin II type 1 receptor blockers. Acta Diabetol., 2005, 42(S1), s26-s32.
[http://dx.doi.org/10.1007/s00592-005-0178-y] [PMID: 15868116]
[19]
Ying, S.; Xiao, X.; Chen, T.; Lou, J. PPAR ligands function as suppressors that target biological actions of HMGB1. PPAR Res., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/2612743] [PMID: 27563308]
[20]
Miyazaki, Y.; Mahankali, A.; Matsuda, M.; Glass, L.; Mahankali, S.; Ferrannini, E.; Cusi, K.; Mandarino, L.J.; DeFronzo, R.A. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care, 2001, 24(4), 710-719.
[http://dx.doi.org/10.2337/diacare.24.4.710] [PMID: 11315836]
[21]
Tiwari, N.; Thakur, A.K.; Kumar, V.; Dey, A.; Kumar, V. Therapeutic targets for diabetes mellitus: An update. Clin. Pharmacol. Biopharm., 2014, 3(1), 1.
[http://dx.doi.org/10.4172/2167-065X.1000117]
[22]
Quinn, C.E.; Hamilton, P.K.; Lockhart, C.J.; McVeigh, G.E. Thiazolidinediones: Effects on insulin resistance and the cardiovascular system. Br. J. Pharmacol., 2008, 153(4), 636-645.
[http://dx.doi.org/10.1038/sj.bjp.0707452] [PMID: 17906687]
[23]
Seymour, E.M.; Tanone, I.I.; Llanes, U.D.E.; Lewis, S.K.; Kirakosyan, A.; Kondoleon, M.G.; Kaufman, P.B.; Bolling, S.F. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food, 2011, 14(12), 1511-1518.
[http://dx.doi.org/10.1089/jmf.2010.0292] [PMID: 21861718]
[24]
Sun, J.; Lu, H.; Liang, W.; Zhao, G.; Ren, L.; Hu, D.; Chang, Z.; Liu, Y.; Garcia-Barrio, M.T.; Zhang, J.; Chen, Y.E.; Fan, Y. Endothelial TFEB (transcription factor EB) improves glucose tolerance via upregulation of IRS (insulin receptor substrate) 1 and IRS2. Arterioscler. Thromb. Vasc. Biol., 2021, 41(2), 783-795.
[http://dx.doi.org/10.1161/ATVBAHA.120.315310] [PMID: 33297755]
[25]
Yan, J.; Young, M.E.; Cui, L.; Lopaschuk, G.D.; Liao, R.; Tian, R. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation, 2009, 119(21), 2818-2828.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.832915] [PMID: 19451348]
[26]
Duncan, J.G.; Bharadwaj, K.G.; Fong, J.L.; Mitra, R.; Sambandam, N.; Courtois, M.R.; Lavine, K.J.; Goldberg, I.J.; Kelly, D.P. Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-α transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-α activators. Circulation, 2010, 121(3), 426-435.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.888735] [PMID: 20065164]
[27]
Yokoyama, H.; Mori, K.; Emoto, M.; Araki, T.; Teramura, M.; Mochizuki, K.; Tashiro, T.; Motozuka, K.; Inoue, Y.; Nishizawa, Y. Non‐oxidative glucose disposal is reduced in type 2 diabetes, but can be restored by aerobic exercise. Diabetes Obes. Metab., 2008, 10(5), 400-407.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00716.x] [PMID: 18410564]
[28]
Miyazaki, Y.; Glass, L.; Triplitt, C.; Matsuda, M.; Cusi, K.; Mahankali, A.; Mahankali, S.; Mandarino, L.J.; DeFronzo, R.A. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in Type II diabetic patients. Diabetologia, 2001, 44(12), 2210-2219.
[http://dx.doi.org/10.1007/s001250100031] [PMID: 11793023]
[29]
Nathanson, D.; Nyström, T. Hypoglycemic pharmacological treatment of type 2 diabetes: Targeting the endothelium. Mol. Cell. Endocrinol., 2009, 297(1-2), 112-126.
[http://dx.doi.org/10.1016/j.mce.2008.11.016] [PMID: 19038307]
[30]
Wiernsperger, N.F. Metformin: Intrinsic vasculoprotective properties. Diabetes Technol. Ther., 2000, 2(2), 259-272.
[http://dx.doi.org/10.1089/15209150050025230] [PMID: 11469268]
[31]
Sohda, T.; Mizuno, K.; Imamiya, E.; Sugiyama, Y.; Fujita, T.; Kawamatsu, Y. Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4-dione (ADD-3878) and its derivatives. Chem. Pharm. Bull., 1982, 30(10), 3580-3600.
[http://dx.doi.org/10.1248/cpb.30.3580] [PMID: 7160012]
[32]
Rowe, I.C.; Lee, K.; Khan, R.N.; Ashford, M.L. Effect of englitazone on KATP and calcium-activated non-selective cation channels in CRI-G1 insulin-secreting cells. Br. J. Pharmacol., 1997, 121(3), 531.
[http://dx.doi.org/10.1038/sj.bjp.0701145]
[33]
Maeda, K. Hepatocellular injury in a patient receiving pioglitazone. Ann. Intern. Med., 2001, 135(4), 306.
[http://dx.doi.org/10.7326/0003-4819-135-4-200108210-00029] [PMID: 11511159]
[34]
Bireddy, S.R.; Konkala, V.S.; Godugu, C.; Dubey, P.K. A review on the synthesis and biological studies of 2,4-thiazolidinedione derivatives. Mini Rev. Org. Chem., 2020, 17(8), 958-974.
[http://dx.doi.org/10.2174/1570193X17666200221123633]
[35]
Agrawal, R.; Jain, P.; Dikshit, S.N. Balaglitazone: A second generation peroxisome proliferator-activated receptor (PPAR) gamma (γ) agonist. Mini Rev. Med. Chem., 2012, 12(2), 87-97.
[http://dx.doi.org/10.2174/138955712798995048] [PMID: 22372600]
[36]
Mishra, A.; Gautam, V.; Ghanshyam, B.S.; Sweemit, J.; Kumar, S. Synthesis and antidiabetic evaluation of some thiazolidine-2, 4-dione derivatives. IJPSR, 2010, 1(2), 41-50.
[37]
Kumar, B.R.P.; Nanjan, M.J.; Suresh, B.; Karvekar, M.D.; Adhikary, L. Microwave induced synthesis of the thiazolidine‐2,4‐ dione motif and the efficient solvent free‐solid phase parallel syntheses of 5‐benzylidene‐thiazolidine‐2,4‐dione and 5‐benzylidene‐ 2‐thioxo‐thiazolidine‐4‐one compounds. J. Heterocycl. Chem., 2006, 43(4), 897-903.
[http://dx.doi.org/10.1002/jhet.5570430413]
[38]
Marc, G. Ionuț I.O.; Pirnau, A.; Vlase, L.A.; Vodnar, D.C.; Duma, M.; Tiperciuc, B.R.; Oniga, O. Microwave assisted synthesis of 3, 5-disubstituted thiazolidine-2, 4-diones with antifungal activity. Design, synthesis, virtual and in vitro antifungal screening. Farmacia, 2017, 65(3), 414-422.
[39]
Datar, P.A.; Aher, S.B. Design and synthesis of novel thiazolidine-2,4-diones as hypoglycemic agents. J. Saudi Chem. Soc., 2016, 20, S196-S201.
[http://dx.doi.org/10.1016/j.jscs.2012.10.010]
[40]
Tanis, S.P.; Parker, T.T.; Colca, J.R.; Fisher, R.M.; Kletzein, R.F. Synthesis and biological activity of metabolites of the antidiabetic, antihyperglycemic agent pioglitazone. J. Med. Chem., 1996, 39(26), 5053-5063.
[http://dx.doi.org/10.1021/jm9605694] [PMID: 8978836]
[41]
Oguchi, M.; Wada, K.; Honma, H.; Tanaka, A.; Kaneko, T.; Sakakibara, S.; Ohsumi, J.; Serizawa, N.; Fujiwara, T.; Horikoshi, H.; Fujita, T. Molecular design, synthesis, and hypoglycemic activity of a series of thiazolidine-2,4-diones. J. Med. Chem., 2000, 43(16), 3052-3066.
[http://dx.doi.org/10.1021/jm990522t] [PMID: 10956213]
[42]
Madhavan, G.R.; Chakrabarti, R.; Kumar, S.K.B.; Misra, P.; Mamidi, R.N.V.S.; Balraju, V.; Kasiram, K.; Babu, R.K.; Suresh, J.; Lohray, B.B.; Lohrayb, V.B.; Iqbal, J.; Rajagopalan, R. Novel phthalazinone and benzoxazinone containing thiazolidinediones as antidiabetic and hypolipidemic agents. Eur. J. Med. Chem., 2001, 36(7-8), 627-637.
[http://dx.doi.org/10.1016/S0223-5234(01)01257-0] [PMID: 11600232]
[43]
Madhavan, G.R.; Chakrabarti, R.; Vikramadithyan, R.K.; Mamidi, R.N.V.S.; Balraju, V.; Rajesh, B.M.; Misra, P.; Kumar, S.K.B.; Lohray, B.B.; Lohray, V.B.; Rajagopalan, R. Synthesis and biological activity of novel pyrimidinone containing thiazolidinedione derivatives. Bioorg. Med. Chem., 2002, 10(8), 2671-2680.
[http://dx.doi.org/10.1016/S0968-0896(02)00107-4] [PMID: 12057656]
[44]
Koyama, H.; Boueres, J.K.; Han, W.; Metzger, E.J.; Bergman, J.P.; Gratale, D.F.; Miller, D.J.; Tolman, R.L.; MacNaul, K.L.; Berger, J.P.; Doebber, T.W.; Leung, K.; Moller, D.E.; Heck, J.V.; Sahoo, S.P. 5-Aryl thiazolidine-2,4-diones as selective PPARγ agonists. Bioorg. Med. Chem. Lett., 2003, 13(10), 1801-1804.
[http://dx.doi.org/10.1016/S0960-894X(03)00257-9] [PMID: 12729668]
[45]
Kim, B.Y.; Ahn, J.B.; Lee, H.W.; Kang, S.K.; Lee, J.H.; Shin, J.S.; Ahn, S.K.; Hong, C.I.; Yoon, S.S. Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. Eur. J. Med. Chem., 2004, 39(5), 433-447.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.001] [PMID: 15110969]
[46]
Lee, H.; Kim, B.; Ahn, J.; Kang, S.; Lee, J.; Shin, J.; Ahn, S.; Lee, S.; Yoon, S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.019] [PMID: 15908051]
[47]
Gim, H.J.; Kang, B.; Jeon, R. Synthesis and biological activity of 5-(4-[2-(Methyl-p-substituted phenylamino)ethoxy]benzyl)thiazo-lidine-2,4-diones. Arch. Pharm. Res., 2007, 30(9), 1055-1061.
[http://dx.doi.org/10.1007/BF02980237] [PMID: 17958320]
[48]
Kumar, P.B.R.; Kumar, S.S.; Viral, P.; Wadhwani, A.; Vadivelan, R.; Kumar, S.M.N.; Elango, K.; Nanjan, M.J. Novel glitazones: Glucose uptake and cytotoxic activities, and structure–activity relationships. Med. Chem. Res., 2012, 21(9), 2689-2701.
[http://dx.doi.org/10.1007/s00044-011-9792-0]
[49]
Naim, M.J.; Alam, O.; Alam, M.J.; Hassan, M.Q.; Siddiqui, N.; Naidu, V.G.M.; Alam, M.I. Design, synthesis and molecular docking of thiazolidinedione based benzene sulphonamide derivatives containing pyrazole core as potential anti-diabetic agents. Bioorg. Chem., 2018, 76, 98-112.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.010] [PMID: 29169079]
[50]
Naim, M.J.; Alam, O.; Alam, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Naidu, V.G.M. Synthesis, docking, in vitro and in vivo antidiabetic activity of pyrazole-based 2,4-thiazolidinedione derivatives as PPAR-γ modulators. Arch. Pharm., 2018, 351(3-4), 1700223.
[http://dx.doi.org/10.1002/ardp.201700223] [PMID: 29400412]
[51]
Bansal, G.; Singh, S.; Monga, V.; Thanikachalam, P.V.; Chawla, P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg. Chem., 2019, 92, 103271.
[http://dx.doi.org/10.1016/j.bioorg.2019.103271] [PMID: 31536952]
[52]
Tunçbilek, M.; Dündar, B.O. Kılcıgil, A.G.; Ceylan, M.; Waheed, A.; Verspohl, E.J.; Ertan, R. Synthesis and hypoglycemic activity of some substituted flavonyl thiazolidinedione derivatives-fifth communication: Flavonyl benzyl substituted 2,4-thiazolidinedi-ones. Farmaco, 2003, 58(1), 79-83.
[http://dx.doi.org/10.1016/S0014-827X(02)01241-7] [PMID: 12595040]
[53]
Wrobel, J.; Li, Z.; Dietrich, A.; McCaleb, M.; Mihan, B.; Sredy, J.; Sullivan, D. Novel 5-(3-Aryl-2-propynyl)-5-(arylsulfonyl)thia-zolidine-2,4-diones as Antihyperglycemic Agents. J. Med. Chem., 1998, 41(7), 1084-1091.
[http://dx.doi.org/10.1021/jm9706168] [PMID: 9544208]
[54]
Bozdağ-Dündar, O.; Verspohl, E.J.; Daş-Evcimen, N.; Kaup, R.M.; Bauer, K.; Sarıkaya, M.; Evranos, B.; Ertan, R. Synthesis and biological activity of some new flavonyl-2,4-thiazolidine-diones. Bioorg. Med. Chem., 2008, 16(14), 6747-6751.
[http://dx.doi.org/10.1016/j.bmc.2008.05.059] [PMID: 18565754]
[55]
Chittiboyina, A.G.; Venkatraman, M.S.; Mizuno, C.S.; Desai, P.V.; Patny, A.; Benson, S.C.; Ho, C.I.; Kurtz, T.W.; Pershadsingh, H.A.; Avery, M.A. Design and synthesis of the first generation of dithiolane thiazolidinedione- and phenylacetic acid-based PPARgamma agonists. J. Med. Chem., 2006, 49(14), 4072-4084.
[http://dx.doi.org/10.1021/jm0510880] [PMID: 16821769]
[56]
Kumar, B.R.P.; Nanjan, M.J. Novel glitazones: Design, synthesis, glucose uptake and structure–activity relationships. Bioorg. Med. Chem. Lett., 2010, 20(6), 1953-1956.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.125] [PMID: 20167487]
[57]
Kumar, B.R.P.; Soni, M.; Kumar, S.S.; Singh, K.; Patil, M.; Baig, R.B.N.; Adhikary, L. Synthesis, glucose uptake activity and structure–activity relationships of some novel glitazones incorporated with glycine, aromatic and alicyclic amine moieties via two carbon acyl linker. Eur. J. Med. Chem., 2011, 46(3), 835-844.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.019] [PMID: 21277051]
[58]
Naim, M.J.; Alam, M.J.; Nawaz, F.; Naidu, V.G.M.; Aaghaz, S.; Sahu, M.; Siddiqui, N.; Alam, O. Synthesis, molecular docking and anti-diabetic evaluation of 2,4-thiazolidinedione based amide derivatives. Bioorg. Chem., 2017, 73, 24-36.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.007] [PMID: 28582649]
[59]
Khazi, M.I.A.; Belavagi, N.S.; Kim, K.R.; Gong, Y.D.; Khazi, I.A.M. Synthesis, hypoglycaemic, hypolipidemic and PPAR γ agonist activities of 5-(2-Alkyl/aryl-6-Arylimidazo[2,1-b][1,3,4]thiadiazol-5-yl)methylene-1,3-Thiazolidinediones. Chem. Biol. Drug Des., 2013, 82(2), 147-155.
[http://dx.doi.org/10.1111/cbdd.12140] [PMID: 23581650]
[60]
Neogi, P.; Lakner, F.J.; Medicherla, S.; Cheng, J.; Dey, D.; Gowri, M.; Nag, B.; Sharma, S.D.; Pickford, L.B.; Gross, C. Synthesis and structure–Activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorg. Med. Chem., 2003, 11(18), 4059-4067.
[http://dx.doi.org/10.1016/S0968-0896(03)00393-6] [PMID: 12927868]
[61]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Kharbanda, C.; Ali, Y.; Pillai, K. Design, synthesis, and biological evaluation of thiazolidine-2, 4-dione conjugates as PPAR-γ agonists. Arch. Pharm., 2015, 348(6), 421-432.
[http://dx.doi.org/10.1002/ardp.201400280] [PMID: 25900064]
[62]
Maji, D.; Samanta, S. Novel thiazolidinedione-5-acetic-acid-peptide hybrid derivatives as potent antidiabetic and cardioprotective agents. Biomed. Pharmacother., 2017, 88, 1163-1172.
[http://dx.doi.org/10.1016/j.biopha.2017.01.160]
[63]
Jeon, R.; Park, S. Synthesis and biological activity of Benzoxazole containing thiazolidinedione derivatives. Arch. Pharm. Res., 2004, 27(11), 1099-1105.
[http://dx.doi.org/10.1007/BF02975111] [PMID: 15595409]
[64]
Jeon, R.; Kim, Y.J.; Cheon, Y.; Ryu, J.H. Synthesis and biological activity of [[(heterocycloamino)alkoxy] benzyl]-2,4-thiazolidine-diones as PPARγ agonists. Arch. Pharm. Res., 2006, 29(5), 394-399.
[http://dx.doi.org/10.1007/BF02968589] [PMID: 16756084]
[65]
Unlusoy, M.C.; Kazak, C.; Bayro, O.; Verspohl, E.J.; Ertan, R.; Dundar, O.B. Synthesis and antidiabetic activity of 2,4-thiazolidindione, imidazolidinedione and 2-thioxo-imidazolidine-4-one derivatives bearing 6-methyl chromonyl pharmacophore. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1205-1210.
[http://dx.doi.org/10.3109/14756366.2012.723207] [PMID: 23057864]
[66]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Kharbanda, C.; Ali, Y.; Pillai, K.K. Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg. Med. Chem. Lett., 2014, 24(14), 3034-3042.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.034] [PMID: 24890090]
[67]
Figueroa, H.S.; Espinosa, R.J.J.; Soto, E.S.; Pérez, A.J.C.; Ramos, R.R.; Aguilar, A.F.J.; Rosado, H.J.V.; Díaz, M.H.; Coutiño, D.D.; Vázquez, N.G. Discovery of thiazolidine-2,4-dione/biphenylcar-bonitrile hybrid as dual PPAR α/γ modulator with antidiabetic effect: in vitro, in silico and in vivo approaches. Chem. Biol. Drug Des., 2013, 81(4), 474-483.
[http://dx.doi.org/10.1111/cbdd.12102] [PMID: 23289972]
[68]
Vázquez, N.G.; Gómez, T.H.; Figueroa, H.S.; Espinosa, R.J.J.; Soto, E.S.; Franco, M.J.L.; Rivera, L.I.; Aguilar, A.F.J.; Pérez, A.J.C. Synthesis, in vitro and in silico studies of a PPARγ and GLUT-4 modulator with hypoglycemic effect. Bioorg. Med. Chem. Lett., 2014, 24(18), 4575-4579.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.068] [PMID: 25131539]
[69]
Figueroa, H.S.; Soto, E.S.; Espinosa, R.J.J.; Paoli, P.; Lori, G.; Rivera, L.I.; Vázquez, N.G. Synthesis and evaluation of thiazolidine-2,4-dione/benzazole derivatives as inhibitors of protein tyrosine phosphatase 1B (PTP-1B): Antihyperglycemic activity with molecular docking study. Biomed. Pharmacother., 2018, 107, 1302-1310.
[http://dx.doi.org/10.1016/j.biopha.2018.08.124] [PMID: 30257345]
[70]
Sohda, T.; Mizuno, K.; Momose, Y.; Ikeda, H.; Fujita, T.; Meguro, K. Studies on antidiabetic agents. 11. Novel thiazolidinedione derivatives as potent hypoglycemic and hypolipidemic agents. J. Med. Chem., 1992, 35(14), 2617-2626.
[http://dx.doi.org/10.1021/jm00092a012] [PMID: 1635060]
[71]
Lohray, B.B.; Bhushan, V.; Rao, B.P.; Madhavan, G.R.; Murali, N.; Rao, K.N.; Reddy, A.K.; Rajesh, B.M.; Reddy, P.G.; Chakrabarti, R.; Vikramadithyan, R.K.; Rajagopalan, R.; Mamidi, R.N.V.S.; Jajoo, H.K.; Subramaniam, S. Novel euglycemic and hypolipidemic agents. 1. J. Med. Chem., 1998, 41(10), 1619-1630.
[http://dx.doi.org/10.1021/jm970444e] [PMID: 9572887]
[72]
Lohray, B.B.; Bhushan, V.; Reddy, A.S.; Rao, P.B.; Reddy, N.J.; Harikishore, P.; Haritha, N.; Vikramadityan, R.K.; Chakrabarti, R.; Rajagopalan, R.; Katneni, K. Novel euglycemic and hypolipidemic agents. 4. Pyridyl- and quinolinyl-containing thiazolidinediones. J. Med. Chem., 1999, 42(14), 2569-2581.
[http://dx.doi.org/10.1021/jm980622j] [PMID: 10411477]
[73]
Gupta, D.; Ghosh, N.N.; Chandra, R. Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetra-hydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg. Med. Chem. Lett., 2005, 15(4), 1019-1022.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.041] [PMID: 15686904]
[74]
Mohammed Iqbal, A.K.; Khan, A.Y.; Kalashetti, M.B.; Belavagi, N.S.; Gong, Y.D.; Khazi, I.A.M. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur. J. Med. Chem., 2012, 53, 308-315.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.015] [PMID: 22575535]
[75]
Shukla, S.; Kumar, P.; Das, N.; Moorthy, H.N.S.; Shrivastava, K.S.; Trivedi, P.; Srivastava, S.R. Synthesis, characterization, biological evaluation and docking of coumarin coupled thiazolidinedione derivatives and its bioisosteres as PPARγ agonists. Med. Chem., 2012, 8(5), 834-845.
[http://dx.doi.org/10.2174/157340612802084388] [PMID: 22741802]
[76]
Ahmadi, A.; Khalili, M.; Samavat, S.; Shahbazi, E.; Niknafs, N.B. Synthesis and evaluation of the hypoglycemic and hypolipidemic activity of novel arylidene thiazolidinedione analogson a type 2 diabetes model. Pharm. Chem. J., 2016, 50(3), 165-171.
[http://dx.doi.org/10.1007/s11094-016-1416-z]
[77]
Deshmukh, A.R.; Dhumal, S.T.; Bhalerao, M.B.; Mishra, A.; Srivastava, A.K.; Mane, R.A. Design, synthesis and antidiabetic evaluation of new cyanoquinoloxy benzylidenyl 2, 4-thiazolidine-diones. J. Chem. Bio.I., 2016, 6(4), 189-197.
[78]
Pattan, S.R.; Kekare, P.; Patil, A.; Nikalje, A.; Kittur, B.S. Studies on the synthesis of novel 2, 4-thiazolidinedione derivatives with antidiabetic activity. Iran. J. Pharm. Sci., 2009, 5(4), 225-230.
[79]
Jawale, D.V.; Pratap, U.R.; Rahuja, N.; Srivastava, A.K.; Mane, R.A. Synthesis and antihyperglycemic evaluation of new 2,4-thiazolidinediones having biodynamic aryl sulfonylurea moieties. Bioorg. Med. Chem. Lett., 2012, 22(1), 436-439.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.110] [PMID: 22123321]
[80]
Saini, P.; Farooqui, N.A.; Easwari, T.S. Synthesis and biological evaluation of some 5-substituted phenothiazine based thiazoli-dine-2, 4-dione derivatives. MIT Int J Pharm Sci, 2018, 4(1), 13-17.
[81]
Mehendale-Munj, S.; Ghosh, R.; Ramaa, C.S. Synthesis and evaluation of the hypoglycemic and hypolipidemic activity of novel 5-benzylidene-2,4-thiazolidinedione analogs in a type-2 diabetes model. Med. Chem. Res., 2011, 20(5), 642-647.
[http://dx.doi.org/10.1007/s00044-010-9359-5]
[82]
Shrivastava, S.K.; Batham, A.; Sinha, S.K.; Parida, T.K.; Garabadu, D.; Choubey, P.K. Design, synthesis and evaluation of novel thiazolidinedione derivatives as anti-hyperglycemic and anti-hyperlipidemic agents. Med. Chem. Res., 2016, 25(10), 2258-2266.
[http://dx.doi.org/10.1007/s00044-016-1675-y]
[83]
Murugan, R.; Anbazhagan, S.; Narayanan, S.S.; Narayanan, S.S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.035] [PMID: 19395129]
[84]
Avupati, V.R.; Yejella, R.P.; Akula, A.; Guntuku, G.S.; Doddi, B.R.; Vutla, V.R.; Anagani, S.R.; Adimulam, L.S.; Vyricharla, A.K. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg. Med. Chem. Lett., 2012, 22(20), 6442-6450.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.052] [PMID: 22981328]
[85]
Patel, K.D.; Patel, C.N.; M. Patel, G. Microwave assisted synthesis and antidiabetic activity of novel 5-[4-(substituted) benzylidine] thiazolidine-2, 4-dione. Med. Chem., 2016, 6(10), 647-651.
[http://dx.doi.org/10.4172/2161-0444.1000409]
[86]
Reddy, K.A.; Lohray, B.B.; Bhushan, V.; Bajji, A.C.; Reddy, K.V.; Reddy, P.R.; Krishna, T.H.; Rao, I.N.; Jajoo, H.K.; Rao, N.V.S.M.; Chakrabarti, R.; Dileepkumar, T.; Rajagopalan, R. Novel antidiabetic and hypolipidemic agents. 3. Benzofuran-containing thiazolidinediones. J. Med. Chem., 1999, 42(11), 1927-1940.
[http://dx.doi.org/10.1021/jm980549x] [PMID: 10354401]
[87]
Pattan, S.R.; Suresh, C.H.; Pujar, V.D.; Reddy, V.V.; Rasal, V.P.; Koti, B.C. Synthesis and antidiabetic activity of 2-amino [5′(4-sulphonylbenzylidine)-2, 4-thiazolidinedione]-7-chloro-6-fluorobenzothiazole. Indian J. Chem., 2005, (44B), 2404-2408.
[88]
Purohit, S.S.; Veerapur, V.P. Benzisoxazole containing thiazolidinediones as peroxisome proliferator activated receptor-γ agonists: Design, molecular docking, synthesis & antidiabetic studies. Sch Acad J Pharm, 2014, 3, 26-37.
[89]
Huneif, M.A.; Mahnashi, M.H.; Jan, M.S.; Shah, M.; Almedhesh, S.A.; Alqahtani, S.M.; Alzahrani, M.J.; Ayaz, M.; Ullah, F.; Rashid, U.; Sadiq, A. New succinimide–thiazolidinedione hybrids as multitarget antidiabetic agents: Design, synthesis, bioevaluation, and molecular modelling studies. Molecules, 2023, 28(3), 1207.
[http://dx.doi.org/10.3390/molecules28031207] [PMID: 36770873]
[90]
Pardeshi, D.R.; Kulkarni, V.M.; Pathare, S.S. Synthesis, antidiabetic evaluation and molecular docking studies of thiazolidine-2,4-dione analogues. IJPER, 2023, 57(1s), s98-s104.
[http://dx.doi.org/10.5530/ijper.57.1s.11]
[91]
Srinivasa, M.G.; Paithankar, J.G.; Birangal, S.S.R.; Pai, A.; Pai, V.; Deshpande, S.N.; Revanasiddappa, B.C. Novel hybrids of thiazolidinedione-1,3,4-oxadiazole derivatives: Synthesis, molecular docking, MD simulations, ADMET study, in vitro, and in vivo anti-diabetic assessment. RSC Advances, 2023, 13(3), 1567-1579.
[http://dx.doi.org/10.1039/D2RA07247E] [PMID: 36712616]
[92]
Geetha, B.; Swarnalatha, G.; Reddy, G.V. Microwave assisted synthesis, qsar and molecular docking studies of 2, 4-thiazolidinedione derivatives. Rasayan J. Chem., 2019, 12(3), 1063-1071.
[http://dx.doi.org/10.31788/RJC.2019.1235165]
[93]
Sujatha, B.; Chennamsetty, S.; Chintha, V.; Wudayagiri, R.; Prasada Rao, K. Synthesis and anti-diabetic activity evaluation of phosphonates containing thiazolidinedione moiety. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(7), 586-591.
[http://dx.doi.org/10.1080/10426507.2020.1737061]
[94]
Kumar, S.K.; Rao, L.A.; Reddy, S.D.R. Design, synthesis, hypoglycemic activity and molecular docking studies of 3-substituted-5- [(furan-2-yl)-methylene]-thiazolidine-2,4-dione derivatives. IJPER, 2021, 55(1), 266-275.
[http://dx.doi.org/10.5530/ijper.55.1.30]
[95]
Kadium, R.; Alhazam, H.; Hameed, B. Design, synthesis and characterization of some novel thiazolidine-2,4-dione derivatives as antidiabetic agents. Acta Pol. Pharm., 2021, 78(6), 773-779.
[http://dx.doi.org/10.32383/appdr/145368]
[96]
Karumanchi, S.K.; Atmakuri, L.R.; Mandava, V.B.R.; Rajala, S. Synthesis and hypoglycemic and anti-inflammatory activity screening of novel substituted 5-[Morpholino(Phenyl)Methyl]-thiazolidine-2,4-diones and their molecular docking studies. Turk J Pharm Sci, 2019, 16(4), 380-391.
[http://dx.doi.org/10.4274/tjps.galenos.2018.82612] [PMID: 32454740]
[97]
Sawant, R.L.; Gade, S.T. Synthesis and pharmacological evaluation of 2, 4-thiazolidinediones as antidiabetic agents. World J. Pharm. Res., 2018, 7(3), 469-476.
[http://dx.doi.org/10.20959/wjpr20183-9875]