Boltzmann’s Theorem Revisited: Inaccurate Time-to-Action Clocks in Affective Disorders

Page: [1762 - 1777] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Timely goal-oriented behavior is essential for survival and is shaped by experience. In this paper, a multileveled approach was employed, ranging from the polymorphic level through thermodynamic molecular, cellular, intracellular, extracellular, non-neuronal organelles and electrophysiological waves, attesting for signal variability. By adopting Boltzmann’s theorem as a thermodynamic conceptualization of brain work, we found deviations from excitation-inhibition balance and wave decoupling, leading to wider signal variability in affective disorders compared to healthy individuals. Recent evidence shows that the overriding on-off design of clock genes paces the accuracy of the multilevel parallel sequencing clocks and that the accuracy of the time-to-action is more crucial for healthy behavioral reactions than their rapidity or delays. In affective disorders, the multilevel clocks run free and lack accuracy of responsivity to environmentally triggered time-to-action as the clock genes are not able to rescue mitochondria organelles from oxidative stress to produce environmentally-triggered energy that is required for the accurate time-to-action and maintenance of the thermodynamic equilibrium. This maintenance, in turn, is dependent on clock gene transcription of electron transporters, leading to higher signal variability and less signal accuracy in affective disorders. From a Boltzmannian thermodynamic and energy-production perspective, the option of reversibility to a healthier time-toaction, reducing entropy is implied. We employed logic gates to show deviations from healthy levelwise communication and the reversed conditions through compensations implying the role of nonneural cells and the extracellular matrix in return to excitation-inhibition balance and accuracy in the time-to-action signaling.

Graphical Abstract

[1]
Ferber, S.G. The concept of coregulation between neurobehavioral subsystems: The logic interplay between excitatory and inhibitory ends. Behav. Brain Sci., 2008, 31(3), 337-338.
[http://dx.doi.org/10.1017/S0140525X08004123]
[2]
Darwin, C. On the Origin of Species; PF Collier & Son: New York, 1909.
[3]
Dunning, D.; Perie, M.; Story, A.L. Self-serving prototypes of social categories. J. Pers. Soc. Psychol., 1991, 61(6), 957-968.
[http://dx.doi.org/10.1037/0022-3514.61.6.957] [PMID: 1774633]
[4]
Womelsdorf, T.; Valiante, T.A.; Sahin, N.T.; Miller, K.J.; Tiesinga, P. Dynamic circuit motifs underlying rhythmic gain control, gating and integration. Nat. Neurosci., 2014, 17(8), 1031-1039.
[http://dx.doi.org/10.1038/nn.3764] [PMID: 25065440]
[5]
Williams, G.; Aldrich, A.; Theodorou, E.A. Model predictive path integral control: From theory to parallel computation. J. Guid. Control Dyn., 2017, 40(2), 344-357.
[http://dx.doi.org/10.2514/1.G001921]
[6]
Goodman, Z.T.; Bainter, S.A.; Kornfeld, S.; Chang, C.; Nomi, J.S.; Uddin, L.Q. Whole-brain functional dynamics track depressive symptom severity. Cereb. Cortex, 2021, 31(11), 4867-4876.
[http://dx.doi.org/10.1093/cercor/bhab047] [PMID: 33774654]
[7]
Akiskal, H.S. Validating ‘hard’ and ‘soft’ phenotypes within the bipolar spectrum: continuity or discontinuity? J. Affect. Disord., 2003, 73(1-2), 1-5.
[http://dx.doi.org/10.1016/s0165-0327(02)00390-7] [PMID: 12507732]
[8]
Goldstein, S.; Lebowitz, J.L. On the (Boltzmann) entropy of non-equilibrium systems. Physica D, 2004, 193(1-4), 53-66.
[http://dx.doi.org/10.1016/j.physd.2004.01.008]
[9]
Maxwell, J.C. A dynamical theory of the electromagnetic field. Proc. R. Soc. Lond., 1865, 155, 459-512.
[10]
Gibbs, J. Elementary principles in statistical mechanics. In: Developed with Special Reference to the Rational Foundation of Thermodynamics; C. Scribner’s sons, 1902.
[11]
Collell, G.; Fauquet, J. Brain activity and cognition: A connection from thermodynamics and information theory. Front. Psychol., 2015, 6, 818.
[http://dx.doi.org/10.3389/fpsyg.2015.00818] [PMID: 26136709]
[12]
Ferber, S.G.; Weller, A.; Soreq, H. Control systems theory revisited: New insights on the brain clocks of time-to-action. Front. Neurosci., 2023, 17, 1171765.
[http://dx.doi.org/10.3389/fnins.2023.1171765] [PMID: 37378011]
[13]
Cassano, G.B.; Rucci, P.; Frank, E.; Fagiolini, A.; Dell’Osso, L.; Shear, M.K.; Kupfer, D.J. The mood spectrum in unipolar and bipolar disorder: Arguments for a unitary approach. Am. J. Psychiatry, 2004, 161(7), 1264-1269.
[http://dx.doi.org/10.1176/appi.ajp.161.7.1264] [PMID: 15229060]
[14]
Ferber, S.G.; Als, H.; McAnulty, G.; Klinger, G.; Weller, A. Multi-level hypothalamic neuromodulation of self-regulation and cognition in preterm infants: Towards a control systems model. Compr. Psychoneuroendocrinol., 2022, 9, 100109.
[http://dx.doi.org/10.1016/j.cpnec.2021.100109] [PMID: 35755927]
[15]
Lee, S.Y.; Chen, S.L.; Chang, Y.H.; Chen, S.H.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; Wang, C.L.; Wang, L.J.; Lee, I.H.; Yeh, T.L.; Lu, R-B.; Yang, Y.K.; Lu, R.B. Genotype variant associated with add-on memantine in bipolar II disorder. Int. J. Neuropsychopharmacol., 2014, 17(2), 189-197.
[http://dx.doi.org/10.1017/S1461145713000825] [PMID: 24103632]
[16]
Kennaway, D.J. Review: Clock genes at the heart of depression. J. Psychopharmacol., 2010, 24(S2), 5-14.
[http://dx.doi.org/10.1177/1359786810372980] [PMID: 20663803]
[17]
Watson, D.; Wiese, D.; Vaidya, J.; Tellegen, A. The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. J. Pers. Soc. Psychol., 1999, 76(5), 820-838.
[http://dx.doi.org/10.1037/0022-3514.76.5.820]
[18]
Teicher, M.H.; Glod, C.A.; Magnus, E.; Harper, D.; Benson, G.; Krueger, K.; McGreenery, C.E. Circadian rest-activity disturbances in seasonal affective disorder. Arch. Gen. Psychiatry, 1997, 54(2), 124-130.
[http://dx.doi.org/10.1001/archpsyc.1997.01830140034007] [PMID: 9040280]
[19]
Souêtre, E.; Salvati, E.; Belugou, J.L.; Pringuey, D.; Candito, M.; Krebs, B.; Ardisson, J.L.; Darcourt, G. Circadian rhythms in depression and recovery: Evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res., 1989, 28(3), 263-278.
[http://dx.doi.org/10.1016/0165-1781(89)90207-2] [PMID: 2762432]
[20]
Sjöholm, L.K.; Backlund, L.; Cheteh, E.H.; Ek, I.R.; Frisén, L.; Schalling, M.; Ösby, U.; Lavebratt, C.; Nikamo, P. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One, 2010, 5(9), e12632.
[http://dx.doi.org/10.1371/journal.pone.0012632] [PMID: 20856823]
[21]
Kelley, A.E.; Baldo, B.A.; Pratt, W.E. A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol., 2005, 493(1), 72-85.
[http://dx.doi.org/10.1002/cne.20769] [PMID: 16255002]
[22]
Hansen, J.M.; Jones, D.P.; Harris, C. The redox theory of development. Antioxid. Redox Signal., 2020, 32(10), 715-740.
[http://dx.doi.org/10.1089/ars.2019.7976] [PMID: 31891515]
[23]
Artioli, P.; Lorenzi, C.; Pirovano, A.; Serretti, A.; Benedetti, F.; Catalano, M.; Smeraldi, E. How do genes exert their role? Period 3 gene variants and possible influences on mood disorder phenotypes. Eur. Neuropsychopharmacol., 2007, 17(9), 587-594.
[http://dx.doi.org/10.1016/j.euroneuro.2007.03.004] [PMID: 17512705]
[24]
Koefoed, P.; Andreassen, O.A.; Bennike, B.; Dam, H.; Djurovic, S.; Hansen, T.; Jorgensen, M.B.; Kessing, L.V.; Melle, I.; Møller, G.L; Mors, O.; Werge, T.; Mellerup, E. Combinations of SNPs related to signal transduction in bipolar disorder. PLoS One, 2011, 6(8), e23812.
[http://dx.doi.org/10.1371/journal.pone.0023812] [PMID: 21897858]
[25]
Abdolahi, S.; Zare-Chahoki, A.; Noorbakhsh, F.; Gorji, A. A review of molecular interplay between neurotrophins and MiRNAs in neuropsychological disorders. Mol. Neurobiol., 2022, 59, 6260-6280.
[26]
Winek, K.; Soreq, H.; Meisel, A. Regulators of cholinergic signaling in disorders of the central nervous system. J. Neurochem., 2021, 158(6), 1425-1438.
[http://dx.doi.org/10.1111/jnc.15332] [PMID: 33638173]
[27]
Winek, K.; Lobentanzer, S.; Nadorp, B.; Dubnov, S.; Dames, C.; Jagdmann, S.; Moshitzky, G.; Hotter, B.; Meisel, C.; Greenberg, D.S.; Shifman, S.; Klein, J.; Shenhar-Tsarfaty, S.; Meisel, A.; Soreq, H. Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc. Natl. Acad. Sci., 2020, 117(51), 32606-32616.
[http://dx.doi.org/10.1073/pnas.2013542117] [PMID: 33288717]
[28]
Kiltschewskij, D.J.; Cairns, M.J. Transcriptome-wide analysis of interplay between mRNA stability, translation and small RNAs in response to neuronal membrane depolarization. Int. J. Mol. Sci., 2020, 21(19), 7086.
[http://dx.doi.org/10.3390/ijms21197086] [PMID: 32992958]
[29]
Hannestad, J.O.; Cosgrove, K.P.; DellaGioia, N.F.; Perkins, E.; Bois, F.; Bhagwagar, Z.; Seibyl, J.P.; McClure-Begley, T.D.; Picciotto, M.R.; Esterlis, I. Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography. Biol. Psychiatry, 2013, 74(10), 768-776.
[http://dx.doi.org/10.1016/j.biopsych.2013.04.004] [PMID: 23773793]
[30]
Fang, H.; Tu, S.; Sheng, J.; Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell. Mol. Med., 2019, 23(4), 2324-2332.
[http://dx.doi.org/10.1111/jcmm.14170] [PMID: 30734486]
[31]
Soreq, H. Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci., 2015, 38(7), 448-458.
[http://dx.doi.org/10.1016/j.tins.2015.05.007] [PMID: 26100140]
[32]
Wang, X.J. Decision making in recurrent neuronal circuits. Neuron, 2008, 60(2), 215-234.
[http://dx.doi.org/10.1016/j.neuron.2008.09.034] [PMID: 18957215]
[33]
Buzsáki, G.; Wang, X.J. Mechanisms of gamma oscillations. Annu. Rev. Neurosci., 2012, 35(1), 203-225.
[http://dx.doi.org/10.1146/annurev-neuro-062111-150444] [PMID: 22443509]
[34]
Atagün, M.İ. Brain oscillations in bipolar disorder and lithium-induced changes. Neuropsychiatr. Dis. Treat., 2016, 12, 589-601.
[http://dx.doi.org/10.2147/NDT.S100597] [PMID: 27022264]
[35]
Northoff, G. Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. J. Affect. Disord., 2016, 190, 854-866.
[http://dx.doi.org/10.1016/j.jad.2015.05.007] [PMID: 26048657]
[36]
Grande, I.; Fries, G.R.; Kunz, M.; Kapczinski, F. The role of BDNF as a mediator of neuroplasticity in bipolar disorder. Psychiatry Investig., 2010, 7(4), 243-250.
[http://dx.doi.org/10.4306/pi.2010.7.4.243] [PMID: 21253407]
[37]
Fernandes, B.S.; Molendijk, M.L.; Köhler, C.A; Soares, J.C; Leite, C.M.G.S.; Machado-Vieira, R.; Ribeiro, T.L.; Silva, J.C; Sales, P.M.G.; Quevedo, J.; Oertel-Kn öchel, V.; Vieta, E.; González-Pinto, A.; Berk, M.; Carvalho, A.F. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med., 2015, 13, 1-22.
[38]
Kantamneni, S. Cross-talk and regulation between glutamate and GABAB receptors. Front. Cell. Neurosci., 2015, 9, 135.
[http://dx.doi.org/10.3389/fncel.2015.00135] [PMID: 25914625]
[39]
Rivolta, D.; Heidegger, T.; Scheller, B.; Sauer, A.; Schaum, M.; Birkner, K.; Singer, W.; Wibral, M.; Uhlhaas, P.J. Ketamine dysregulates the amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans: Evidence from resting-state magnetoencephalography-recordings. Schizophr. Bull., 2015, 41(5), 1105-1114.
[http://dx.doi.org/10.1093/schbul/sbv051] [PMID: 25987642]
[40]
Rebola, N.; Srikumar, B.N.; Mulle, C. Activity‐dependent synaptic plasticity of NMDA receptors. J. Physiol., 2010, 588(1), 93-99.
[http://dx.doi.org/10.1113/jphysiol.2009.179382] [PMID: 19822542]
[41]
Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[42]
Ghasemi, M.; Phillips, C.; Fahimi, A.; McNerney, M.W.; Salehi, A. Mechanisms of action and clinical efficacy of NMDA receptor modulators in mood disorders. Neurosci. Biobehav. Rev., 2017, 80, 555-572.
[http://dx.doi.org/10.1016/j.neubiorev.2017.07.002] [PMID: 28711661]
[43]
Kim, Y.K.; Na, K.S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 117-126.
[http://dx.doi.org/10.1016/j.pnpbp.2016.03.009] [PMID: 27046518]
[44]
Deutschenbaur, L.; Beck, J.; Kiyhankhadiv, A.; Mühlhauser, M.; Borgwardt, S.; Walter, M.; Hasler, G.; Sollberger, D.; Lang, U.E. Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 325-333.
[http://dx.doi.org/10.1016/j.pnpbp.2015.02.015] [PMID: 25747801]
[45]
Iadarola, N.D.; Niciu, M.J.; Richards, E.M.; Vande Voort, J.L.; Ballard, E.D.; Lundin, N.B.; Nugent, A.C.; Machado-Vieira, R.; Zarate, C.A., Jr Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther. Adv. Chronic Dis., 2015, 6(3), 97-114.
[http://dx.doi.org/10.1177/2040622315579059] [PMID: 25954495]
[46]
Zhang, J.C.; Yao, W.; Hashimoto, K.A. Arketamine, a new rapid-acting antidepressant: A historical review and future directions. Neuropharmacology, 2022, 218, 109219.
[47]
Duman, R.S. Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections. Depress. Anxiety, 2014, 31(4), 291-296.
[http://dx.doi.org/10.1002/da.22227] [PMID: 24616149]
[48]
Szczepankiewicz, A.; Skibinska, M.; Suwalska, A.; Hauser, J.; Rybakowski, J.K. The association study of three FYN polymorphisms with prophylactic lithium response in bipolar patients. Hum. Psychopharmacol., 2009, 24(4), 287-291.
[http://dx.doi.org/10.1002/hup.1018] [PMID: 19330793]
[49]
Abdolmaleky, H.M.; Thiagalingam, S.; Wilcox, M. Genetics and epigenetics in major psychiatric disorders: Dilemmas, achievements, applications, and future scope. Am. J. Pharmacogenomics, 2005, 5(3), 149-160.
[http://dx.doi.org/10.2165/00129785-200505030-00002] [PMID: 15952869]
[50]
Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord., 2015, 174, 432-440.
[http://dx.doi.org/10.1016/j.jad.2014.11.044] [PMID: 25553404]
[51]
Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants. Eur. J. Neurosci., 2021, 53(1), 126-139.
[http://dx.doi.org/10.1111/ejn.14630] [PMID: 31811669]
[52]
Vega-Núñez, A.; Gómez-Sánchez-Lafuente, C.; Mayoral-Cleries, F.; Bordallo, A.; Rodríguez de Fonseca, F.; Suárez,, J.; Guzmán-Parra, J. Clinical value of inflammatory and neurotrophic biomarkers in bipolar disorder: A systematic review and meta-analysis. Biomedicines, 2022, 10(6), 1368.
[http://dx.doi.org/10.3390/biomedicines10061368] [PMID: 35740389]
[53]
Barbosa, I.G.; Rocha, N.P.; Miranda, A.S.; Huguet, R.B.; Bauer, M.E.; Reis, H.J.; Teixeira, A.L. Increased BDNF levels in long-term bipolar disorder patients. Rev. Bras. Psiquiatr., 2013, 35(1), 67-69.
[http://dx.doi.org/10.1016/j.rbp.2012.05.011] [PMID: 23567603]
[54]
Yamada, K.; Nabeshima, T. Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect., 2004, 17(7), 435-438.
[http://dx.doi.org/10.1358/dnp.2004.17.7.863702] [PMID: 15514702]
[55]
Huntenburg, J.M.; Bazin, P.L.; Margulies, D.S. Large-scale gradients in human cortical organization. Trends Cogn. Sci., 2018, 22(1), 21-31.
[http://dx.doi.org/10.1016/j.tics.2017.11.002] [PMID: 29203085]
[56]
Sharma, V.; Singh, T.G.; Kaur, A.; Mannan, A.; Dhiman, S. Brain-derived neurotrophic factor: A novel dynamically regulated therapeutic modulator in neurological disorders. Neurochem. Res., 2022, 48(2), 317-339.
[57]
Goddard, C.A.; Sridharan, D.; Huguenard, J.R.; Knudsen, E.I. Gamma oscillations are generated locally in an attention-related midbrain network. Neuron, 2012, 73(3), 567-580.
[http://dx.doi.org/10.1016/j.neuron.2011.11.028] [PMID: 22325207]
[58]
Wyllie, D.J.A.; Livesey, M.R.; Hardingham, G.E. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology, 2013, 74, 4-17.
[http://dx.doi.org/10.1016/j.neuropharm.2013.01.016] [PMID: 23376022]
[59]
Alcaro, A.; Panksepp, J.; Witczak, J.; Hayes, D.J.; Northoff, G. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci. Biobehav. Rev., 2010, 34(4), 592-605.
[http://dx.doi.org/10.1016/j.neubiorev.2009.11.023] [PMID: 19958790]
[60]
Moolamalla, S.T.R.; Vinod, P.K. Genome-scale metabolic modelling predicts biomarkers and therapeutic targets for neuropsychiatric disorders. Comput. Biol. Med., 2020, 125, 103994.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103994] [PMID: 32980779]
[61]
Kang, L.L.; Zhang, D.M.; Jiao, R.Q.; Pan, S.M.; Zhao, X.J.; Zheng, Y.J.; Chen, T.Y.; Kong, L.D. Pterostilbene attenuates fructose-induced myocardial fibrosis by inhibiting ROS-driven Pitx2c/MiR-15b pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1243215.
[62]
Van Drunen, R.; Eckel-Mahan, K. Circadian rhythms as modulators of brain health during development and throughout aging. Front. Neural Circuits, 2023, 16, 1059229.
[http://dx.doi.org/10.3389/fncir.2022.1059229] [PMID: 36741032]
[63]
Su, Z.; Wilson, B.; Kumar, P.; Dutta, A. Noncanonical Roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet., 2020, 54(1), 47-69.
[http://dx.doi.org/10.1146/annurev-genet-022620-101840] [PMID: 32841070]
[64]
Nawrot, B.; Sochacka, E.; Düchler, M. tRNA structural and functional changes induced by oxidative stress. Cell. Mol. Life Sci., 2011, 68(24), 4023-4032.
[http://dx.doi.org/10.1007/s00018-011-0773-8] [PMID: 21833586]
[65]
Jang, C.; Lahens, N.F.; Hogenesch, J.B.; Sehgal, A. Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Res., 2015, 25(12), 1836-1847.
[http://dx.doi.org/10.1101/gr.191296.115] [PMID: 26338483]
[66]
Siwek, M.; Sowa-Kućma, M.; Dudek, D.; Styczeń, K.; Szewczyk, B.; Kotarska, K.; Misztak, P.; Pilc, A.; Wolak, M.; Nowak, G. Oxidative stress markers in affective disorders. Pharmacol. Rep., 2013, 65(6), 1558-1571.
[http://dx.doi.org/10.1016/S1734-1140(13)71517-2] [PMID: 24553004]
[67]
Rossetti, A.C.; Paladini, M.S.; Riva, M.A.; Molteni, R. Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol. Ther., 2020, 210, 107520.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107520] [PMID: 32165136]
[68]
Miller, A.M.; Daniels, R.M.; Sheng, J.A.; Wu, T.J.; Handa, R.J. Glucocorticoid regulation of diurnal spine plasticity in the murine ventromedial prefrontal cortex. J. Neuroendocrinol., 2022, 34(12), e13212.
[http://dx.doi.org/10.1111/jne.13212] [PMID: 36426781]
[69]
Anderson, G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 255-266.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.022] [PMID: 28433458]
[70]
Anderson, G. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub. Int. J. Mol. Sci., 2022, 24(1), 350.
[http://dx.doi.org/10.3390/ijms24010350] [PMID: 36613794]
[71]
Anderson, G.; Almulla, A.F.; Reiter, R.J.; Maes, M. Redefining autoimmune disorders’ pathoetiology: Implications for mood and psychotic disorders’ association with neurodegenerative and classical autoimmune disorders. Cells, 2023, 12(9), 1237.
[http://dx.doi.org/10.3390/cells12091237] [PMID: 37174637]
[72]
Tan, D.X.; Manchester, L.C.; Liu, X.; Rosales-Corral, S.A.; Acuna-Castroviejo, D.; Reiter, R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res., 2013, 54(2), 127-138.
[http://dx.doi.org/10.1111/jpi.12026] [PMID: 23137057]
[73]
de Goede, P.; Wefers, J.; Brombacher, E.C.; Schrauwen, P.; Kalsbeek, A. Circadian rhythms in mitochondrial respiration. J. Mol. Endocrinol., 2018, 60(3), R115-R130.
[http://dx.doi.org/10.1530/JME-17-0196] [PMID: 29378772]
[74]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[75]
Caddy, C.; Giaroli, G.; White, T.P.; Shergill, S.S.; Tracy, D.K. Ketamine as the prototype glutamatergic antidepressant: Pharmacodynamic actions, and a systematic review and meta-analysis of efficacy. Ther. Adv. Psychopharmacol., 2014, 4(2), 75-99.
[http://dx.doi.org/10.1177/2045125313507739] [PMID: 24688759]
[76]
Goldstein Ferber, S.; Shoval, G.; Zalsman, G.; Mikulincer, M.; Weller, A. Between action and emotional survival during the COVID-19 era: Sensorimotor pathways as control systems of transdiagnostic anxiety-related intolerance to uncertainty. Front. Psychiatry, 2021, 12, 680403.
[http://dx.doi.org/10.3389/fpsyt.2021.680403] [PMID: 34393847]
[77]
He, W.; Bai, J.; Chen, X.; Suo, D.; Wang, S.; Guo, Q.; Yin, W.; Geng, D.; Wang, M.; Pan, G.; Zhao, X.; Li, B. Reversible dougong structured receptor-ligand recognition for building dynamic extracellular matrix mimics. Proc. Natl. Acad. Sci., 2022, 119(8), e2117221119.
[http://dx.doi.org/10.1073/pnas.2117221119] [PMID: 35181608]
[78]
Dzyubenko, E.; Fleischer, M.; Manrique-Castano, D.; Borbor, M.; Kleinschnitz, C.; Faissner, A.; Hermann, D.M. Inhibitory control in neuronal networks relies on the extracellular matrix integrity. Cell. Mol. Life Sci., 2021, 78(14), 5647-5663.
[http://dx.doi.org/10.1007/s00018-021-03861-3] [PMID: 34128077]
[79]
Ahmed, R.; Nakahata, Y.; Shinohara, K.; Bessho, Y. Cellular senescence triggers altered circadian clocks with a prolonged period and delayed phases. Front. Neurosci., 2021, 15, 638122.
[http://dx.doi.org/10.3389/fnins.2021.638122] [PMID: 33568972]
[80]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[81]
Wirz-Justice, A.; Benedetti, F. Perspectives in affective disorders: Clocks and sleep. Eur. J. Neurosci., 2020, 51(1), 346-365.
[http://dx.doi.org/10.1111/ejn.14362] [PMID: 30702783]
[82]
Ortinski, P.I.; Reissner, K.J.; Turner, J.; Anderson, T.L.; Scimemi, A. Control of complex behavior by astrocytes and microglia. Neurosci. Biobehav. Rev., 2022, 137, 104651.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104651] [PMID: 35367512]
[83]
Comai, S.; Gobbi, G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: A novel target in psychopharmacology. J. Psychiatry Neurosci., 2014, 39(1), 6-21.
[http://dx.doi.org/10.1503/jpn.130009] [PMID: 23971978]
[84]
Freeman, S.A.; Desmazières, A.; Fricker, D.; Lubetzki, C. Sol-Foulon, N. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cell. Mol. Life Sci., 2016, 73(4), 723-735.
[http://dx.doi.org/10.1007/s00018-015-2081-1] [PMID: 26514731]
[85]
Hofmann, K.; Rodriguez-Rodriguez, R.; Gaebler, A.; Casals, N.; Scheller, A.; Kuerschner, L. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci. Rep., 2017, 7(1), 10779.
[http://dx.doi.org/10.1038/s41598-017-11103-5] [PMID: 28883484]
[86]
Cyrino, L.A.R.; Delwing-de Lima, D.; Ullmann, O.M.; Maia, T.P. Concepts of neuroinflammation and their relationship with impaired mitochondrial functions in bipolar disorder. Front. Behav. Neurosci., 2021, 15, 609487.
[http://dx.doi.org/10.3389/fnbeh.2021.609487] [PMID: 33732117]
[87]
Tohidpour, A.; Morgun, A.V.; Boitsova, E.B.; Malinovskaya, N.A.; Martynova, G.P.; Khilazheva, E.D.; Kopylevich, N.V.; Gertsog, G.E.; Salmina, A.B. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front. Cell. Infect. Microbiol., 2017, 7, 276.
[http://dx.doi.org/10.3389/fcimb.2017.00276] [PMID: 28676848]
[88]
Arcuri, C.; Mecca, C.; Bianchi, R.; Giambanco, I.; Donato, R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front. Mol. Neurosci., 2017, 10, 191.
[http://dx.doi.org/10.3389/fnmol.2017.00191] [PMID: 28674485]
[89]
Xing, C.; Zhou, Y.; Xu, H.; Ding, M.; Zhang, Y.; Zhang, M.; Hu, M.; Huang, X.; Song, L. Sleep disturbance induces depressive behaviors and neuroinflammation by altering the circadian oscillations of clock genes in rats. Neurosci. Res., 2021, 171, 124-132.
[http://dx.doi.org/10.1016/j.neures.2021.03.006] [PMID: 33785408]
[90]
Giebultowicz, J.M. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic. Biol. Med., 2018, 119, 62-68.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.025] [PMID: 29277395]
[91]
Shi, S.; White, M.J.; Borsetti, H.M.; Pendergast, J.S.; Hida, A.; Ciarleglio, C.M.; de Verteuil, P.A.; Cadar, A.G.; Cala, C.; McMahon, D.G.; Shelton, R.C.; Williams, S.M.; Johnson, C.H. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl. Psychiatry, 2016, 6(3), e748.
[http://dx.doi.org/10.1038/tp.2016.9] [PMID: 26926884]
[92]
Cuesta, M.; Mendoza, J.; Clesse, D.; Pévet, P.; Challet, E. Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp. Neurol., 2008, 210(2), 501-513.
[http://dx.doi.org/10.1016/j.expneurol.2007.11.026] [PMID: 18190911]
[93]
Stasenko, S.V.; Kazantsev, V.B. Information encoding in bursting spiking neural network modulated by astrocytes. Entropy, 2023, 25(5), 745.
[http://dx.doi.org/10.3390/e25050745] [PMID: 37238500]
[94]
Gollihue, J.L.; Norris, C.M. Astrocyte mitochondria: Central players and potential therapeutic targets for neurodegenerative diseases and injury. Ageing Res. Rev., 2020, 59, 101039.
[http://dx.doi.org/10.1016/j.arr.2020.101039] [PMID: 32105849]
[95]
Bernstein, H.G.; Meyer-Lotz, G.; Dobrowolny, H.; Bannier, J.; Steiner, J.; Walter, M.; Bogerts, B. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front. Cell. Neurosci., 2015, 9, 273.
[http://dx.doi.org/10.3389/fncel.2015.00273] [PMID: 26321908]
[96]
Altshuler, L.L.; Abulseoud, O.A.; Foland-Ross, L.; Bartzokis, G.; Chang, S.; Mintz, J.; Hellemann, G.; Vinters, H.V. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord., 2010, 12(5), 541-549.
[http://dx.doi.org/10.1111/j.1399-5618.2010.00838.x] [PMID: 20712756]
[97]
Dudek, K.A.; Dion-Albert, L.; Kaufmann, F.N.; Tuck, E.; Lebel, M.; Menard, C. Neurobiology of resilience in depression: Immune and vascular insights from human and animal studies. Eur. J. Neurosci., 2021, 53(1), 183-221.
[http://dx.doi.org/10.1111/ejn.14547] [PMID: 31421056]
[98]
Gupta, A.; Wolff, A.; Northoff, D.G. Extending the “resting state hypothesis of depression” - dynamics and topography of abnormal rest-task modulation. Psychiatry Res. Neuroimaging, 2021, 317, 111367.
[http://dx.doi.org/10.1016/j.pscychresns.2021.111367] [PMID: 34555652]
[99]
Zhang, Y.; Lei, L.; Liu, Z.; Gao, M.; Liu, Z.; Sun, N.; Yang, C.; Zhang, A.; Wang, Y.; Zhang, K. Theta oscillations: A rhythm difference comparison between major depressive disorder and anxiety disorder. Front. Psychiatry, 2022, 13, 827536.
[http://dx.doi.org/10.3389/fpsyt.2022.827536] [PMID: 35990051]
[100]
Dharmadhikari, A.S.; Tandle, A.L.; Jaiswal, S.V.; Sawant, V.A.; Vahia, V.N.; Jog, N. Frontal theta asymmetry as a biomarker of depression. East Asian Arch. Psychiatry, 2018, 28(1), 17-22.
[PMID: 29576552]
[101]
Sunaga, M.; Takei, Y.; Kato, Y.; Tagawa, M.; Suto, T.; Hironaga, N.; Ohki, T.; Takahashi, Y.; Fujihara, K.; Sakurai, N.; Ujita, K.; Tsushima, Y.; Fukuda, M. Frequency-specific resting connectome in bipolar disorder: An MEG study. Front. Psychiatry, 2020, 11, 597.
[http://dx.doi.org/10.3389/fpsyt.2020.00597] [PMID: 32670117]
[102]
Sunaga, M.; Takei, Y.; Kato, Y.; Tagawa, M.; Suto, T.; Hironaga, N.; Sakurai, N.; Fukuda, M. The characteristics of power spectral density in bipolar disorder at the resting state. Clin. EEG Neurosci., 2021, 54(6), 574-58.
[PMID: 34677105]
[103]
Yang, Y.; Zhong, N.; Imamura, K.; Lu, S.; Li, M.; Zhou, H.; Li, H.; Yang, X.; Wan, Z.; Wang, G.; Hu, B.; Li, K. Task and resting-state fMRI reveal altered salience responses to positive stimuli in patients with major depressive disorder. PLoS One, 2016, 11(5), e0155092.
[http://dx.doi.org/10.1371/journal.pone.0155092] [PMID: 27192082]
[104]
Sambataro, F.; Visintin, E.; Doerig, N.; Brakowski, J.; Holtforth, M.G.; Seifritz, E.; Spinelli, S. Altered dynamics of brain connectivity in major depressive disorder at-rest and during task performance. Psychiatry Res. Neuroimaging, 2017, 259, 1-9.
[http://dx.doi.org/10.1016/j.pscychresns.2016.11.001] [PMID: 27918910]
[105]
Bares, M.; Brunovsky, M.; Novak, T.; Kopecek, M.; Stopkova, P.; Sos, P.; Krajca, V. Höschl, C. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol., 2010, 20(7), 459-466.
[http://dx.doi.org/10.1016/j.euroneuro.2010.03.007] [PMID: 20421161]
[106]
Bares, M.; Novak, T.; Kopecek, M.; Brunovsky, M.; Stopkova, P. Höschl, C. The effectiveness of prefrontal theta cordance and early reduction of depressive symptoms in the prediction of antidepressant treatment outcome in patients with resistant depression: analysis of naturalistic data. Eur. Arch. Psychiatry Clin. Neurosci., 2015, 265(1), 73-82.
[http://dx.doi.org/10.1007/s00406-014-0506-8] [PMID: 24848366]
[107]
Knott, V.; Mahoney, C.; Kennedy, S.; Evans, K. EEG correlates of acute and chronic paroxetine treatment in depression. J. Affect. Disord., 2002, 69(1-3), 241-249.
[http://dx.doi.org/10.1016/S0165-0327(01)00308-1] [PMID: 12103473]
[108]
D’Onofrio, S.; Urbano, F.J.; Messias, E.; Garcia-Rill, E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol. Rep., 2016, 4(6), e12740.
[http://dx.doi.org/10.14814/phy2.12740] [PMID: 27033453]
[109]
Yasin, S.; Hussain, S.A.; Aslan, S.; Raza, I.; Muzammel, M.; Othmani, A. EEG based major depressive disorder and bipolar disorder detection using neural networks: A review. Comput. Methods Programs Biomed., 2021, 202, 106007.
[http://dx.doi.org/10.1016/j.cmpb.2021.106007] [PMID: 33657466]
[110]
Magioncalda, P.; Martino, M.; Conio, B.; Escelsior, A.; Piaggio, N.; Presta, A.; Marozzi, V.; Rocchi, G.; Anastasio, L.; Vassallo, L.; Ferri, F.; Huang, Z.; Roccatagliata, L.; Pardini, M.; Northoff, G.; Amore, M. Functional connectivity and neuronal variability of resting state activity in bipolar disorder-reduction and decoupling in anterior cortical midline structures. Hum. Brain Mapp., 2015, 36(2), 666-682.
[http://dx.doi.org/10.1002/hbm.22655] [PMID: 25307723]
[111]
Lally, N.; Mullins, P.G.; Roberts, M.V.; Price, D.; Gruber, T.; Haenschel, C. Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study. Neuroimage, 2014, 85(Pt 2), 823-833.
[http://dx.doi.org/10.1016/j.neuroimage.2013.07.049] [PMID: 23891885]
[112]
Lobentanzer, S.; Hanin, G.; Klein, J.; Soreq, H. Integrative transcriptomics reveals sexually dimorphic control of the cholinergic/neurokine interface in schizophrenia and bipolar disorder. Cell Rep., 2019, 29(3), 764-777.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.09.017] [PMID: 31618642]
[113]
Simchovitz-Gesher, A.; Soreq, H. Pharmaceutical implications of sex-related rna divergence in psychiatric disorders. Trends Pharmacol. Sci., 2020, 41(11), 840-850.
[http://dx.doi.org/10.1016/j.tips.2020.09.003] [PMID: 33012545]
[114]
Barbash, S.; Shifman, S.; Soreq, H. Global coevolution of human microRNAs and their target genes. Mol. Biol. Evol., 2014, 31(5), 1237-1247.
[http://dx.doi.org/10.1093/molbev/msu090] [PMID: 24600049]