Coronaviruses

Author(s): Milind Gharpure*, Hrishikesh Rangnekar, Pranjali P Dhawal and Nikhil Varma

DOI: 10.2174/0126667975283266240304095915

DownloadDownload PDF Flyer Cite As
Clinical Trial to Evaluate Safety and Efficacy of Thinqure20 (A Herbal Composition) in the Treatment and Prophylaxis of Novel Coronavirus and Testing its In vitro- Potential against MS2 Bacteriophagae, Corona Virus, Influenza Virus and Mucor racemosus

Article ID: e130324227963 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background and Objective: Thinqure20 is a polyherbal, reverse-pharmacology-based formulation that contains Piper longum, Piper nigrum, Zingiber officinale, and rock salt as active ingredients. It is designed to work as an effective antiviral agent and also as a preventive measure against SARS-CoV-2. Clinical and non-clinical studies have established significant safety efficacy and tolerability of Thinqure20 formulation in the treatment of COVID-19 infection.

Methods: In vivo human study was conducted on COVID-19 patients for 5 days. A total of 30 Covid-19 patients (n = 30) were enrolled. In vitro, cell line studies were also carried out to evaluate the potential effectiveness of Thinqure20 polyherbal formulation as an antiviral, antifungal, and Angiotensin- Converting Enzyme 2 (ACE2) inhibition.

Results: Human studies have demonstrated mean percentage of reduction in viral load from baseline to end of the study visit was found to be 75.4%. The minimum and maximum reduction in viral load was found to be 59.3% and 99% respectively. Viral load testing was carried out by reverse transcriptase- quantitative polymerase chain reaction (RT-qPCR) test. In vitro studies of Thinqure, 20 extracts showed potential antiviral activity against MS2 bacteriophage, influenza, and human coronavirus, antifungal activity against Mucor racemosus, and significant ACE2 receptor inhibition.

Conclusion: Thinqure20, a polyherbal formulation, is a potentially effective antiviral agent against non-enveloped viruses (MS2 bacteriophage), enveloped viruses (influenza and human coronavirus), and antifungal agent against mucor strains. It is also proven to be effective in the treatment of COVID-19 and can be attributed to an early recovery by the reduction in viral load.

Keywords: Thinqure20, COVID, ayurvedic formulation, herbal formulation, viral load, ACE 2 inhibition.

Graphical Abstract

[1]
Habas, K.; Nganwuchu, C.; Shahzad, F. Resolution of coronavirus disease 2019 (COVID-19). Expert Rev. Anti Infect. Ther., 2020, 18(12), 1201-1211.
[http://dx.doi.org/10.1080/14787210.2020.1797487] [PMID: 32749914]
[2]
Mohamadian, M.; Chiti, H.; Shoghli, A.; Biglari, S.; Parsamanesh, N.; Esmaeilzadeh, A. COVID‐19: Virology, biology and novel laboratory diagnosis. J. Gene Med., 2021, 23(2), e3303.
[http://dx.doi.org/10.1002/jgm.3303] [PMID: 33305456]
[3]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons From the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[4]
Bobker, S.M.; Robbins, M.S. COVID‐19 and headache: A primer for trainees. Headache, 2020, 60(8), 1806-1811.
[http://dx.doi.org/10.1111/head.13884] [PMID: 32521039]
[5]
Niazkar, H.R.; Zibaee, B.; Nasimi, A.; Bahri, N. The neurological manifestations of COVID-19: A review article. Neurol. Sci., 2020, 41(7), 1667-1671.
[http://dx.doi.org/10.1007/s10072-020-04486-3] [PMID: 32483687]
[6]
Lu, R.; Zhao, X.; Li, J. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[7]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[8]
Neurath, M.F. COVID-19 and immunomodulation in IBD. Gut, 2020, 69(7), 1335-1342.
[http://dx.doi.org/10.1136/gutjnl-2020-321269] [PMID: 32303609]
[9]
Mouhajir, F.; Hudson, J.B.; Rejdali, M.; Towers, G.H.N. Multiple antiviral activities of endemic medicinal plants used by Berber peoples of Morocco. Pharm. Biol., 2001, 39(5), 364-374.
[http://dx.doi.org/10.1076/phbi.39.5.364.5892]
[10]
Javed, D.; Dixit, A.K. Is Trikatu an ayurvedic formulation effective for the management of flu-like illness? A narrative review. J. Complement. Integr. Med., 2022, 19(2), 193-202.
[http://dx.doi.org/10.1515/jcim-2020-0485] [PMID: 34081846]
[11]
Sulaiman, C.T.; Deepak, M.; Ramesh, P.R.; Mahesk, K.; Anandan, E.M.; Balachandran, I. Chemical profiling of selected Ayurveda formulations recommended for COVID-19. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 2-17.
[http://dx.doi.org/10.1186/s43088-020-00089-1] [PMID: 33457430]
[12]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[13]
Jiang, Z.Y.; Liu, W.F.; Zhang, X.M.; Luo, J.; Ma, Y.B.; Chen, J.J. Anti-HBV active constituents from Piper longum. Bioorg. Med. Chem. Lett., 2013, 23(7), 2123-2127.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.118] [PMID: 23434420]
[14]
Kaushik, S.; Jangra, G.; Kundu, V.; Yadav, J.P.; Kaushik, S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease, 2020, 31(3), 270-276.
[http://dx.doi.org/10.1007/s13337-020-00584-0] [PMID: 32420412]
[15]
Kumar, G.; Kumar, D.; Singh, N.P. Therapeutic approach against 2019-nCoV by inhibition of ACE-2 receptor. Drug Res., 2021, 71(4), 213-218.
[http://dx.doi.org/10.1055/a-1275-0228] [PMID: 33184809]
[16]
Roshdy, W.H.; Rashed, H.A.; Kandeil, A. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One, 2020, 15(11), e0241739.
[http://dx.doi.org/10.1371/journal.pone.0241739] [PMID: 33206688]
[17]
Dhanani, T.; Shah, S.; Kumar, S. A validated high-performance liquid chromatography method for determination of tannin-related marker constituents gallic acid, corilagin, chebulagic acid, ellagic acid and chebulinic Acid in four Terminalia species from India. J. Chromatogr. Sci., 2015, 53(4), 625-632.
[http://dx.doi.org/10.1093/chromsci/bmu096] [PMID: 25190275]
[18]
Boozari, M.; Hosseinzadeh, H. Natural products for COVID ‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res., 2021, 35(2), 864-876.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[19]
Haridas, M.; Sasidhar, V.; Nath, P.; Abhithaj, J.; Sabu, A.; Rammanohar, P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda. Future Journal of Pharmaceutical Sciences, 2021, 7(1), 13.
[http://dx.doi.org/10.1186/s43094-020-00171-6] [PMID: 33457429]
[20]
K Santosh M. Shaila D, Rajyalakshmi I, Sanjeeva Rao I. RP -HPLC method for determination of piperine from. E-J. Chem., 2005, 2, 131-135.
[21]
Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40(5), 905-919.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[22]
Vaidya, A.D.B. Reverse pharmacological correlates of ayurvedic drug actions. Indian J. Pharmacol., 2006, 38(5), 311-315.
[http://dx.doi.org/10.4103/0253-7613.27697]
[23]
Pujadas, E.; Chaudhry, F.; McBride, R. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med., 2020, 8(9), e70.
[http://dx.doi.org/10.1016/S2213-2600(20)30354-4] [PMID: 32771081]
[24]
Fajnzylber, J.; Regan, J.; Coxen, K. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun., 2020, 11(1), 5493.
[http://dx.doi.org/10.1038/s41467-020-19057-5] [PMID: 33127906]
[25]
Bang, J.S.; Oh, D.H.; Choi, H.M. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther., 2009, 11(2), R49.
[http://dx.doi.org/10.1186/ar2662] [PMID: 19327174]
[26]
Mair, CE; Liu, R; Atanasov, AG; Schmidtke, M; Dirsch, VM; Rollinger, JM Antiviral and anti-proliferative in vitro activities of piperamides from black pepper. Planta Med, 2016, 81(S 01), S1-S381.
[http://dx.doi.org/10.1055/s-0036-1596830]
[27]
Mashhadi, N.S.; Ghiasvand, R.; Askari, G.; Hariri, M.; Darvishi, L.; Mofid, M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med., 2013, 4(1), S36-S42.
[PMID: 23717767]
[28]
Bare, Y.; Helvina, M.; Krisnamurti, G.C. S M. The potential role of 6-gingerol and 6-shogaol as ACE inhibitors in silico study. Biogenesis. Jurnal Ilmiah Biologi, 2020, 8(2), 210.
[http://dx.doi.org/10.24252/bio.v8i2.15704]
[29]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[30]
Nag, A.; Chowdhury, R.R. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease, 2020, 31(3), 308-315.
[http://dx.doi.org/10.1007/s13337-020-00619-6] [PMID: 32904842]
[31]
Sharma, R.K.; Chakotiya, A.S. Phytoconstituents of zingiber officinale targeting host-viral protein interaction at entry point of sars-COV-2: A molecular docking study. Def. Life Sci. J., 2020, 5(4), 268-277.
[http://dx.doi.org/10.14429/dlsj.5.15718]
[32]
Patwardhan, B.; Vaidya, A.D. Natural products drug discovery: Accelerating the clinical candidate development using reverse pharmacology approaches. Indian J. Exp. Biol., 2010, 48(3), 220-227.
[PMID: 21046974]
[33]
Standard practice to assess the activity of microbicides against viruses in suspension. ASTM , 2020, 1052-20.
[34]
Zuo, Z.; Kuehn, T.H.; Bekele, A.Z. Survival of airborne MS2 bacteriophage generated from human saliva, artificial saliva, and cell culture medium. Appl. Environ. Microbiol., 2014, 80(9), 2796-2803.
[http://dx.doi.org/10.1128/AEM.00056-14] [PMID: 24561592]
[35]
Guide for assessment of antimicrobial activity using a time-kill procedure. 2016, 2315-6.
[36]
Kumar, S.; Kashyap, P.; Chowdhury, S.; Kumar, S.; Panwar, A.; Kumar, A. Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication. Phytomedicine, 2021, 85, 153317.
[http://dx.doi.org/10.1016/j.phymed.2020.153317] [PMID: 32943302]
[37]
Miryan, M.; Soleimani, D.; Askari, G. Curcumin and piperine in COVID-19: A promising duo to the rescue? Adv. Exp. Med. Biol., 2021, 1327, 197-204.
[http://dx.doi.org/10.1007/978-3-030-71697-4_16] [PMID: 34279840]
[38]
Enkhtaivan, G.; Kim, D.H.; Park, G.S. Berberine-piperazine conjugates as potent influenza neuraminidase blocker. Int. J. Biol. Macromol., 2018, 119, 1204-1210.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.047] [PMID: 30099043]
[39]
Rasool, A.; Khan, M.U.R.; Ali, M.A. Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos. Pak. J. Pharm. Sci., 2017, 30(4), 1341-1344.
[PMID: 29039335]
[40]
Prajapati, J.; Rao, P.; Poojara, L. Unravelling the antifungal mode of action of curcumin by potential inhibition of CYP51B: A computational study validated in vitro on mucormycosis agent, Rhizopus oryzae. Arch. Biochem. Biophys., 2021, 712, 109048.
[http://dx.doi.org/10.1016/j.abb.2021.109048] [PMID: 34600893]
[41]
Timalsina, D.; Pokhrel, K.P.; Bhusal, D. Pharmacologic activities of plant-derived natural products on respiratory diseases and inflammations. BioMed Res. Int., 2021, 2021, 1-23.
[http://dx.doi.org/10.1155/2021/1636816] [PMID: 34646882]