Tanshinone IIA Against Cerebral Ischemic Stroke and Ischemia- Reperfusion Injury: A Review of the Current Documents

Page: [1701 - 1709] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Stroke is a well-known neurological disorder that carries significant morbidity and mortality rates worldwide. Cerebral Ischemic Stroke (CIS), the most common subtype of stroke, occurs when thrombosis or emboli form elsewhere in the body and travel to the brain, leading to reduced blood perfusion. Cerebral Ischemia/Reperfusion Injury (CIRI) is a common complication of CIS and arises when blood flow is rapidly restored to the brain tissue after a period of ischemia. The therapeutic approaches currently recognized for CIS, such as thrombolysis and thrombectomy, have notable side effects that limit their clinical application. Recently, there has been growing interest among researchers in exploring the potential of herbal agents for treating various disorders and malignancies. One such herbal agent with medicinal applications is tanshinone IIA, an active diterpene quinone extracted from Salvia miltiorrhiza Bunge. Tanshinone IIA has shown several pharmacological benefits, including anti-inflammatory, antioxidant, anti-apoptotic, and neuroprotective properties. Multiple studies have indicated the protective role of tanshinone IIA in CIS and CIRI. This literature review aims to summarize the current findings regarding the molecular mechanisms through which this herbal compound improves CIS and CIRI.

Graphical Abstract

[1]
Ebrahimi, V.; Moghaddam, R.S.H.; Mohammadipour, A. Therapeutic potentials of microRNA-126 in cerebral ischemia. Mol. Neurobiol., 2023, 60(4), 2062-2069.
[http://dx.doi.org/10.1007/s12035-022-03197-4] [PMID: 36596965]
[2]
Xie, W.; Zhu, T.; Dong, X.; Nan, F.; Meng, X.; Zhou, P.; Sun, G.; Sun, X. HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules, 2019, 9(10), 512.
[http://dx.doi.org/10.3390/biom9100512] [PMID: 31547018]
[3]
Abdelsalam, S.A.; Renu, K.; Zahra, H.A.; Abdallah, B.M.; Ali, E.M.; Veeraraghavan, V.P.; Sivalingam, K.; Ronsard, L.; Ammar, R.B.; Vidya, D.S.; Karuppaiya, P.; Al-Ramadan, S.Y.; Rajendran, P. Polyphenols mediate neuroprotection in cerebral ischemic stroke—An update. Nutrients, 2023, 15(5), 1107.
[http://dx.doi.org/10.3390/nu15051107] [PMID: 36904106]
[4]
Hui, C.; Tadi, P.; Patti, L. Ischemic stroke. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[5]
Yu, Z.; Zhu, M.; Shu, D.; Zhang, R.; Xiang, Z.; Jiang, A.; Liu, S.; Zhang, C.; Yuan, Q.; Hu, X. LncRNA PEG11as aggravates cerebral ischemia/reperfusion injury after ischemic stroke through miR-342-5p/PFN1 axis. Life Sci., 2023, 313, 121276.
[http://dx.doi.org/10.1016/j.lfs.2022.121276] [PMID: 36496032]
[6]
Gauberti, M.; Lapergue, B.; Martinez de Lizarrondo, S.; Vivien, D.; Richard, S.; Bracard, S.; Piotin, M.; Gory, B. Ischemia-reperfusion injury after endovascular thrombectomy for ischemic stroke. Stroke, 2018, 49(12), 3071-3074.
[http://dx.doi.org/10.1161/STROKEAHA.118.022015] [PMID: 30571423]
[7]
Yin, L.; Yu, T.; Cheng, L.; Liu, X.; Zhang, W.; Zhang, H.; Du, L.; He, W. Laser speckle contrast imaging for blood flow monitoring in predicting outcomes after cerebral ischemia-reperfusion injury in mice. BMC Neurosci., 2022, 23(1), 80.
[http://dx.doi.org/10.1186/s12868-022-00769-x] [PMID: 36575381]
[8]
Liu, H.; Zhao, Z.; Yan, M.; Zhang, Q.; Jiang, T.; Xue, J. Calycosin decreases cerebral ischemia/reperfusion injury by suppressing ACSL4-dependent ferroptosis. Arch. Biochem. Biophys., 2023, 734, 109488.
[http://dx.doi.org/10.1016/j.abb.2022.109488] [PMID: 36516890]
[9]
Yi, D.; Wang, Q.; Zhao, Y.; Song, Y.; You, H.; Wang, J.; Liu, R.; Shi, Z.; Chen, X.; Luo, Q. Alteration of N 6-methyladenosine mRNA methylation in a rat model of cerebral ischemia–reperfusion injury. Front. Neurosci., 2021, 15, 605654.
[http://dx.doi.org/10.3389/fnins.2021.605654] [PMID: 33796004]
[10]
Mandalaneni, K.; Rayi, A.; Jillella, D.V. Stroke reperfusion injury. In: StatPearls; In: Stroke Reperfusion Injury;; StatPearls Publishing: Treasure Island (FL),, 2022.
[11]
Zhao, N.; Gao, Y.; Jia, H.; Jiang, X. Anti-apoptosis effect of traditional Chinese medicine in the treatment of cerebral ischemia–reperfusion injury. Apoptosis, 2023, 28(5-6), 702-729.
[http://dx.doi.org/10.1007/s10495-023-01824-6] [PMID: 36892639]
[12]
Zhai, Z.; Su, P.W.; Ma, L.; Yang, H.; Wang, T.; Fei, Z.G.; Zhang, Y.N.; Wang, Y.; Ma, K.; Han, B.B.; Wu, Z.C.; Yu, H.Y.; Zhao, H.J. Progress on traditional Chinese medicine in treatment of ischemic stroke via the gut-brain axis. Biomed. Pharmacother., 2023, 157, 114056.
[http://dx.doi.org/10.1016/j.biopha.2022.114056] [PMID: 36446240]
[13]
Tang, Z.; Yang, G.; Liao, Z.; Chen, F.; Chen, S.; Wang, W.; Huo, G.; Sun, X.; Wang, X. Tanshinone IIA reduces AQP4 expression and astrocyte swelling after OGD/R by inhibiting the HMGB1/RAGE/NF-κB/IL-6 pro-inflammatory axis. Sci. Rep., 2022, 12(1), 14110.
[http://dx.doi.org/10.1038/s41598-022-17491-7] [PMID: 35982135]
[14]
Miao, Q.; Wang, R.; Sun, X.; Du, S.; Liu, L. Combination of puerarin and tanshinone IIA alleviates ischaemic stroke injury in rats via activating the Nrf2/ARE signalling pathway. Pharm. Biol., 2022, 60(1), 1022-1031.
[http://dx.doi.org/10.1080/13880209.2022.2070221] [PMID: 35635784]
[15]
Subedi, L.; Gaire, B.P. Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacol. Res., 2021, 169, 105661.
[http://dx.doi.org/10.1016/j.phrs.2021.105661] [PMID: 33971269]
[16]
Kaiser, E.E.; Waters, E.S.; Yang, X.; Fagan, M.M.; Scheulin, K.M.; Sneed, S.E.; Cheek, S.R.; Jeon, J.H.; Shin, S.K.; Kinder, H.A.; Kumar, A.; Platt, S.R.; Duberstein, K.J.; Park, H.J.; Xie, J.; West, F.D. Tanshinone IIA-loaded nanoparticle and neural stem cell therapy enhances recovery in a pig ischemic stroke model. Stem Cells Transl. Med., 2022, 11(10), 1061-1071.
[http://dx.doi.org/10.1093/stcltm/szac062] [PMID: 36124817]
[17]
Ma, H.; Hu, Z.C.; Long, Y.; Cheng, L.C.; Zhao, C.Y.; Shao, M.K. Tanshinone IIA microemulsion protects against cerebral ischemia reperfusion injury via regulating H3K18ac and H4K8ac in vivo and in vitro. Am. J. Chin. Med., 2022, 50(7), 1845-1868.
[http://dx.doi.org/10.1142/S0192415X22500781] [PMID: 36185015]
[18]
Fereydouni, N.; Darroudi, M.; Movaffagh, J.; Shahroodi, A.; Butler, A.E.; Ganjali, S.; Sahebkar, A. Curcumin nanofibers for the purpose of wound healing. J. Cell. Physiol., 2019, 234(5), 5537-5554.
[http://dx.doi.org/10.1002/jcp.27362] [PMID: 30370528]
[19]
Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910.
[http://dx.doi.org/10.1002/jcp.26029] [PMID: 28543172]
[20]
Moosavian, S.A.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorg. Chem. Appl., 2021, 2021, 4041415.
[http://dx.doi.org/10.1155/2021/4041415]
[21]
Xie, J.; Yang, Z.; Zhou, C.; Zhu, J.; Lee, R.J.; Teng, L. Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnol. Adv., 2016, 34(4), 343-353.
[http://dx.doi.org/10.1016/j.biotechadv.2016.04.002] [PMID: 27071534]
[22]
Yan, J.; Yang, X.; Han, D.; Feng, J. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats. Mol. Med. Rep., 2016, 14(2), 1601-1609.
[http://dx.doi.org/10.3892/mmr.2016.5431] [PMID: 27357729]
[23]
Maione, F.; Piccolo, M.; De Vita, S.; Chini, M.G.; Cristiano, C.; De Caro, C.; Lippiello, P.; Miniaci, M.C.; Santamaria, R.; Irace, C.; De Feo, V.; Calignano, A.; Mascolo, N.; Bifulco, G. Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer’s disease. Pharmacol. Res., 2018, 129, 482-490.
[http://dx.doi.org/10.1016/j.phrs.2017.11.018] [PMID: 29158049]
[24]
Zhang, L.; Li, Q. Neuroprotective effects of tanshinone IIA in experimental model of Parkinson disease in rats. Arab. J. Chem., 2022, 15(11), 104269.
[http://dx.doi.org/10.1016/j.arabjc.2022.104269]
[25]
Yang, X.; Yan, J.; Feng, J. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis. Eur. J. Pharmacol., 2016, 771, 18-28.
[http://dx.doi.org/10.1016/j.ejphar.2015.12.014] [PMID: 26683637]
[26]
Peng, X.; Chen, L.; Wang, Z.; He, Y.; Ruganzu, J.B.; Guo, H.; Zhang, X.; Ji, S.; Zheng, L.; Yang, W. Tanshinone IIA regulates glycogen synthase kinase-3β-related signaling pathway and ameliorates memory impairment in APP/PS1 transgenic mice. Eur. J. Pharmacol., 2022, 918, 174772.
[http://dx.doi.org/10.1016/j.ejphar.2022.174772] [PMID: 35090935]
[27]
Ding, B.; Lin, C.; Liu, Q.; He, Y.; Ruganzu, J.B.; Jin, H.; Peng, X.; Ji, S.; Ma, Y.; Yang, W. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J. Neuroinflam., 2020, 17(1), 302.
[http://dx.doi.org/10.1186/s12974-020-01981-4] [PMID: 33054814]
[28]
Gao, H.M.; Liu, B.; Zhang, W.; Hong, J.S. Critical role of microglial NADPH oxidase‐derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J., 2003, 17(13), 1-22.
[http://dx.doi.org/10.1096/fj.03-0109fje] [PMID: 12897068]
[29]
Wu, D.C.; Tieu, K.; Cohen, O.; Choi, D.K.; Vila, M.; Jackson-Lewis, V.; Teismann, P.; Przedborski, S. Glial cell response: A pathogenic factor in Parkinson’s disease. J. Neurovirol., 2002, 8(6), 551-558.
[http://dx.doi.org/10.1080/13550280290100905] [PMID: 12476349]
[30]
Wu, D.C.; Teismann, P.; Tieu, K.; Vila, M.; Lewis, J.V.; Ischiropoulos, H.; Przedborski, S. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc. Natl. Acad. Sci., 2003, 100(10), 6145-6150.
[http://dx.doi.org/10.1073/pnas.0937239100] [PMID: 12721370]
[31]
Cheng, W.; Xiang, W.; Wang, S.; Xu, K. Tanshinone IIA ameliorates oxaliplatin-induced neurotoxicity via mitochondrial protection and autophagy promotion. Am. J. Transl. Res., 2019, 11(5), 3140-3149.
[PMID: 31217883]
[32]
Xia, Y.; Xu, H.; Jia, C.; Hu, X.; Kang, Y.; Yang, X.; Xue, Q.; Tao, G.; Yu, B. Tanshinone IIA attenuates sevoflurane neurotoxicity in neonatal mice. Anesth. Analg., 2017, 124(4), 1244-1252.
[http://dx.doi.org/10.1213/ANE.0000000000001942] [PMID: 28319548]
[33]
Shi, L.L.; Yang, W.N.; Chen, X.L.; Zhang, J.S.; Yang, P.B.; Hu, X.D.; Han, H.; Qian, Y.H.; Liu, Y. The protective effects of tanshinone IIA on neurotoxicity induced by β-amyloid protein through calpain and the p35/Cdk5 pathway in primary cortical neurons. Neurochem. Int., 2012, 61(2), 227-235.
[http://dx.doi.org/10.1016/j.neuint.2012.04.019] [PMID: 22561406]
[34]
Feng, F.B.; Qiu, H.Y. Neuroprotective effect of tanshinone IIA against neuropathic pain in diabetic rats through the Nrf2/ARE and NF‐κB signaling pathways. Kaohsiung J. Med. Sci., 2018, 34(8), 428-437.
[http://dx.doi.org/10.1016/j.kjms.2018.03.005] [PMID: 30041760]
[35]
Dong, H.; Mao, S.; Wei, J.; Liu, B.; Zhang, Z.; Zhang, Q.; Yan, M. Tanshinone IIA protects PC12 cells from β-amyloid25–35-induced apoptosis via PI3K/Akt signaling pathway. Mol. Biol. Rep., 2012, 39(6), 6495-6503.
[http://dx.doi.org/10.1007/s11033-012-1477-3] [PMID: 22314911]
[36]
Ji, B.; Zhou, F.; Han, L.; Yang, J.; Fan, H.; Li, S.; Li, J.; Zhang, X.; Wang, X.; Chen, X.; Xu, Y. Sodium tanshinone IIA sulfonate enhances effectiveness Rt-PA treatment in acute ischemic stroke patients associated with ameliorating blood-brain barrier damage. Transl. Stroke Res., 2017, 8(4), 334-340.
[http://dx.doi.org/10.1007/s12975-017-0526-6] [PMID: 28243834]
[37]
Liu, L.; Zhang, X.; Wang, L.; Yang, R.; Cui, L.; Li, M.; Du, W.; Wang, S. The neuroprotective effects of Tanshinone IIA are associated with induced nuclear translocation of TORC1 and upregulated expression of TORC1, pCREB and BDNF in the acute stage of ischemic stroke. Brain Res. Bull., 2010, 82(3-4), 228-233.
[http://dx.doi.org/10.1016/j.brainresbull.2010.04.005] [PMID: 20417695]
[38]
Zhou, Y.; Wu, H.; Li, S.; Chen, Q.; Cheng, X.W.; Zheng, J.; Takemori, H.; Xiong, Z.Q. Requirement of TORC1 for late-phase long-term potentiation in the hippocampus. PLoS One, 2006, 1(1), e16.
[http://dx.doi.org/10.1371/journal.pone.0000016] [PMID: 17183642]
[39]
Ansari, M.A.; Khan, F.B.; Safdari, H.A.; Almatroudi, A.; Alzohairy, M.A.; Safdari, M.; Amirizadeh, M.; Rehman, S.; Equbal, M.J.; Hoque, M. Prospective therapeutic potential of Tanshinone IIA: An updated overview. Pharmacol. Res., 2021, 164, 105364.
[http://dx.doi.org/10.1016/j.phrs.2020.105364] [PMID: 33285229]
[40]
Li, Y.; An, C.; Han, D.; Dang, Y.; Liu, X.; Zhang, F.; Xu, Y.; Zhong, H.; Sun, X. Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. New J. Chem., 2018, 42(23), 19043-19061.
[http://dx.doi.org/10.1039/C8NJ04819C]
[41]
Chen, Y.; Wu, X.; Yu, S.; Fauzee, N.J.S.; Wu, J.; Li, L.; Zhao, J.; Zhao, Y. Neuroprotective capabilities of Tanshinone IIA against cerebral ischemia/reperfusion injury via anti-apoptotic pathway in rats. Biol. Pharm. Bull., 2012, 35(2), 164-170.
[http://dx.doi.org/10.1248/bpb.35.164] [PMID: 22293345]
[42]
Wang, L.; Xiong, X.; Zhang, X.; Ye, Y.; Jian, Z.; Gao, W.; Gu, L. Sodium tanshinone IIA sulfonate protects against cerebral ischemia–reperfusion injury by inhibiting autophagy and inflammation. Neuroscience, 2020, 441, 46-57.
[http://dx.doi.org/10.1016/j.neuroscience.2020.05.054] [PMID: 32505745]
[43]
Song, Z.; Feng, J.; Zhang, Q.; Deng, S.; Yu, D.; Zhang, Y.; Li, T. Tanshinone IIA protects against cerebral ischemia reperfusion injury by regulating microglial activation and polarization via NF-κB pathway. Front. Pharmacol., 2021, 12, 641848.
[http://dx.doi.org/10.3389/fphar.2021.641848] [PMID: 33953677]
[44]
Tang, Q.; Han, R.; Xiao, H.; Li, J.; Shen, J.; Luo, Q. Protective effect of tanshinone IIA on the brain and its therapeutic time window in rat models of cerebral ischemia-reperfusion. Exp. Ther. Med., 2014, 8(5), 1616-1622.
[http://dx.doi.org/10.3892/etm.2014.1936] [PMID: 25289069]
[45]
Wang, L.; Xu, L.; Du, J.; Zhao, X.; Liu, M.; Feng, J.; Hu, K. Nose-to-brain delivery of borneol modified tanshinone IIA nanoparticles in prevention of cerebral ischemia/reperfusion injury. Drug Deliv., 2021, 28(1), 1363-1375.
[http://dx.doi.org/10.1080/10717544.2021.1943058] [PMID: 34180761]
[46]
Zhang, X.; Zhu, X.; Huang, L.; Chen, Z.; Wang, Y.; Liu, Y.; Pan, R.; Lv, L. Nano-encapsulated tanshinone IIA in PLGA-PEG-COOH inhibits apoptosis and inflammation in cerebral ischemia/reperfusion injury. Green Proces. Synth., 2023, 12(1), 20228156.
[http://dx.doi.org/10.1515/gps-2022-8156]
[47]
Shanbhag, VKL Tanshinones in management of oral submucous fibrosis and oral squamous cell carcinoma. Oncol. Target., 2017, 4
[http://dx.doi.org/10.18639/ONBT.2017.04.456966]
[48]
Dong, K.; Xu, W.; Yang, J.; Qiao, H.; Wu, L. Neuroprotective effects of Tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother. Res., 2009, 23(5), 608-613.
[http://dx.doi.org/10.1002/ptr.2615] [PMID: 18844253]
[49]
Zhou, L.; Bondy, S.C.; Jian, L.; Wen, P.; Yang, F.; Luo, H.; Li, W.; Zhou, J. Tanshinone IIA attenuates the cerebral ischemic injury-induced increase in levels of GFAP and of caspases-3 and -8. Neuroscience, 2015, 288, 105-111.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.028] [PMID: 25575944]
[50]
Zhu, Y.; Tang, Q.; Wang, G.; Han, R. Tanshinone IIA protects hippocampal neuronal cells from reactive oxygen species through changes in autophagy and activation of phosphatidylinositol 3-kinase, protein kinas B, and mechanistic target of rapamycin pathways. Curr. Neurovasc. Res., 2017, 14(2), 132-140.
[PMID: 28260507]
[51]
Jeon, J.H.; Kaiser, E.E.; Waters, E.S.; Yang, X.; Lourenco, J.M.; Fagan, M.M.; Scheulin, K.M.; Sneed, S.E.; Shin, S.K.; Kinder, H.A.; Kumar, A.; Platt, S.R.; Ahn, J.; Duberstein, K.J.; Rothrock, M.J., Jr; Callaway, T.R.; Xie, J.; West, F.D.; Park, H.J. Tanshinone IIA-loaded nanoparticles and neural stem cell combination therapy improves gut homeostasis and recovery in a pig ischemic stroke model. Sci. Rep., 2023, 13(1), 2520.
[http://dx.doi.org/10.1038/s41598-023-29282-9] [PMID: 36781906]
[52]
Waters, E.S.; Kaiser, E.E.; Yang, X.; Fagan, M.M.; Scheulin, K.M.; Jeon, J.H.; Shin, S.K.; Kinder, H.A.; Kumar, A.; Platt, S.R.; Duberstein, K.J.; Park, H.J.; Xie, J.; West, F.D. Intracisternal administration of tanshinone IIA-loaded nanoparticles leads to reduced tissue injury and functional deficits in a porcine model of ischemic stroke. IBRO Neurosci. Rep., 2021, 10, 18-30.
[http://dx.doi.org/10.1016/j.ibneur.2020.11.003] [PMID: 33842909]
[53]
Liu, X.; Ye, M.; An, C.; Pan, L.; Ji, L. The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia. Biomaterials, 2013, 34(28), 6893-6905.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.021] [PMID: 23768781]
[54]
Liu, X.; An, C.; Jin, P.; Liu, X.; Wang, L. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials, 2013, 34(3), 817-830.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.017] [PMID: 23111336]
[55]
Xu, J.; Zhang, P.; Chen, Y.; Xu, Y.; Luan, P.; Zhu, Y.; Zhang, J. Sodium tanshinone IIA sulfonate ameliorates cerebral ischemic injury through regulation of angiogenesis. Exp. Ther. Med., 2021, 22(4), 1122.
[http://dx.doi.org/10.3892/etm.2021.10556] [PMID: 34504576]
[56]
Chen, Y.; Wu, X.; Yu, S.; Lin, X.; Wu, J.; Li, L.; Zhao, J.; Zhao, Y. Neuroprotection of tanshinone IIA against cerebral ischemia/reperfusion injury through inhibition of macrophage migration inhibitory factor in rats. PLoS One, 2012, 7(6), e40165.
[http://dx.doi.org/10.1371/journal.pone.0040165] [PMID: 22768247]
[57]
Ye, X.; Peng, X.; Song, Q.; Zeng, T.; Xiong, X.; Huang, Y.; Cai, X.; Zhang, C.; Wang, C.; Wang, B. Borneol-modified tanshinone IIA liposome improves cerebral ischemia reperfusion injury by suppressing NF-κB and ICAM-1 expression. Drug Dev. Ind. Pharm., 2021, 47(4), 609-617.
[http://dx.doi.org/10.1080/03639045.2021.1908331] [PMID: 33834937]