A Review on Working Principle and Advanced Applications of Fluorescence activated Cell Sorting Machine (FACS)

Page: [85 - 97] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Various technologies, like flow cytometry and cell sorting, have been established in fields of biomedical research. Fluorescence-activated cell sorting is one of the most powerful techniques to witness advancement in these years. This article aims to provide an in-depth overview of the FACS applications, along with regulatory considerations and qualification parameters for the instrument. Moreover, specifications of instruments from different brands with specialized features are mentioned. FACS is a cornerstone in clinical diagnostics. This review highlights the current advancements and versatility of this indispensable technology, and the said information would be a focal paradigm for the upcoming biomedical and pharmaceutical research.

Graphical Abstract

[1]
Mukherjee, A. Fluoroscence- Activated Cell Sorting; Biotech Articles, 2011.
[2]
Herzenberg, L.A.; Parks, D.; Sahaf, B.; Perez, O.; Roederer, M.; Herzenberg, L.A. The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford. Clin. Chem., 2002, 48(10), 1819-1827.
[http://dx.doi.org/10.1093/clinchem/48.10.1819] [PMID: 12324512]
[3]
Poirier, J. Genetic profiling of tumors in PDX models. In: Patient Derived Tumor Xenograft Models; Elsevier, 2017, pp. 149-159.
[http://dx.doi.org/10.1016/B978-0-12-804010-2.00011-4]
[4]
Smith, M.J.; Culhane, A.C.; Donovan, M.; Coffey, J.C.; Barry, B.D.; Kelly, M.A.; Higgins, D.G.; Wang, J.H.; Kirwan, W.O.; Cotter, T.G.; Redmond, H.P. Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification. Br. J. Cancer, 2009, 100(9), 1452-1464.
[http://dx.doi.org/10.1038/sj.bjc.6604931] [PMID: 19401702]
[5]
Pereira, H.; Schulze, P.S.C.; Schüler, L.M.; Santos, T.; Barreira, L.; Varela, J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res., 2018, 30, 113-120.
[http://dx.doi.org/10.1016/j.algal.2017.12.013]
[6]
Zhao, P.; Sun, M.X. The maternal-to-zygotic transition in higher plants: Available approaches, critical limitations, and technical requirements. Curr. Top. Dev. Biol., 2015, 113, 373-398.
[http://dx.doi.org/10.1016/bs.ctdb.2015.06.006] [PMID: 26358879]
[7]
Schlinkmann, K.M.; Plückthun, A. Directed evolution of G protein-coupled receptors for high functional expression and detergent stability. In: Methods in Enzymology; Elsevier, 2013, Vol. 520, pp. 67-97.
[8]
Bonner, W.A.; Hulett, H.R.; Sweet, R.G.; Herzenberg, L.A. Fluorescence activated cell sorting. Rev. Sci. Instrum., 1972, 43(3), 404-409.
[http://dx.doi.org/10.1063/1.1685647] [PMID: 5013444]
[9]
Picot, J.; Guerin, C.L.; Le Van Kim, C.; Boulanger, C.M. Flow cytometry: Retrospective, fundamentals and recent instrumentation. Cytotechnology, 2012, 64(2), 109-130.
[http://dx.doi.org/10.1007/s10616-011-9415-0] [PMID: 22271369]
[10]
Biosciences. BD FACS calibur flow cytometer the automated, multicolor flow cytometry system. Available from: https://www.fau.edu/medicine/documents/research/calibur.pdf
[11]
Tung, J.W.; Parks, D.R.; Moore, W.A.; Herzenberg, L.A.; Herzenberg, L.A. New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol., 2004, 110(3), 277-283.
[http://dx.doi.org/10.1016/j.clim.2003.11.016] [PMID: 15047205]
[12]
Bio-Rad, L. S3TMand S3eTM cell sorters instruction manual. Available from: https://www.biorad.com/webroot/web/pdf/lsr/literature/10031105.pdf
[13]
Cheng, Z.; Zhou, X.; Gu, M.; Deng, J.; Dong, M.; Liu, M. High throughput fluorescence-activated cell sorting based on a rigid microfluidic chip. SSRN, , 4511720.2023
[http://dx.doi.org/10.2139/ssrn.4511720]
[14]
Fhearraigh, S. Guide to fluorescence activated cell sorting (FACs): The latest technology in cell separation. Available from: https://www.assaygenie.com/blog/guide-to-fluorescence-activatedcell-sorting
[15]
Fluorescent Activated Cell Sorting (FACS). Available from: https://letstalkacademy.com/fluorescent-activated-cell-sorter/
[16]
Basu, S.; Campbell, H.M.; Dittel, B.N.; Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). J. Vis. Exp., 2010, (41), e1546.
[PMID: 20644514]
[17]
Pellenz, S. What is flow cytometry (FACS Analysis). Available from: https://www.antibodies-online.com/resources/17/1247/what-is-flow-cytometry-facs-analysis/
[18]
Box, A.; Holmes, L.; DeLay, M.; Adams, D.; Bergeron, A.; Dwyer, C.K.; Cochran, M.; del Guerra, R.R.; Meyer, E.M.; Brundage, K.M. Cell sorter cleaning practices and their impact on instrument sterility. J Biomol Tech, 2022, 33(1)
[http://dx.doi.org/10.7171/3fc1f5fe.e2675d74]
[19]
Mollet, M.; Godoy-Silva, R.; Berdugo, C.; Chalmers, J.J. Computer simulations of the energy dissipation rate in a fluorescence activated cell sorter: Implications to cells. Biotechnol. Bioeng., 2008, 100(2), 260-272.
[http://dx.doi.org/10.1002/bit.21762] [PMID: 18078288]
[20]
Liao, X.; Makris, M.; Luo, X.M. Fluorescence-activated cell sorting for purification of plasmacytoid dendritic cells from the mouse bone marrow. J. Vis. Exp., 2016, (117), e54641.
[PMID: 27842369]
[21]
Bell, P.J.L.; Deere, D.; Shen, J.; Chapman, B.; Bissinger, P.H.; Attfield, P.V.; Veal, D.A. A flow cytometric method for rapid selection of novel industrial yeast hybrids. Appl. Environ. Microbiol., 1998, 64(5), 1669-1672.
[http://dx.doi.org/10.1128/AEM.64.5.1669-1672.1998] [PMID: 9572934]
[22]
Rosental, B.; Kozhekbaeva, Z.; Fernhoff, N.; Tsai, J.M.; Knowles, T.N. Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol., 2017, 18(1), 30.
[http://dx.doi.org/10.1186/s12860-017-0146-8] [PMID: 28851289]
[23]
Cianciotti, B.C.; Ruggiero, E.; Campochiaro, C.; Oliveira, G.; Magnani, Z.I.; Baldini, M.; Doglio, M.; Tassara, M.; Manfredi, A.A.; Baldissera, E.; Ciceri, F.; Cieri, N.; Bonini, C. CD4+ memory stem T cells recognizing citrullinated epitopes are expanded in patients with rheumatoid arthritis and sensitive to tumor necrosis factor blockade. Arthritis Rheumatol., 2020, 72(4), 565-575.
[http://dx.doi.org/10.1002/art.41157] [PMID: 31682074]
[24]
[26]
[27]
Chitteti, B.R. Instrument installation, operational, and performance qualification for BD FACS canto II., 2018. Available from: https://www.cytometry.org/web/modules/Module_11.pdf
[28]
Sudar, D. Flow cytometer FACSCalibur and FACSVantage flow sorter standard operating procedures., Available from: https://biosciences.lbl.gov/wp-content/uploads/2016/11/FACS-SOP-02-2011.pdf
[29]
McIntyre, C.A.; Flyg, B.T.; Fong, T.C. Fluorescence-activated cell sorting for CGMP processing of therapeutic cells. Bioprocess Int., 2010, 8(6), 44-53.
[30]
Schmid, I.; Lambert, C.; Ambrozak, D.; Marti, G.E.; Moss, D.M.; Perfetto, S.P. International society for analytical cytology biosafety standard for sorting of unfixed cells. Cytometry A, 2007, 71A(6), 414-437.
[http://dx.doi.org/10.1002/cyto.a.20390] [PMID: 17385740]
[31]
Zeng, W.; Guo, L.; Xu, S.; Chen, J.; Zhou, J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol., 2020, 38(8), 888-906.
[http://dx.doi.org/10.1016/j.tibtech.2020.01.001] [PMID: 32005372]
[32]
Juliano, C.; Swartz, S.Z.; Wessel, G. Isolating specific embryonic cells of the sea urchin by FACS. Methods Mol Biol., 2014, 1128, 187-196.
[33]
Mattanovich, D.; Borth, N. Applications of cell sorting in biotechnology. Microb. Cell Fact., 2006, 5(1), 12.
[http://dx.doi.org/10.1186/1475-2859-5-12] [PMID: 16551353]
[34]
Aviner, R. The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput. Struct. Biotechnol. J., 2020, 18, 1074-1083.
[http://dx.doi.org/10.1016/j.csbj.2020.04.014] [PMID: 32435426]
[35]
Crouch, E.E.; Doetsch, F. FACS isolation of endothelial cells and pericytes from mouse brain microregions. Nat. Protoc., 2018, 13(4), 738-751.
[http://dx.doi.org/10.1038/nprot.2017.158] [PMID: 29565899]
[36]
Yang, R.; Yang, S.; Zhao, J.; Hu, X.; Chen, X.; Wang, J.; Xie, J.; Xiong, K. Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Res. Ther., 2020, 11(1), 303.
[http://dx.doi.org/10.1186/s13287-020-01796-3] [PMID: 32698863]
[37]
Cai, Y.; Wang, J.; Zou, K. The progresses of spermatogonial stem cells sorting using fluorescence-activated cell sorting. Stem Cell Rev. Rep., 2020, 16(1), 94-102.
[http://dx.doi.org/10.1007/s12015-019-09929-9] [PMID: 31792769]
[38]
Fong, C.Y.; Peh, G.S.L.; Gauthaman, K.; Bongso, A. Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev., 2009, 5(1), 72-80.
[http://dx.doi.org/10.1007/s12015-009-9054-4] [PMID: 19184635]
[39]
Mohamed, H.; McCurdy, L.D.; Szarowski, D.H.; Duva, S.; Turner, J.N.; Caggana, M. Development of a rare cell fractionation device: Application for cancer detection. IEEE Trans. Nanobiosci., 2004, 3(4), 251-256.
[http://dx.doi.org/10.1109/TNB.2004.837903] [PMID: 15631136]
[40]
Sandal, P.; Patel, P.; Singh, D.; Gupta, G.D.; Kurmi, B.D. α-Tocopherol polyethylene glycol 1000 succinate-based cationic liposome for the intracellular delivery of doxorubicin in mda-mb-231 triple-negative breast cancer cell line. Assay Drug Dev. Technol., 2023, 21(8), 345-356.
[http://dx.doi.org/10.1089/adt.2023.067] [PMID: 38010987]
[41]
Mishra, L.; Bhowmik, S.; Singh, R.; Patel, P.; Gupta, G.D.; Kurmi, B.D. Quality by design-assisted development of D-α-tocopherol polyethylene glycol 1000 succinate-incorporated gefitinib-loaded cationic liposome(s). Ther. Deliv., 2023, 14(12), 745-761.
[http://dx.doi.org/10.4155/tde-2023-0075] [PMID: 38018431]
[42]
Kurmi, B.D.; Patel, P.; Paliwal, R.; Kumar, P.; Paliwal, S.R. Multifunctional nanotherapeutics for intracellular trafficking of doxorubicin against breast cancer. Nanomedicine, 2023, 18(19), 1261-1279.
[http://dx.doi.org/10.2217/nnm-2023-0087] [PMID: 37721134]
[43]
Haertel, J.H.; Urban, S.K.; Krawczyk, M.; Willms, A.; Jankowski, K.; Patkowski, W.; Kruk, B.; Krasnodębski, M.; Ligocka, J.; Schwab, R.; Richardsen, I.; Schaaf, S.; Klein, A.; Gehlert, S.; Sänger, H.; Casper, M.; Banales, J.M.; Schuppan, D.; Milkiewicz, P.; Lammert, F.; Krawczyk, M.; Kornek, L.V.; Kornek, M. Cancer associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J. Hepatol., 2017, 67(2), 282-292.
[http://dx.doi.org/10.1016/j.jhep.2017.02.024] [PMID: 28267620]
[44]
Soni, N.; Pai, P.; Krishna Kumar, G.R.; Prasad, V.; Dasgupta, S.; Bhadra, B. A flow virometry process proposed for detection of SARS-CoV-2 and large-scale screening of COVID-19 cases. Future Virol., 2020, 15(8), 525-532.
[http://dx.doi.org/10.2217/fvl-2020-0141]
[45]
Guez-Barber, D.; Fanous, S.; Harvey, B.K.; Zhang, Y.; Lehrmann, E.; Becker, K.G.; Picciotto, M.R.; Hope, B.T. FACS purification of immunolabeled cell types from adult rat brain. J. Neurosci. Methods, 2012, 203(1), 10-18.
[http://dx.doi.org/10.1016/j.jneumeth.2011.08.045] [PMID: 21911005]
[46]
Fei, C.; Nie, L.; Zhang, J.; Chen, J. Potential applications of fluorescence-activated cell sorting (facs) and droplet-based microfluidics in promoting the discovery of specific antibodies for characterizations of fish immune cells. Front. Immunol., 2021, 12, 771231.
[http://dx.doi.org/10.3389/fimmu.2021.771231] [PMID: 34868030]
[47]
Herzenberg, L.A. FACS innovation: A view from Stanford. Clin. Invest. Med., 2004, 27(5), 240-252.
[PMID: 15559860]
[48]
Drescher, H.; Weiskirchen, S.; Weiskirchen, R. Flow cytometry: A blessing and a curse. Biomedicines, 2021, 9(11), 1613.
[http://dx.doi.org/10.3390/biomedicines9111613] [PMID: 34829841]
[49]
Wyatt Shields, C., IV; Reyes, C.D.; López, G.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip, 2015, 15(5), 1230-1249.
[http://dx.doi.org/10.1039/C4LC01246A] [PMID: 25598308]
[50]
Robinson, J.P.; Ostafe, R.; Iyengar, S.N.; Rajwa, B.; Fischer, R. Flow cytometry: The next revolution. Cells, 2023, 12(14), 1875.
[http://dx.doi.org/10.3390/cells12141875] [PMID: 37508539]