Synthetic Update on Antimicrobial Potential of Novel Pyrazole Derivatives: A Review

Page: [325 - 345] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Heterocyclic compounds containing nitrogen and their derivatives have been a rich source of medicines. Pyrazole, a five-membered ring structure, offers a variety of functionalities as well as stereo-chemical complexity. Studies conducted over the past 10 years revealed that an increasing amount of research has been performed on different pyrazole derivatives and their physiological and pharmacological activities. The objective of these studies is to uncover the full potential of pyrazole derivatives by elucidating the many druglike properties and their link between the structure and mode of action. Here, we discuss different ways of synthesizing pyrazole derivatives. Due to recent advances in synthetic medicinal chemistry, this class of compounds can be readily developed and becomes a viable target for the discovery of novel drugs.

Graphical Abstract

[1]
Al-Ghamdi, H.M. Synthesis and antimicrobial activity of novel pyrazole derivatives. Orient. J. Chem., 2019, 35(1), 391-398.
[http://dx.doi.org/10.13005/ojc/350149]
[2]
Sankar, A.; Pandimuthu, G.; Nithya, P.; Ravikumar, R.; Meeran, M.N. Synthesis, characterization and antimicrobial activity of substituted pyrazole based heterocyclic compounds. Pharma Chem., 2016, 8(19), 345-349.
[3]
El-Assaly, S.A.; Ismail, A.E.H.A.; Bary, H.A.; Abouelenein, M.G. Synthesis, molecular docking studies, and antimicrobial evaluation of pyrano[2,3-c]pyrazole derivatives. Curr. Chem. Lett., 2021, 10(21), 309-328.
[http://dx.doi.org/10.5267/j.ccl.2021.3.003]
[4]
Sree, L.; Rao, N.; Rao, M.V.B. Synthesis of chalcone derivatives of furo [3, 2-c] pyridine as potential antibacterial agents. Chem. J., 2013, 3(1), 23-29.
[5]
Patil, R.; Chikhale, R.; Khanal, P.; Gurav, N.; Ayyanar, M.; Sinha, S.; Prasad, S.; Dey, Y.N.; Wanjari, M.; Gurav, S.S. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Inform. Med. Unlocked., 2021, 22, 100504.
[http://dx.doi.org/10.1016/j.imu.2020.100504] [PMID: 33363251]
[6]
Jamwal, A.; Javed, A.; Bhardwaj, V. A review on pyrazole derivatives of pharmacological potential. J. Pharm. Biomed. Sci., 2013, 3, 114-123.
[http://dx.doi.org/10.3390/molecules23010134]
[7]
Addoum, B.; El khalfi, B.; Idiken, M.; Sakoui, S.; Derdak, R.; Aniq Filali, O.; Elmakssoudi, A.; Soukri, A. Synthesis, characterization of pyrano-[2,3-c]pyrazoles derivatives and determination of their antioxidant activities. Iran. J. Toxicol., 2021, 15(3), 175-194.
[http://dx.doi.org/10.32598/IJT.15.3.798.1]
[8]
Sun, A.; Ye, J.H.; Yu, H.; Zhang, W.; Wang, X. A new efficient synthesis of pyrazoles from hydrazonoyl halides and β-oxophosphonates. Tetrahedron Lett., 2014, 55(4), 889-892.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.045]
[9]
Inceler, N.; Yılmaz, A.; Baytas, S.N. Synthesis of ester and amide derivatives of 1-phenyl-3-(thiophen-3-yl)-1H-pyrazole-4-carboxylic acid and study of their anticancer activity. Med. Chem. Res., 2013, 22(7), 3109-3118.
[http://dx.doi.org/10.1007/s00044-012-0317-2]
[10]
Hafez, H.N.; El-Gazzar, A.R.B.A.; Al-Hussain, S.A. Novel pyrazole derivatives with oxa/thiadiazolyl, pyrazolyl moieties and pyrazolo[4,3-d]-pyrimidine derivatives as potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2428-2433.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.117] [PMID: 27080187]
[11]
Santos, M.S.; Gomes, A.O.; Bernardino, A.M.R.; Souza, M.C.; Khan, M.A.; Brito, M.A.; Castro, H.C.; Abreu, P.A.; Rodrigues, C.R.; Léo, R.M.M.; Leon, L.L.; Canto-Cavalheiro, M.M. Synthesis and antileishmanial activity of new 1-aryl-1H-pyrazole-4-carboximidamides derivatives. J. Braz. Chem. Soc., 2011, 22(2), 352-358.
[http://dx.doi.org/10.1590/S0103-50532011000200022]
[12]
Bailey, D.M.; Hansen, P.E.; Hlavac, A.G.; Baizman, E.R.; Pearl, J.; De-Felice, A.F.; Feigenson, M.E. 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. J. Med. Chem., 1985, 28(2), 256-260.
[http://dx.doi.org/10.1021/jm00380a020] [PMID: 3968690]
[13]
Khan, S.A.; Ahmad, B.; Alam, T. Synthesis and antihepatotoxic activity of some new chalcones containing 1, 4-dioxane ring system. Pak. J. Pharm. Sci., 2006, 19(4), 290-294.
[PMID: 17105706]
[14]
Datar, P.A.; Jadhav, S.R. Synthesis of pyrazole-3-one derivatives as hypoglycaemicagents. Inter. J. Med. Chem., 2015, 2015, 1-10.
[15]
El-Gazzar, A.R.B.A.; El-Enany, M.M.; Mahmoud, M.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones. Bioorg. Med. Chem., 2008, 16(6), 3261-3273.
[http://dx.doi.org/10.1016/j.bmc.2007.12.012] [PMID: 18158248]
[16]
Li, Y.R.; Li, C.; Liu, J.C.; Guo, M.; Zhang, T.Y.; Sun, L.P.; Zheng, C.J.; Piao, H.R. Synthesis and biological evaluation of 1,3-diaryl pyrazole derivatives as potential antibacterial and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2015, 25(22), 5052-5057.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.028] [PMID: 26490095]
[17]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2017, 125, 101-116.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.021] [PMID: 27657808]
[18]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76(76), 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[19]
Tamta, H.; Thilagavathi, R.; Chakraborti, A.K.; Mukhopadhyay, A.K. 6-(N-benzoylamino)purine as a novel and potent inhibitor of xanthine oxidase: Inhibition mechanism and molecular modeling studies. J. Enzyme Inhib. Med. Chem., 2005, 20(4), 317-324.
[http://dx.doi.org/10.1080/14756360500112326] [PMID: 16206825]
[20]
Hervin, V.; Arora, R.; Rani, J.; Ramchandran, S.; Bajpai, U.; Agrofoglio, L.A.; Roy, V. Mycobacterium tuberculosis mur ligases. Molecules, 2020, 25(21), 4953.
[http://dx.doi.org/10.3390/molecules25214953] [PMID: 33114668]
[21]
Nayak, N.; Ramprasad, J.; Dalimba, U. New INH–pyrazole analogs: Design, synthesis and evaluation of antitubercular and antibacterial activity. Bioorg. Med. Chem. Lett., 2015, 25(23), 5540-5545.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.057] [PMID: 26520663]
[22]
Prajuli, R.; Banerjee, J.; Khanal, H. Synthesis of some pyrazolone derivatives and evaluation of its antibacterial and cytotoxic activity. Orient. J. Chem., 2015, 31(4), 2099-2106.
[http://dx.doi.org/10.13005/ojc/310430]
[23]
Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[24]
Frigola, J.; Colombo, A.; Pares, J.; Martinez, L.; Sagarra, R.; Rosert, R. Synthesis, structure and inhibitory effects on cyclooxygenase, lipoxygenase, thromboxane synthetase and platelet aggregation of 3-amino-4,5-dihydro-1H-pyrazole derivatives. Eur. J. Med. Chem., 1989, 24(4), 435-445.
[http://dx.doi.org/10.1016/0223-5234(89)90089-5]
[25]
Puneeth, H.R.; Sharada, A.C. Antidiabetic effects of a series of curcuminpyrazoles in-vitro. Asian J. Pharm. Clin. Res., 2015, 8(6), 146-149.
[26]
Yadav, A.G.; Patil, V.N.; Asrondkar, A.L.; Naik, A.A.; Ansulkar, P.V.; Bobade, A.S.; Chowdhary, A.S. Anti-oxidant and anti-microbial activities of pyrazolyl-benzothiazole derivatives using vilsmeier-haackreaction. Ras. J. Chem, 2012, 5(1), 117-120.
[27]
Dabholkar, V.; Ansari, F. Synthesis and characterization of selected fused isoxazole and pyrazole derivatives and their antimicrobial activity. J. Serb. Chem. Soc., 2009, 74(11), 1219-1228.
[http://dx.doi.org/10.2298/JSC0911219D]
[28]
Addoum, B.; El Khalfi, B.; Derdak, R.; Sakoui, S.; Elmakssoudi, A.; Soukri, A. Synthesis, in vitro antimicrobial activity, and docking studies of some pyrano[2,3-c] pyrazole derivatives. Biointerface Res. Appl. Chem., 2021, 12(4), 4705-4730.
[http://dx.doi.org/10.33263/BRIAC124.47054730]
[29]
Ardiansah, B. A recent update: Antimicrobial agents containing pyrazole nucleus. Asian J. Pharm. Clin. Res., 2018, 11(12), 88-94.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i12.29418]
[30]
Sharshira, E.M.; Hamada, N.M.M. Synthesis and in vitro antimicrobial activity of some pyrazolyl-1-carboxamide derivatives. Molecules, 2011, 16(9), 7736-7745.
[http://dx.doi.org/10.3390/molecules16097736] [PMID: 21909057]
[31]
Faritha, A.; Nasser, A.J.; Ahamed, A.P.; Thajuddin, N. Synthesis, characterization and biological activity of certain pyrazolederivatives. J. Chem. Pharm. Res., 2014, 6(9), 189-193.
[32]
Manjunath, G.; Mahesh, M.; Bheemaraju, G.; Ramana, P.V. Synthesis of new pyrazole derivatives containing quinoline moiety via chalcones: A novel class of potential antibacterial and antifungal agents. Chem. Sci. Trans., 2016, 5(1), 61-74.
[http://dx.doi.org/10.7598/cst2016.1140]
[33]
Dabhi, H.R.; Rana, A.K.; Parmar, K.K.H. Synthesis, characterization and antimicrobial study of some pyrazole compounds derived from chalcone. Scholars Res. Lib, 2015, 7(3), 1-5.
[34]
Rani, M.; Yusuf, M.; Khan, S.A.; Sahota, P.P.; Pandove, G. Synthesis, studies and in-vitro antibacterial activity of N-substituted 5-(furan-2-yl)-phenyl pyrazolines. Arab. J. Chem., 2015, 8(2), 174-180.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.036]
[35]
Amir, M.; Javed, S.A.; Zaheen Hassan, M. Synthesis and antimicrobial activity of pyrazolinones and pyrazoles having benzothiazole moiety. Med. Chem. Res., 2012, 21(7), 1261-1270.
[http://dx.doi.org/10.1007/s00044-011-9642-0]
[36]
Oliveira-Campos, A.M.F.; Sivasubramaniana, A.; Rodriguesa, L.M.; Seijasb, J.A.; Va’zquez-Tatob, M.P.V.; Peixotoc, F.; Abreud, C.G.; Cidadee, H.; Oliveirae, E.A. Pintoe. Substituted pyrazolo[3,4-d]pyrimidines: Microwave-assisted, solvent-free synthesis and biological evaluation. Helv. Chim. Acta, 2008, 9, 1326-1345.
[37]
Lei, P.; Zhang, X.; Xu, Y.; Xu, G.; Liu, X.; Yang, X.; Zhang, X.; Ling, Y. Synthesis and fungicidal activity of pyrazole derivatives containing 1,2,3,4-tetrahydroquinoline. Chem. Cent. J., 2016, 10(1), 40.
[http://dx.doi.org/10.1186/s13065-016-0186-8] [PMID: 27382411]
[38]
Gore, R.P. Synthesis, characterization and antimicrobial activity of azole-pyrazolidin-3-one derivatives. Inter. J. Pharmaceut. Chem, 2015, 05(12), 413-416.
[http://dx.doi.org/10.7439/IJPC.V5I12.2793]
[39]
Tala, S.D.; Vekariya, P.B.; Ghetiya, R.M.; Dodiya, B.L.; Joshi, H.S. Synthesis and biological study of some new chalcone and pyrazole derivatives. Indian J. Chem., 2013, 52B, 807-809.
[40]
Brahmbhatt, H.; Molnar, M.; Pavić, V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. KIJOMS, 2018, 4(2), 200-206.
[http://dx.doi.org/10.1016/j.kijoms.2018.01.006]
[41]
Harikrishna, N.; Isloor, A.M.; Ananda, K.; Obaid, A.; Fun, H.K. Synthesis, and antitubercular and antimicrobial activity of 1′-(4-chlorophenyl)pyrazole containing 3,5-disubstituted pyrazoline derivatives. New J. Chem., 2016, 40(1), 73-76.
[http://dx.doi.org/10.1039/C5NJ02237A]
[42]
Kumar, S.R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[43]
Viveka, S.; Dinesha; Madhu, L.N.; Nagaraja, G.K. Synthesis of new pyrazole derivatives via multicomponent reaction and evaluation of their antimicrobial and antioxidant activities. Monatsh. Chem., 2015, 146(9), 1547-1555.
[http://dx.doi.org/10.1007/s00706-015-1428-5]
[44]
Kendre, B.V.; Landge, M.G.; Bhusare, S.R. Synthesis and biological evaluation of some novel pyrazole, isoxazole, benzoxazepine, benzothiazepine and benzodiazepine derivatives bearing an aryl sulfonate moiety as antimicrobial and anti-inflammatory agents. Arab. J. Chem., 2019, 12(8), 2091-2097.
[http://dx.doi.org/10.1016/j.arabjc.2015.01.007]
[45]
Suthakaran, R.; Somasekhar, G.; Sridevi, C.; Marikannan, M.; Suganthi, K.; Nagarajan, G. Synthesis, antiinflammatory, antioxidant andantibacterial activities of 7-methoxy benzofuranpyrazoline derivatives. Asian J. Chem., 2007, 19(5), 3353-3362.
[46]
Unnissa, S.; Nisha, N.; Reddy, G. Synthesis and in vitro antimicrobial evaluation including anti-malarial activity of pyrazole based novel cinnoline derivatives. J. Appl. Pharm. Sci., 2015, 5(11), 121-126.
[http://dx.doi.org/10.7324/JAPS.2015.501121]
[47]
Raju, G.N.; Babu, J.R.; Naik, B.M.; Lakshmi, K.; Nadendla, R.R. Synthesis, characterization and biological evaluation of pyrazole derivatives containing indole ring as a potent analgesic and anti-inflammatory agents. Pharma Chem., 2016, 8(4), 301-309.
[48]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. open sci., 2018, 25(5), 1-16.
[http://dx.doi.org/10.1098/rsos.172435]
[49]
Desai, N.C.; Bhatt, M.J. Optimized synthesis of novel pyrazole based thiazole derivatives and their antimicrobial evaluation. ILCPA, 2016, 66, 109-118.
[http://dx.doi.org/10.56431/p-i63g13]
[50]
Reddy, C.S.; Devi, M.V.; Kumar, G.R.; Rao, L.S.; Nagaraj, A. Synthesis and antimicrobial activity of linked heterocyclics containing pyrazole-pyrimidine rings. Indian J. Chem., 2011, 50B, 1181-1186.
[51]
Malladi, S.; Isloor, A.M.; Peethambar, S.K.; Fun, H.K. Synthesis and biological evaluation of newer analogues of 2,5-disubstituted 1,3,4-oxadiazole containing pyrazole moiety as antimicrobial agents. Arab. J. Chem., 2014, 7(6), 1185-1191.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.020]
[52]
Sharma, P.K.; Chandak, N.; Kumar, P.; Sharma, C.; Aneja, K.R. Synthesis and biological evaluation of some 4-functionalized-pyrazoles as antimicrobial agents. Eur. J. Med. Chem., 2011, 46(4), 1425-1432.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.060] [PMID: 21342734]
[53]
Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[54]
Sowmya, D.V.; Teja, L.G.; Padmaja, A.; Prasad, K.V.; Padmavathi, V. Green approach for the synthesis of thiophenyl pyrazoles and isoxazoles by adopting 1,3-dipolar cycloaddition methodology and their antimicrobial activity. Eur. J. Med. Chem., 2018, 143(143), 891-898.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.093] [PMID: 29227929]
[55]
Nalawade, J.; Shinde, A.; Chavan, A.; Patil, S.; Suryavanshi, M.; Modak, M.; Choudhari, P.; Bobade, V.D.; Mhaske, P.C. Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2019, 179, 649-659.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.074] [PMID: 31279297]
[56]
Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, S.W.; Tiekink, E.R.T. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones. J. Mol. Struct., 2015, 1081, 201-210.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.026]
[57]
Khumar, A.B.S.; Ezhilarasi, M.R.; Prabha, B. Molecular docking study of novel synthesized pyrazolederivatives and their antibacterial activity. Asian J. Chem., 2018, 30(4), 741-746.
[http://dx.doi.org/10.14233/ajchem.2018.20913]
[58]
Pundeer, R.; Sushma, X.; Kiran, V.; Sharma, C.; Aneja, K.R.; Prakash, O. Synthesis and evaluation of antibacterial and antifungal activities of new (Z)-3-bromo-4-(1,3-diaryl-1H-pyrazol-4-yl)but-3-en-2-ones and 4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)-1,3-diaryl-1H-pyrazoles. Med. Chem. Res., 2013, 22(10), 4715-4726.
[http://dx.doi.org/10.1007/s00044-013-0480-0]
[59]
Rahimizadeh, M.; Pordel, M.; Bakavoli, M.; Rezaeian, S.; Sadeghian, A. Synthesis and antibacterial activity of some new derivatives of pyrazole. World J. Microbiol. Biotechnol., 2010, 26(2), 317-321.
[http://dx.doi.org/10.1007/s11274-009-0178-0]