Hydrophilic Interaction Liquid Chromatography for the Analysis of Pharmaceutical Formulations

Page: [295 - 317] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

For a long time, Reversed-Phase Liquid Chromatography (RPLC) was the most dominant technique for the analysis of pharmaceutical compounds, but with poor efficiency in the separation of small polar molecules. From the efforts to solve the problem of insufficient retention of these molecules, during the last decades, a mode of liquid chromatography named Hydrophilic Interaction Liquid Chromatography (HILIC) has experienced vast expansion. It is based on the use of a highly hydrophilic stationary phase along with an aqueous mobile phase with high organic modifier content. In this review, the characteristics of stationary and mobile phases used in HILIC are described, and corresponding separation mechanisms are discussed. An overview of recently published papers dealing with the application of HILIC in analyzing pharmaceuticals in biological and non-biological samples is provided. Besides, the application of HILIC systems in the determination of the physicochemical properties of compounds is described.

Graphical Abstract

[1]
Šegan, S.; Opsenica, D.; Milojković-Opsenica, D. Thin-layer chromatography in medicinal chemistry. J. Liq. Chromatogr. Relat, 2019, 42, 238-248.
[2]
Dejaegher, B.; Vander Heyden, Y. HILIC methods in pharmaceutical analysis. J. Sep. Sci., 2010, 33(6-7), 698-715.
[http://dx.doi.org/10.1002/jssc.200900742] [PMID: 20183826]
[3]
Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A, 1990, 499, 177-196.
[http://dx.doi.org/10.1016/S0021-9673(00)96972-3] [PMID: 2324207]
[4]
Rabel, F.M.; Caputo, A.G.; Butts, E.T. Separation of carbohydrates on a new polar bonded phase material. J. Chromatogr. A, 1976, 126, 731-740.
[http://dx.doi.org/10.1016/S0021-9673(01)84116-9]
[5]
Guarducci, M.A.; Fochetti, A.; Ciogli, A.; Mazzoccanti, G. A compendium of the principal stationary phases used in hydrophilic interaction chromatography: Where have we arrived? Separations, 2022, 10(1), 22.
[http://dx.doi.org/10.3390/separations10010022]
[6]
Mameli, M.; Vezzelli, A.; Verze’, S.; Biondi, S.; Motta, P.; Greco, A.; Michi, M.; Breda, M. Liquid chromatography–tandem mass spectrometry for the simultaneous quantitation of enmetazobactam and cefepime in human plasma. J. Pharm. Biomed. Anal., 2019, 174, 655-662.
[http://dx.doi.org/10.1016/j.jpba.2019.06.041] [PMID: 31288188]
[7]
Fadhil, A.K.; Rasheed, A.S.; Hassan, M.J.M. Evaluation and application of ZIC-HILIC columns selectivity for four angiotensin ii receptor blockers in pharmaceutical formulations. Curr. Pharm. Anal., 2022, 18, 901-908.
[http://dx.doi.org/10.2174/1573412918666220822144157]
[8]
Perkons, I.; Tomsone, L.E.; Sukajeva, V.; Neilands, R.; Kokina, K.; Pugajeva, I. Qualitative fingerprinting of psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater: A year-long study from Riga, Latvia. J. Environ. Chem. Eng., 2022, 4, 108110.
[9]
Scherf-Clavel, O.; Kinzig, M.; Stoffel, M.S.; Fuhr, U.; Sörgel, F. A HILIC-MS/MS assay for the quantification of metformin and sitagliptin in human plasma and urine: A tool for studying drug transporter perturbation. J. Pharm. Biomed. Anal., 2019, 175, 112754.
[http://dx.doi.org/10.1016/j.jpba.2019.07.002]
[10]
Heaton, J.; Smith, N.W. Advantages and disadvantages of HILIC; a brief overview. Chromatography Today, 2012, 44-47.
[11]
Taraji, M.; Haddad, P.R.; Amos, R.I.J.; Talebi, M.; Szucs, R.; Dolan, J.W.; Pohl, C.A. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal. Chim. Acta, 2018, 1000, 20-40.
[http://dx.doi.org/10.1016/j.aca.2017.09.041] [PMID: 29289311]
[12]
Obradović, D.; Oljačić, S.; Nikolić, K.; Agbaba, D. Investigation and prediction of retention characteristics of imidazoline and serotonin receptor ligands and their related compounds on mixed-mode stationary phase. J. Chromatogr. A, 2019, 1585, 92-104.
[http://dx.doi.org/10.1016/j.chroma.2018.11.051] [PMID: 30553503]
[13]
Obradović, D.; Stavrianidi, A.N.; Ustinovich, K.B.; Parenago, O.O.; Shpigun, O.A.; Agbaba, D. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography. J. Chromatogr. A, 2019, 1603, 371-379.
[http://dx.doi.org/10.1016/j.chroma.2019.04.054] [PMID: 31060781]
[14]
Obradović, D.; Kowalska, T.; Agbaba, D. Mixed-mode hydrophilic interactions/reversed-phase retention mechanism in thin-layer chromatography. J. Chromatogr. Sci., 2022, 60(4), 372-386.
[http://dx.doi.org/10.1093/chromsci/bmab068] [PMID: 34089050]
[15]
Körmöczi, T.; Szabó, Í.; Farkas, E.; Penke, B.; Janáky, T.; Ilisz, I.; Berkecz, R. Heart-cutting two-dimensional liquid chromatography coupled to quadrupole-orbitrap high resolution mass spectrometry for determination of N,N-dimethyltryptamine in rat plasma and brain; Method development and application. J. Pharm. Biomed. Anal., 2020, 191, 113615.
[http://dx.doi.org/10.1016/j.jpba.2020.113615]
[16]
Gu, X.; Yang, L.; Tao, Q.; Ai, J.; Yan, C.; Zheng, J.; Hong, L. Application of heart-cutting two-dimensional liquid chromatography-mass spectrometry to the characterization of highly polar impurities in calcium gluconate injection. J. Chromatogr. A, 2022, 1685, 463632.
[http://dx.doi.org/10.1016/j.chroma.2022.463632] [PMID: 36347071]
[17]
Kotasova, M.; Lacina, O.; Springer, D.; Sevcik, J.; Brutvan, T.; Jezkova, J.; Zima, T. A new heart-cutting method for a multiplex quantitative analysis of steroid hormones in plasma using 2D-LC/MS/MS technique. Molecules, 2023, 28(3), 1379.
[http://dx.doi.org/10.3390/molecules28031379] [PMID: 36771043]
[18]
Bernal, J.; Ares, A.M.; Pól, J.; Wiedmer, S.K. Hydrophilic interaction liquid chromatography in food analysis. J. Chromatogr. A, 2011, 1218(42), 7438-7452.
[http://dx.doi.org/10.1016/j.chroma.2011.05.004] [PMID: 21621783]
[19]
Marrubini, G.; Appelblad, P.; Maietta, M.; Papetti, A. Hydrophilic interaction chromatography in food matrices analysis: An updated review. Food Chem., 2018, 257, 53-66.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.008] [PMID: 29622230]
[20]
Kohler, I.; Verhoeven, M.; Haselberg, R.; Gargano, A.F.G. Hydrophilic interaction chromatography – mass spectrometry for metabolomics and proteomics: State-of-the-art and current trends. Microchem. J., 2022, 175, 106986.
[http://dx.doi.org/10.1016/j.microc.2021.106986]
[21]
Fadhil, A.K.; Rasheed, A.S.; Hassan, M.J.M. A review of recent advances in the estimation of pharmaceutical products using hydrophilic interaction chromatography (HILIC) technology. Egypt. J. Chem., 2023, 66, 399-417.
[22]
Erkmen, C.; Gebrehiwot, W.H.; Uslu, B. Hydrophilic interaction liquid chromatography (HILIC): Latest applications in the pharmaceutical researches. Curr. Pharm. Anal., 2021, 17(3), 316-345.
[http://dx.doi.org/10.2174/1573412916666200402101501]
[23]
Zhang, Q.; Yang, F.Q.; Ge, L.; Hu, Y.J.; Xia, Z.N. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. J. Sep. Sci., 2017, 40(1), 49-80.
[http://dx.doi.org/10.1002/jssc.201600843] [PMID: 27717145]
[24]
Karatapanis, A.E.; Fiamegos, Y.C.; Stalikas, C.D. A revisit to the retention mechanism of hydrophilic interaction liquid chromatography using model organic compounds. J. Chromatogr. A, 2011, 1218(20), 2871-2879.
[http://dx.doi.org/10.1016/j.chroma.2011.02.069] [PMID: 21439572]
[25]
Bicker, W.; Wu, J.; Yeman, H.; Albert, K.; Lindner, W. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: A study on mixed-mode retention mechanisms and the pivotal role of solute–silanol interactions in the hydrophilic interaction chromatography elution mode. J. Chromatogr. A, 2011, 1218(7), 882-895.
[http://dx.doi.org/10.1016/j.chroma.2010.10.073] [PMID: 21067765]
[26]
Jandera, P. Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. J. Sep. Sci., 2008, 31(9), 1421-1437.
[http://dx.doi.org/10.1002/jssc.200800051] [PMID: 18428181]
[27]
Guo, Y. A survey of polar stationary phases for hydrophilic interaction chromatography and recent progress in understanding retention and selectivity. Biomed. Chromatogr., 2022, 36(4), e5332.
[http://dx.doi.org/10.1002/bmc.5332] [PMID: 35001408]
[28]
Greco, G.; Letzel, T. Main interactions and influences of the chromatographic parameters in HILIC separations. J. Chromatogr. Sci., 2013, 51(7), 684-693.
[http://dx.doi.org/10.1093/chromsci/bmt015] [PMID: 23492984]
[29]
Guo, Y.; Gaiki, S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A, 2011, 1218(35), 5920-5938.
[http://dx.doi.org/10.1016/j.chroma.2011.06.052] [PMID: 21737083]
[30]
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
[http://dx.doi.org/10.1007/s00216-011-5308-5] [PMID: 21879300]
[31]
Qiao, L.; Yu, C.; Sun, R. Preparation and comparison of three zwitterionic stationary phases for hydrophilic interaction liquid chromatography. J. Sep. Sci., 2020, 43(6), 1071-1079.
[http://dx.doi.org/10.1002/jssc.201901087] [PMID: 31883201]
[32]
Obradović, D.; Komsta, Ł.; Agbaba, D. Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography. J. Chromatogr. A, 2020, 1619, 460951.
[http://dx.doi.org/10.1016/j.chroma.2020.460951] [PMID: 32085914]
[33]
Varache, M.; Ciancone, M.; Couffin, A.C. Development and validation of a novel UPLC-ELSD method for the assessment of lipid composition of nanomedicine formulation. Int. J. Pharm., 2019, 566, 11-23.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.038] [PMID: 31112794]
[34]
Li, J.; Stolee, J.A.; Meda, A. Simultaneous quantitation of inorganic ions in oligonucleotides using mixed-mode liquid chromatography coupled with a charged aerosol detector. J. Pharm. Biomed. Anal., 2021, 204, 114244.
[http://dx.doi.org/10.1016/j.jpba.2021.114244] [PMID: 34280819]
[35]
Prieto-Blanco, M.C.; Planas-Franco, A.; Muniategui-Lorenzo, S.; González-Castro, M.J. Mixed-mode chromatography of mixed functionalized analytes as the homologues of benzalkonium chloride. Application to pharmaceutical formulations. Talanta, 2023, 255, 124228-124228.
[http://dx.doi.org/10.1016/j.talanta.2022.124228] [PMID: 36587429]
[36]
Zhang, Z.; Xia, M.; Huang, P.; Di, B.; Su, M. Preparation and evaluation of a bacitracin-bonded silica stationary phase for hydrophilic interaction liquid chromatography. Microchem. J., 2021, 170, 106661.
[http://dx.doi.org/10.1016/j.microc.2021.106661]
[37]
McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Chromatogr. A, 2017, 1523, 49-71.
[http://dx.doi.org/10.1016/j.chroma.2017.06.026] [PMID: 28668366]
[38]
Obradović, D.; Komsta, Ł.; Stavrianidi, A.N.; Shpigun, O.A.; Pokrovskiy, O.I.; Vujić, Z. Retention mechanisms of imidazoline and piperazine-related compounds in non-aqueous hydrophilic interaction and supercritical fluid chromatography based on chemometric design and analysis. J. Chromatogr. A, 2022, 1678, 463340.
[http://dx.doi.org/10.1016/j.chroma.2022.463340] [PMID: 35905682]
[39]
Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim. Acta, 2011, 692(1-2), 1-25.
[http://dx.doi.org/10.1016/j.aca.2011.02.047] [PMID: 21501708]
[40]
Gama, M.R.; da Costa Silva, R.G.; Collins, C.H.; Bottoli, C.B.G. Hydrophilic interaction chromatography. Trends Analyt. Chem., 2012, 37, 48-60.
[http://dx.doi.org/10.1016/j.trac.2012.03.009]
[41]
Hao, Z.; Xiao, B.; Weng, N. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J. Sep. Sci., 2008, 31(9), 1449-1464.
[http://dx.doi.org/10.1002/jssc.200700624] [PMID: 18435508]
[42]
Hosseinkhani, F.; Huang, L.; Dubbelman, A.C.; Guled, F.; Harms, A.C.; Hankemeier, T. Systematic evaluation of HILIC stationary phases for global metabolomics of human plasma. Metabolites, 2022, 12(2), 165.
[http://dx.doi.org/10.3390/metabo12020165] [PMID: 35208239]
[43]
Chutkowski, M.; Ziobrowski, P.; Przywara, M.; Kamińska, J.; Zapała, W. Studies on the effects of process conditions on separation of B1, B2 and B3 vitamin mixture using HILIC and RPLC chromatography. AgriEngineering, 2022, 4(3), 566-591.
[http://dx.doi.org/10.3390/agriengineering4030038]
[44]
Heaton, J.C.; Russell, J.J.; Underwood, T.; Boughtflower, R.; McCalley, D.V. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions. J. Chromatogr. A, 2014, 1347, 39-48.
[http://dx.doi.org/10.1016/j.chroma.2014.04.026] [PMID: 24813934]
[45]
McCalley, D.V. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range. J. Chromatogr. A, 2015, 1411, 41-49.
[http://dx.doi.org/10.1016/j.chroma.2015.07.092] [PMID: 26275863]
[46]
Mateos-Vivas, M.; Rodríguez-Gonzalo, E.; García-Gómez, D.; Carabias-Martínez, R. Hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents for the separation of nucleosides and nucleotide mono-, di- and triphosphates. J. Chromatogr. A, 2015, 1414, 129-137.
[http://dx.doi.org/10.1016/j.chroma.2015.08.040] [PMID: 26341591]
[47]
Zhang, G.; Walker, A.D.; Lin, Z.; Han, X.; Blatnik, M.; Steenwyk, R.C.; Groeber, E.A. Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry. J. Chromatogr. A, 2014, 1325, 129-136.
[http://dx.doi.org/10.1016/j.chroma.2013.12.017] [PMID: 24377733]
[48]
Binh, V.N.; Hue, V.T.P.; Ha, P.T.T. Peak shape enhancement using diethylamine in hydrophilic liquid interaction chromatography: Application in simultaneous determination of methionine and paracetamol. J. Pharm. Biomed. Anal., 2021, 203, 114214.
[http://dx.doi.org/10.1016/j.jpba.2021.114214] [PMID: 34153937]
[49]
Subirats, X.; Casanovas, L.; Redón, L.; Rosés, M. Effect of the solvent on the chromatographic selectivity in reversed-phase and HILIC. Adv. Sample Prep., 2023, 6, 100063.
[http://dx.doi.org/10.1016/j.sampre.2023.100063]
[50]
Hemström, P.; Irgum, K. Hydrophilic interaction chromatography. J. Sep. Sci., 2006, 29(12), 1784-1821.
[http://dx.doi.org/10.1002/jssc.200600199] [PMID: 16970185]
[51]
Gritti, F.; dos Santos Pereira, A.; Sandra, P.; Guiochon, G. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography. J. Chromatogr. A, 2009, 1216(48), 8496-8504.
[http://dx.doi.org/10.1016/j.chroma.2009.10.009] [PMID: 19853257]
[52]
Jandera, P.; Janás, P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal. Chim. Acta, 2017, 967, 12-32.
[http://dx.doi.org/10.1016/j.aca.2017.01.060] [PMID: 28390482]
[53]
Wang, F.; Yang, F.; Tian, Y.; Liu, J.; Shen, J.; Bai, Q. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk’ vs. lg[H2O]. Talanta, 2018, 176, 499-508.
[http://dx.doi.org/10.1016/j.talanta.2017.08.062] [PMID: 28917782]
[54]
Wang, F.; Yang, F.; Liu, J.; Bai, Q. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory II. HILIC/RPLC dual-retention mechanism of solutes in hydrophilic interaction chromatography over the entire range of water concentration in mobile phase. Talanta, 2023, 265, 124858.
[http://dx.doi.org/10.1016/j.talanta.2023.124858] [PMID: 37385194]
[55]
Obradović, D.; Komsta, Ł.; Petrović, V.M.; Stojković, I.; Lazović, S. An alternative biomimetic tool: Dual hydrophilic/reversed-phase interaction mode. Microchem. J., 2023, 193, 108967.
[http://dx.doi.org/10.1016/j.microc.2023.108967]
[56]
Attimarad, M.; Venugopala, K.N.; Chohan, M.S.; David, M.; Molina, E.I.I.P.; Sreeharsha, N.; Nair, A.B.; Tratrat, C.; Altaysan, A.I.; Balgoname, A.A. An experimental design approach to quantitative expression for quality control of a multicomponent antidiabetic formulation by the HILIC method. Molecules, 2022, 27(10), 3135.
[http://dx.doi.org/10.3390/molecules27103135] [PMID: 35630608]
[57]
Taraji, M.; Haddad, P.R. Method optimisation in hydrophilic-interaction liquid chromatography by design of experiments combined with quantitative structure–retention relationships. Aust. J. Chem., 2021, 74(11), 778-786.
[http://dx.doi.org/10.1071/CH21102]
[58]
Erkmen, C.; Gümüştaş, M.; Özkan, S.A.; Uslu, B. Step-by-step optimization of the HILIC method for simultaneous determinationof abacavir, lamivudine, and zidovudine from dosage form. Turk. J. Chem., 2019, 43(6), 1597-1607.
[http://dx.doi.org/10.3906/kim-1906-18]
[59]
Dai, L.; Gonzalez, J.; Zhang, K. A simple generic method for analyzing water sensitive pinacol boronate compounds by hydrophilic interaction liquid chromatography. J. Chromat. Open, 2022, 2, 100036.
[http://dx.doi.org/10.1016/j.jcoa.2022.100036]
[60]
Rehm, S.; Rentsch, K.M. HILIC LC-MS/MS method for the quantification of cefepime, imipenem and meropenem. J. Pharm. Biomed. Anal., 2020, 186, 113289.
[http://dx.doi.org/10.1016/j.jpba.2020.113289] [PMID: 32428767]
[61]
Wu, L.; Ye, Z.; Liu, H.; Guo, H.; Lin, J.; Zheng, L.; Chu, N.; Liu, X. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 180, 113076.
[http://dx.doi.org/10.1016/j.jpba.2019.113076] [PMID: 31896523]
[62]
Gurke, R.; Schmidt, D.; Thomas, D.; Fleck, S.C.; Geisslinger, G.; Ferreirós, N. A validated LC–MS/MS method for the determination of homocysteic acid in biological samples. J. Pharm. Biomed. Anal., 2019, 174, 578-587.
[http://dx.doi.org/10.1016/j.jpba.2019.06.008] [PMID: 31261039]
[63]
Merlo, F.; Montagna, J.; Maraschi, F.; Profumo, A.; Baldanti, F.; Speltini, A. A versatile method for multiclass determination of β-lactam drugs in urine by solid-phase extraction followed by HILIC-UV. Journal of Chromatography Open, 2022, 2, 100048.
[http://dx.doi.org/10.1016/j.jcoa.2022.100048]
[64]
Panderi, I.; Taxiarchi, E.; Pistos, C.; Kalogria, E.; Vonaparti, A. Insights into the mechanism of separation of bisphosphonates by zwitterionic hydrophilic interaction liquid chromatography: Application to the quantitation of risedronate in pharmaceuticals. Separations, 2019, 6(1), 6.
[http://dx.doi.org/10.3390/separations6010006]
[65]
Sentkowska, A.; Pyrzynska, K. Stability of selenium compounds in aqueous extracts of dietary supplements during storage. J. Pharm. Biomed. Anal., 2022, 214, 114714.
[http://dx.doi.org/10.1016/j.jpba.2022.114714] [PMID: 35279451]
[66]
Zhou, G.S.; Zhang, J.; Yin, Y.; Tan, Y.J.; Tao, H.J.; Chen, J.Q.; Pu, Z.J.; Zhu, Z.H.; Shi, X.Q.; Tang, Y.P.; Duan, J.A. HILIC-UHPLC-QTRAP®/MS2 quantification of 15 neurotransmitters of the combination of donepezil and ginkgo ketoester tablet in different biological matrices from dementia mice: Application to study the synergistic effect of the two drugs. Microchem. J., 2021, 161, 105791.
[http://dx.doi.org/10.1016/j.microc.2020.105791]
[67]
Zhao, C.; Yan, S.; Liu, J.; Xiong, Z.; Zhao, L. Octadecylamine and serine-derived carbon dots-modified silica gel for reversed phase/hydrophilic interaction liquid chromatography. Microchem. J., 2022, 183, 107987.
[http://dx.doi.org/10.1016/j.microc.2022.107987]
[68]
Vallaro, M.; Ermondi, G.; Caron, G. Chromatographic HILIC indexes to characterize the lipophilicity of zwitterions. Eur. J. Pharm. Sci., 2020, 145, 105232.
[http://dx.doi.org/10.1016/j.ejps.2020.105232] [PMID: 31982484]
[69]
Abdighahroudi, M.S.; Lutze, H.V.; Schmidt, T.C. Development of an LC-MS method for determination of nitrogen-containing heterocycles using mixed-mode liquid chromatography. Anal. Bioanal. Chem., 2020, 412(20), 4921-4930.
[http://dx.doi.org/10.1007/s00216-020-02665-x] [PMID: 32458017]
[70]
Eom, H.Y.; Jang, S-I.; Hwang, J.H.; Kim, L.; Kang, J.S.; Lee, J.H. Development and validation of a bioanalytical method of analyzing 3′- and 6′-sialyllactose using liquid chromatography–tandem mass spectrometry in minipig plasma and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal., 2021, 195, 113827.
[http://dx.doi.org/10.1016/j.jpba.2020.113827]
[71]
Xu, Q.; Tan, S. Quantitative analysis of 3-isopropylamino-1,2-propanediol as a degradation product of metoprolol in pharmaceutical dosage forms by HILIC-CAD. J. Pharm. Anal., 2019, 9(6), 431-436.
[http://dx.doi.org/10.1016/j.jpha.2019.08.001] [PMID: 31890343]
[72]
Douša, M. Quantification of 2-aminoisobutyric acid impurity in enzalutamide bulk drug substance using hydrophilic interaction chromatography with fluorescence detection. J. Pharm. Biomed. Anal., 2019, 164, 296-301.
[http://dx.doi.org/10.1016/j.jpba.2018.10.049] [PMID: 30412802]
[73]
Mansoor, M.; Melendez, A.J. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul. Syst. Bio., 2008, 2, 275-295.
[http://dx.doi.org/10.4137/GRSB.S418] [PMID: 19787090]
[74]
Hsieh, Y. Potential of HILIC‐MS in quantitative bioanalysis of drugs and drug metabolites. J. Sep. Sci., 2008, 31(9), 1481-1491.
[http://dx.doi.org/10.1002/jssc.200700451] [PMID: 18428187]
[75]
Fedotova, O.; Teixeira, L.; Alvelos, H. Software effort estimation with multiple linear regression: Review and practical application. J. Inf. Sci. Eng., 2013, 29(5), 925-945.
[76]
Giacomino, A.; Abollino, O.; Malandrino, M.; Mentasti, E. The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques. Anal. Chim. Acta, 2011, 688(2), 122-139.
[http://dx.doi.org/10.1016/j.aca.2010.12.028] [PMID: 21334477]
[77]
Yang, Z.R. Biological applications of support vector machines. Brief. Bioinform., 2004, 5(4), 328-338.
[http://dx.doi.org/10.1093/bib/5.4.328] [PMID: 15606969]
[78]
Ivanciuc, O. Applications of support vector machines in chemistry. Rev. Comput. Chem., 2007, 23, 291.
[http://dx.doi.org/10.1002/9780470116449.ch6]
[79]
Lin, X.; Yang, F.; Zhou, L.; Yin, P.; Kong, H.; Xing, W.; Lu, X.; Jia, L.; Wang, Q.; Xu, G. A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 910, 149-155.
[http://dx.doi.org/10.1016/j.jchromb.2012.05.020] [PMID: 22682888]
[80]
Chen, J.; Yang, T.; Cramer, S.M. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems. J. Chromatogr. A, 2008, 1177(2), 207-214.
[http://dx.doi.org/10.1016/j.chroma.2007.11.003] [PMID: 18048048]
[81]
Bard, B.; Carrupt, P.A.; Martel, S. Determination of alkane/water partition coefficients of polar compounds using hydrophilic interaction chromatography. J. Chromatogr. A, 2012, 1260, 164-168.
[http://dx.doi.org/10.1016/j.chroma.2012.08.094] [PMID: 22995195]
[82]
Voicu, V.; Sârbu, C.; Tache, F.; Micăle, F.; Rădulescu, Ş.F.; Sakurada, K.; Ohta, H.; Medvedovici, A. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): Application to a representative set of pyridinium oximes. Talanta, 2014, 122, 172-179.
[http://dx.doi.org/10.1016/j.talanta.2014.01.048] [PMID: 24720980]
[83]
Kouskoura, M.G.; Piteni, A.I.; Markopoulou, C.K. A new descriptor via bio-mimetic chromatography and modeling for the blood brain barrier (Part II). J. Pharm. Biomed. Anal., 2019, 164, 808-817.
[http://dx.doi.org/10.1016/j.jpba.2018.05.021] [PMID: 29884296]