A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer

Page: [841 - 858] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.

[1]
Stoletov K, Beatty PH, Lewis JD. Novel therapeutic targets for cancer metastasis. Expert Rev Anticancer Ther 2020; 20(2): 97-109.
[http://dx.doi.org/10.1080/14737140.2020.1718496] [PMID: 31997674]
[2]
Lynch HT, Rubinstein WS, Locker GY. Cancer in Jews: Introduction and overview. Fam Cancer 2004; 3(3-4): 177-92.
[http://dx.doi.org/10.1007/s10689-004-9538-y] [PMID: 15516840]
[3]
Schiller JT, Lowy DR. An introduction to virus infections and human cancer. Recent Results Cancer Res 2021; 217: 1-11.
[http://dx.doi.org/10.1007/978-3-030-57362-1_1] [PMID: 33200359]
[4]
Dawood S, Austin L, Cristofanilli M. Cancer stem cells: Implications for cancer therapy. Oncology 2014; 28(12): 1101-1107, 1110.
[PMID: 25510809]
[5]
Dunn BK, Umar A, Richmond E. Introduction: Cancer chemoprevention and its context. Semin Oncol 2016; 43(1): 19-21.
[http://dx.doi.org/10.1053/j.seminoncol.2015.11.002] [PMID: 26970121]
[6]
Percy C, Young JL Jr, Muir C, et al. Introduction. Cancer 1995; 75(S1): 140-6.
[http://dx.doi.org/10.1002/1097-0142(19950101)75:1+<140::AID-CNCR2820751303>3.0.CO;2-H] [PMID: 8000992]
[7]
Boffetta P, Kogevinas M. Introduction: Epidemiologic research and prevention of occupational cancer in Europe. Environ Health Perspect 1999; 107(2): 229-31.
[http://dx.doi.org/10.1289/ehp.99107s2229]
[8]
Ganem G. Management of patients with cancer. Introduction. Bull Cancer 2010; 97(10): 1151-2.
[PMID: 21038523]
[9]
Singh R, Deshmukh R. Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022; 74: 103586.
[http://dx.doi.org/10.1016/j.jddst.2022.103586]
[10]
Meinhold-Heerlein I, Fotopoulou C, Harter P, et al. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet 2016; 293(4): 695-700.
[http://dx.doi.org/10.1007/s00404-016-4035-8] [PMID: 26894303]
[11]
Lewandowska AM, Lewandowski T, Rudzki M, Rudzki S, Laskowska B. Cancer prevention: Review paper. Ann Agric Environ Med 2021; 28(1): 11-9.
[PMID: 33775063]
[12]
Deshmukh R. Andrographis paniculata and Andrographolide: A snapshot on recent advances in nano drug delivery systems against cancer. Curr Drug Deliv 2023; 21(5): 631-44.
[13]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[14]
Deshmukh R, Singh R. DNA nanobots: Emerging customized nanomedicine in oncology. Curr Drug Deliv 2023; 20(2): 111-26.
[http://dx.doi.org/10.2174/1567201819666220331094812] [PMID: 35362383]
[15]
Rayman MP. Selenoproteins and human health: Insights from epidemiological data. Biochim Biophys Acta Gen Subj 2009; 1790(11): 1533-40.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.014] [PMID: 19327385]
[16]
Valdiglesias V, Pásaro E, Méndez J, Laffon B. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: A review. Arch Toxicol 2010; 84(5): 337-51.
[http://dx.doi.org/10.1007/s00204-009-0505-0] [PMID: 20033805]
[17]
Kong H, Yang J, Zhang Y, Fang Y, Nishinari K, Phillips GO. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol 2014; 65: 155-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.011] [PMID: 24418338]
[18]
Yazdi MH, Mahdavi M, Varastehmoradi B, Faramarzi MA, Shahverdi AR. The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: An in vivo study. Biol Trace Elem Res 2012; 149(1): 22-8.
[http://dx.doi.org/10.1007/s12011-012-9402-0] [PMID: 22476951]
[19]
Li Q, Chen T, Yang F, Liu J, Zheng W. Facile and controllable one-step fabrication of selenium nanoparticles assisted by l-cysteine. Mater Lett 2010; 64(5): 614-7.
[http://dx.doi.org/10.1016/j.matlet.2009.12.019]
[20]
Langi B, Shah C, Singh K, Chaskar A, Kumar M, Bajaj PN. Ionic liquid-induced synthesis of selenium nanoparticles. Mater Res Bull 2010; 45(6): 668-71.
[http://dx.doi.org/10.1016/j.materresbull.2010.03.005]
[21]
Dias MF, Figueiredo BCP, Teixeira-Neto J, Guerra MCA, Fialho SL, Silva Cunha A. In vivo evaluation of antitumoral and antiangiogenic effect of imiquimod-loaded polymeric nanoparticles. Biomed Pharmacother 2018; 103: 1107-14.
[http://dx.doi.org/10.1016/j.biopha.2018.04.079] [PMID: 29715754]
[22]
Ramamurthy C, Sampath KS, Arunkumar P, et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 2013; 36(8): 1131-9.
[http://dx.doi.org/10.1007/s00449-012-0867-1] [PMID: 23446776]
[23]
Gorain B, Choudhury H, Pandey M, Kesharwani P. Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater Sci Eng C 2018; 91: 868-80.
[http://dx.doi.org/10.1016/j.msec.2018.05.054] [PMID: 30033322]
[24]
Zhang Y, Li X, Huang Z, Zheng W, Fan C, Chen T. Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomedicine 2013; 9(1): 74-84.
[http://dx.doi.org/10.1016/j.nano.2012.04.002] [PMID: 22542821]
[25]
Huang Y, He L, Liu W, et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 2013; 34(29): 7106-16.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.067] [PMID: 23800743]
[26]
Chen T, Wong YS, Zheng W, Bai Y, Huang L. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces 2008; 67(1): 26-31.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.010] [PMID: 18805679]
[27]
Zheng W, Cao C, Liu Y, et al. Multifunctional polyamidoamine- modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance. Acta Biomater 2015; 11: 368-80.
[http://dx.doi.org/10.1016/j.actbio.2014.08.035] [PMID: 25204523]
[28]
Xie Q, Deng W, Yuan X, et al. Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. Eur J Pharm Biopharm 2018; 122: 87-95.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.010] [PMID: 29032193]
[29]
Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 2011; 6: 1553-8.
[PMID: 21845045]
[30]
Dhanjal S, Cameotra S. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 2010; 9(1): 52.
[http://dx.doi.org/10.1186/1475-2859-9-52] [PMID: 20602763]
[31]
Chen Y, Jia Y, Song W, Zhang L. Therapeutic potential of nitrogen mustard based hybrid molecules. Front Pharmacol 2018; 9: 1453.
[http://dx.doi.org/10.3389/fphar.2018.01453] [PMID: 30618747]
[32]
Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: Golden anniversary. Nat Rev Clin Oncol 2009; 6(11): 638-47.
[http://dx.doi.org/10.1038/nrclinonc.2009.146] [PMID: 19786984]
[33]
Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol 2014; 740: 364-78.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[34]
Alcindor T, Beauger N. Oxaliplatin: A review in the era of molecularly targeted therapy. Curr Oncol 2011; 18(1): 18-25.
[http://dx.doi.org/10.3747/co.v18i1.708] [PMID: 21331278]
[35]
Rabaiotti E, Girardelli S, Valsecchi L, et al. Carboplatin use in pregnancy for stage IB3 cervical cancer: Case report and review of the literature. J Adolesc Young Adult Oncol 2020; 9(3): 445-8.
[http://dx.doi.org/10.1089/jayao.2019.0118] [PMID: 31794686]
[36]
Cronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am 1997; 23(4): 739-55.
[http://dx.doi.org/10.1016/S0889-857X(05)70358-6] [PMID: 9361153]
[37]
Cronstein BN, Aune TM. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat Rev Rheumatol 2020; 16(3): 145-54.
[http://dx.doi.org/10.1038/s41584-020-0373-9] [PMID: 32066940]
[38]
Longley DB, Harkin DP, Johnston PG. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3(5): 330-8.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[39]
Walko CM, Lindley C. Capecitabine: A review. Clin Ther 2005; 27(1): 23-44.
[http://dx.doi.org/10.1016/j.clinthera.2005.01.005] [PMID: 15763604]
[40]
Alemany R. Oncolytic adenoviruses in cancer treatment. Biomedicines 2014; 2(1): 36-49.
[http://dx.doi.org/10.3390/biomedicines2010036] [PMID: 28548059]
[41]
Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015; 6: 157-7.
[http://dx.doi.org/10.3389/fgene.2015.00157] [PMID: 25954303]
[42]
Dumontet C, Jordan MA. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010; 9(10): 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[43]
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13(2): 275-84.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[44]
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019; 9(12): 789.
[http://dx.doi.org/10.3390/biom9120789] [PMID: 31783552]
[45]
Assi T, Rassy E, Farhat F, Kattan C, Kattan J. Docetaxel rechallenge in patients with metastatic prostate cancer: A comprehensive review. Oncol Res Treat 2020; 43(6): 299-306.
[http://dx.doi.org/10.1159/000506693] [PMID: 32380503]
[46]
Tremont A, Lu J, Cole JT. Endocrine therapy for early breast cancer: Updated review. Ochsner J 2017; 17(4): 405-11.
[PMID: 29230126]
[47]
Rody A, Loibl S, von Minckwitz G, Kaufmann M. Use of goserelin in the treatment of breast cancer. Expert Rev Anticancer Ther 2005; 5(4): 591-604.
[http://dx.doi.org/10.1586/14737140.5.4.591] [PMID: 16111461]
[48]
Wibowo E, Pollock PA, Hollis N, Wassersug RJ. Tamoxifen in men: A review of adverse events. Andrology 2016; 4(5): 776-88.
[http://dx.doi.org/10.1111/andr.12197] [PMID: 27152880]
[49]
Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012; 12(4): 278-87.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[50]
Mazzarella L, Guida A, Curigliano G. Cetuximab for treating non-small cell lung cancer. Expert Opin Biol Ther 2018; 18(4): 483-93.
[http://dx.doi.org/10.1080/14712598.2018.1452906] [PMID: 29534625]
[51]
Hartmann J, Haap M, Kopp HG, Lipp HP. Tyrosine kinase inhibitors: A review on pharmacology, metabolism and side effects. Curr Drug Metab 2009; 10(5): 470-81.
[http://dx.doi.org/10.2174/138920009788897975] [PMID: 19689244]
[52]
Ferrari SM, Centanni M, Virili C, et al. Sunitinib in the treatment of thyroid cancer. Curr Med Chem 2019; 26(6): 963-72.
[http://dx.doi.org/10.2174/0929867324666171006165942] [PMID: 28990511]
[53]
Ma F, Ouyang Q, Li W, et al. Pyrotinib or lapatinib combined with capecitabine in HER2–positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: A randomized, phase II study. J Clin Oncol 2019; 37(29): 2610-9.
[http://dx.doi.org/10.1200/JCO.19.00108] [PMID: 31430226]
[54]
Naidoo J, Page DB, Wolchok JD. Immune modulation for cancer therapy. Br J Cancer 2014; 111(12): 2214-9.
[http://dx.doi.org/10.1038/bjc.2014.348] [PMID: 25211661]
[55]
Henriksen A, Dyhl-Polk A, Chen I, Nielsen D. Checkpoint inhibitors in pancreatic cancer. Cancer Treat Rev 2019; 78: 17-30.
[http://dx.doi.org/10.1016/j.ctrv.2019.06.005] [PMID: 31325788]
[56]
Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015; 88(1054): 20150207.
[http://dx.doi.org/10.1259/bjr.20150207] [PMID: 25969868]
[57]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomed 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[58]
Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine 2011; 6(5): 815-35.
[http://dx.doi.org/10.2217/nnm.11.79] [PMID: 21793674]
[59]
Peng D, Zhang J, Liu Q, Taylor EW. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem 2007; 101(10): 1457-63.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.06.021] [PMID: 17664013]
[60]
Yang F, Tang Q, Zhong X, et al. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomed 2012; 7: 835-44.
[PMID: 22359460]
[61]
Soumya RS, Vineetha VP, Reshma PL, Raghu KG. Preparation and characterization of selenium incorporated guar gum nanoparticle and its interaction with H9c2 cells. PLoS One 2013; 8(9): e74411.
[http://dx.doi.org/10.1371/journal.pone.0074411] [PMID: 24098647]
[62]
Zhang C, Zhai X, Zhao G, Ren F, Leng X. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydr Polym 2015; 134: 158-66.
[http://dx.doi.org/10.1016/j.carbpol.2015.07.065] [PMID: 26428112]
[63]
Chen H, Shin D-W, Nam J-G, Kwon K-W, Yoo J-B. Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater Res Bull 2010; 45(6): 699-704.
[http://dx.doi.org/10.1016/j.materresbull.2010.02.016]
[64]
Dufailly V, Noël L, Guérin T. Determination of chromium, iron and selenium in foodstuffs of animal origin by collision cell technology, inductively coupled plasma mass spectrometry (ICP-MS), after closed vessel microwave digestion. Anal Chim Acta 2006; 565(2): 214-21.
[http://dx.doi.org/10.1016/j.aca.2006.02.046]
[65]
Zhang J, Taylor EW, Wan X, Peng D. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. Int J Nanomed 2012; 7: 815-25.
[http://dx.doi.org/10.2147/IJN.S28538] [PMID: 22359458]
[66]
Zhang J, Wang H, Bao Y, Zhang L. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci 2004; 75(2): 237-44.
[http://dx.doi.org/10.1016/j.lfs.2004.02.004] [PMID: 15120575]
[67]
Pardechi A, Tabeidian SA, Habibian M. Comparative assessment of sodium selenite, selenised yeast and nanosized elemental selenium on performance response, immunity and antioxidative function of broiler chickens. Ital J Anim Sci 2020; 19(1): 1108-21.
[http://dx.doi.org/10.1080/1828051X.2020.1819896]
[68]
Gates B. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater 2002; 2011: 1-4.
[69]
Lin W, Zhang J, Xu JF, Pi J. The advancing of selenium nanoparticles against infectious diseases. Front Pharmacol 2021; 12: 682284.
[http://dx.doi.org/10.3389/fphar.2021.682284] [PMID: 34393776]
[70]
Niu YF. Selenium nanoparticles synthesized via a facile hydrothermal method. Advan Mat Res 2012; 535-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.535-537.289]
[71]
Shar A. Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig J Nanomater Biostruct 2019; 14: 867-72.
[72]
Liang T. Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech 2020; 10(1): 23-3.
[http://dx.doi.org/10.1007/s13205-019-1999-7]
[73]
Zheng S, Li X, Zhang Y, et al. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int J Nanomed 2012; 7: 3939-49.
[PMID: 22915845]
[74]
Zou J, Su S, Chen Z, et al. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif Cells Nanomed Biotechnol 2019; 47(1): 3456-64.
[http://dx.doi.org/10.1080/21691401.2019.1626863] [PMID: 31469318]
[75]
Cui D, Yan C, Miao J, et al. Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater Sci Eng C 2018; 90: 104-12.
[http://dx.doi.org/10.1016/j.msec.2018.04.048] [PMID: 29853073]
[76]
Hu S, Hu W, Li Y, et al. Construction and structure-activity mechanism of polysaccharide nano-selenium carrier. Carbohydr Polym 2020; 236: 116052.
[http://dx.doi.org/10.1016/j.carbpol.2020.116052] [PMID: 32172867]
[77]
Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomed 2017; 12: 4527-39.
[http://dx.doi.org/10.2147/IJN.S129958] [PMID: 28684913]
[78]
Pi J, Jin H, Liu R, et al. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl Microbiol Biotechnol 2013; 97(3): 1051-62.
[http://dx.doi.org/10.1007/s00253-012-4359-7] [PMID: 22945264]
[79]
Guisbiers G, Wang Q, Khachatryan E, et al. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int J Nanomed 2016; 11: 3731-6.
[http://dx.doi.org/10.2147/IJN.S106289] [PMID: 27563240]
[80]
Altuwirqi RM, Albakri AS, Al-Jawhari H, Ganash EA. Green synthesis of copper oxide nanoparticles by pulsed laser ablation in spinach leaves extract. Optik 2020; 219: 165280.
[http://dx.doi.org/10.1016/j.ijleo.2020.165280]
[81]
Menazea AA, Ismail AM, Awwad NS, Ibrahium HA. Physical characterization and antibacterial activity of PVA/Chitosan matrix doped by selenium nanoparticles prepared via one-pot laser ablation route. J Mater Res Technol 2020; 9(5): 9598-606.
[http://dx.doi.org/10.1016/j.jmrt.2020.06.077]
[82]
Xuan G, Zhang M, Chen Y, Huang S, Lee I. Design and characterization of a cancer-targeted drug co-delivery system composed of liposomes and selenium nanoparticles. J Nanosci Nanotechnol 2020; 20(9): 5295-304.
[http://dx.doi.org/10.1166/jnn.2020.17882] [PMID: 32331095]
[83]
Vekariya KK, Kaur J, Tikoo K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine 2012; 8(7): 1125-32.
[http://dx.doi.org/10.1016/j.nano.2011.12.003] [PMID: 22197727]
[84]
Gautam PK, Kumar S, Tomar MS, et al. Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton’s lymphoma proliferation. Biochem Biophys Rep 2017; 12: 172-84.
[http://dx.doi.org/10.1016/j.bbrep.2017.09.005] [PMID: 29090279]
[85]
Xia Y, Xiao M, Zhao M, et al. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater Sci Eng C 2020; 106: 110100.
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[86]
Xia Y, Guo M, Xu T, et al. siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int J Nanomed 2018; 13: 1539-52.
[http://dx.doi.org/10.2147/IJN.S157519] [PMID: 29588583]
[87]
Xia Y, Zhong J, Zhao M, et al. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 2019; 26(1): 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[88]
Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 2018; 416: 87-93.
[http://dx.doi.org/10.1016/j.canlet.2017.12.023] [PMID: 29253524]
[89]
Bidkar AP, Sanpui P, Ghosh SS. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine 2017; 12(21): 2641-51.
[http://dx.doi.org/10.2217/nnm-2017-0189] [PMID: 29043926]
[90]
Pillay NS, Daniels A, Singh M. Folate-targeted transgenic activity of dendrimer functionalized selenium nanoparticles in vitro. Int J Mol Sci 2020; 21(19): 7177.
[http://dx.doi.org/10.3390/ijms21197177] [PMID: 33003288]
[91]
Xia Y, Tang G, Wang C, et al. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv 2020; 27(1): 15-25.
[http://dx.doi.org/10.1080/10717544.2019.1667452] [PMID: 31830840]
[92]
Barbanente A, Nadar RA, Esposti LD, et al. Platinum-loaded, selenium-doped hydroxyapatite nanoparticles selectively reduce proliferation of prostate and breast cancer cells co-cultured in the presence of stem cells. J Mater Chem B Mater Biol Med 2020; 8(14): 2792-804.
[http://dx.doi.org/10.1039/D0TB00390E] [PMID: 32159578]
[93]
Ferro C, Florindo HF, Santos HA. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv Healthc Mater 2021; 10(16): 2100598.
[http://dx.doi.org/10.1002/adhm.202100598] [PMID: 34121366]
[94]
Wang C, Xia Y, Huo S, et al. Silencing of MEF2D by siRNA loaded selenium nanoparticles for ovarian cancer therapy. Int J Nanomed 2020; 15: 9759-70.
[http://dx.doi.org/10.2147/IJN.S270441] [PMID: 33304100]
[95]
Spyridopoulou K, Aindelis G, Pappa A, Chlichlia K. Anticancer activity of biogenic selenium nanoparticles: Apoptotic and immunogenic cell death markers in colon cancer cells. Cancers 2021; 13(21): 5335.
[http://dx.doi.org/10.3390/cancers13215335] [PMID: 34771499]
[96]
Spyridopoulou K, Tiptiri-Kourpeti A, Lampri E, et al. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci Rep 2017; 7(1): 3782.
[http://dx.doi.org/10.1038/s41598-017-03971-8] [PMID: 28630399]
[97]
Zhao G, Wu X, Chen P, Zhang L, Yang CS, Zhang J. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic Biol Med 2018; 126: 55-66.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.07.017] [PMID: 30056082]
[98]
Barbanente A, Palazzo B, Esposti LD, et al. Selenium-doped hydroxyapatite nanoparticles for potential application in bone tumor therapy. J Inorg Biochem 2021; 215: 111334.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111334] [PMID: 33341588]
[99]
Wadhwani S, Gorain M, Banerjee P, et al. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomed 2017; 12: 6841-55.
[http://dx.doi.org/10.2147/IJN.S139212] [PMID: 28979122]
[100]
Sonkusre P, Cameotra SS. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J Nanobiotechnol 2017; 15(1): 43.
[http://dx.doi.org/10.1186/s12951-017-0276-3] [PMID: 28592284]
[101]
Zhang J. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin. Int J Biol Macromol 2017; 107: 1406-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.084] [PMID: 29017880]
[102]
Rajendran I, Ponrasu T, Rajaram R, Suguna L. The apoptotic effect of Ferulic acid-synthesized gold nanoparticles against human epidermoid carcinoma (A431) cells via activation of caspase-3 pathway. J Drug Deliv Sci Technol 2021; 63: 102478.
[http://dx.doi.org/10.1016/j.jddst.2021.102478]
[103]
Shahverdi AR, Shahverdi F, Faghfuri E, et al. Characterization of folic acid surface-coated selenium nanoparticles and corresponding in vitro and in vivo effects against breast cancer. Arch Med Res 2018; 49(1): 10-7.
[http://dx.doi.org/10.1016/j.arcmed.2018.04.007] [PMID: 29699810]
[104]
Sathiyaseelan A, Saravanakumar K, Manivasagan P, Jeong MS, Jang ES, Wang MH. Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohydr Polym 2022; 280: 119021.
[http://dx.doi.org/10.1016/j.carbpol.2021.119021] [PMID: 35027124]
[105]
Qiu WY, Wang YY, Wang M, Yan JK. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf B Biointerfaces 2018; 170: 692-700.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.003] [PMID: 29986266]
[106]
Huang G, Liu Z, He L, et al. Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomater Sci 2018; 6(9): 2508-17.
[http://dx.doi.org/10.1039/C8BM00670A] [PMID: 30091749]
[107]
Sheikhalipour M, Esmaielpour B, Behnamian M, et al. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 2021; 11(3): 684.
[http://dx.doi.org/10.3390/nano11030684] [PMID: 33803416]
[108]
Manojlović-Stojanoski M, Borković-Mitić S, Nestorović N, et al. The effects of BSA-stabilized selenium nanoparticles and sodium selenite supplementation on the structure, oxidative stress parameters and selenium redox biology in rat placenta. Int J Mol Sci 2022; 23(21): 13068.
[http://dx.doi.org/10.3390/ijms232113068] [PMID: 36361856]
[109]
Filipović N, Ušjak D, Milenković MT, et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front Bioeng Biotechnol 2021; 8: 624621.
[http://dx.doi.org/10.3389/fbioe.2020.624621] [PMID: 33569376]
[110]
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 2019; 111: 802-12.
[http://dx.doi.org/10.1016/j.biopha.2018.12.146] [PMID: 30616079]
[111]
Pi J, Yang F, Jin H, et al. Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg Med Chem Lett 2013; 23(23): 6296-303.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.078] [PMID: 24140445]
[112]
Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 2010; 56(1): 7-15.
[http://dx.doi.org/10.1042/BA20100042] [PMID: 20408816]
[113]
Wu H, Zhu H, Li X, et al. Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: An effect enhanced by polysaccharide-protein complexes from Polyporus rhinocerus. J Agric Food Chem 2013; 61(41): 9859-66.
[http://dx.doi.org/10.1021/jf403564s] [PMID: 24053442]
[114]
Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquat Toxicol 2008; 89(4): 251-6.
[http://dx.doi.org/10.1016/j.aquatox.2008.07.008] [PMID: 18768225]
[115]
Thangarathinam J, Philips MF, Dhayabaran V, et al. Facile synthesis of Co3O4@SeNPs grafted MWCNTs nanocomposite for high energy density supercapacitor and antimicrobial applications. Chemical Physics Impact 2023; 7: 100253.
[http://dx.doi.org/10.1016/j.chphi.2023.100253]
[116]
Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006; 317(3): 1372-81.
[http://dx.doi.org/10.1124/jpet.106.101154] [PMID: 16547167]
[117]
Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S. Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjug Chem 2010; 21(3): 496-504.
[http://dx.doi.org/10.1021/bc900422j] [PMID: 20163170]
[118]
Sanpui P, Chattopadhyay A, Ghosh SS. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 2011; 3(2): 218-28.
[http://dx.doi.org/10.1021/am100840c] [PMID: 21280584]
[119]
Sahu A, Kasoju N, Bora U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 2008; 9(10): 2905-12.
[http://dx.doi.org/10.1021/bm800683f] [PMID: 18785706]
[120]
Jiang W, Fu Y, Yang F, et al. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS Appl Mater Interfaces 2014; 6(16): 13738-48.
[http://dx.doi.org/10.1021/am5031962] [PMID: 25073123]
[121]
Lin LS, Cong ZX, Li J, et al. Graphitic-phase C3N4 nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J Mater Chem B Mater Biol Med 2014; 2(8): 1031-7.
[http://dx.doi.org/10.1039/c3tb21479f] [PMID: 32261621]
[122]
Tao C, Rouhi J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. Environ Res 2023; 238(Pt 1): 117113.
[http://dx.doi.org/10.1016/j.envres.2023.117113] [PMID: 37696325]
[123]
Kano MR, Bae Y, Iwata C, et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc Natl Acad Sci 2007; 104(9): 3460-5.
[http://dx.doi.org/10.1073/pnas.0611660104] [PMID: 17307870]
[124]
Choi KY, Yoon HY, Kim JH, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011; 5(11): 8591-9.
[http://dx.doi.org/10.1021/nn202070n] [PMID: 21967065]
[125]
Cho HS, Dong Z, Pauletti GM, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: A multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 2010; 4(9): 5398-404.
[http://dx.doi.org/10.1021/nn101000e] [PMID: 20707381]
[126]
Karimi F, Karimi-Maleh H, Rouhi J, et al. Revolutionizing cancer monitoring with carbon-based electrochemical biosensors. Environ Res 2023; 239(Pt 2): 117368.
[http://dx.doi.org/10.1016/j.envres.2023.117368] [PMID: 37827366]
[127]
Barani A, Alizadeh SR, Ebrahimzadeh MA. A comprehensive review on catalytic activities of green-synthesized selenium nanoparticles on dye removal for wastewater treatment. Water 2023; 15(18): 3295.
[http://dx.doi.org/10.3390/w15183295]
[128]
Tamanna IS, Gayathri R, Sankaran K, Veeraraghavan VP, Francis AP. Eco-friendly synthesis of selenium nanoparticles using orthosiphon stamineus leaf extract and its biocompatibility studies. Bionanoscience 2024; 14(1): 37-44.
[http://dx.doi.org/10.1007/s12668-023-01277-w]
[129]
Hendriksen RS, Munk P, Njage P, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 2019; 10(1): 1124.
[http://dx.doi.org/10.1038/s41467-019-08853-3] [PMID: 30850636]
[130]
Chen G, Yang F, Fan S, et al. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Front Immunol 2022; 13: 956181.
[http://dx.doi.org/10.3389/fimmu.2022.956181] [PMID: 35958612]