Current Reviews in Clinical and Experimental Pharmacology

Author(s): Mohammadjavad Sotoudeheian, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Navid Farahmandian, Reza Azarbad and Hamidreza Pazoki Toroudi*

DOI: 10.2174/0127724328281178240225082456

DownloadDownload PDF Flyer Cite As
Targeting SIRT1 by Scopoletin to Inhibit XBB.1.5 COVID-19 Life Cycle

Page: [4 - 13] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Natural products have historically driven pharmaceutical discovery, but their reliance has diminished with synthetic drugs. Approximately 35% of medicines originate from natural products. Scopoletin, a natural coumarin compound found in herbs, exhibits antioxidant, hepatoprotective, antiviral, and antimicrobial properties through diverse intracellular signaling mechanisms. Furthermore, it also enhances the activity of antioxidants. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes viral pneumonia through cytokine storms and systemic inflammation. Cellular autophagy pathways play a role in coronavirus replication and inflammation. The Silent Information Regulator 1 (SIRT1) pathway, linked to autophagy, protects cells via FOXO3, inhibits apoptosis, and modulates SIRT1 in type-II epithelial cells. SIRT1 activation by adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) enhances the autophagy cascade. This pathway holds therapeutic potential for alveolar and pulmonary diseases and is crucial in lung inflammation. Angiotensin-converting enzyme 2 (ACE-2) activation, inhibited by reduced expression, prevents COVID-19 virus entry into type-II epithelial cells. The coronavirus disease 2019 (COVID-19) virus binds ACE-2 to enter into the host cells, and XBB.1.5 COVID-19 displays high ACE-2-binding affinity. ACE-2 expression in pneumocytes is regulated by signal transducers and activators of transcription-3 (STAT3), which can increase COVID-19 virus replication. SIRT1 regulates STAT3, and the SIRT1/STAT3 pathway is involved in lung diseases. Therapeutic regulation of SIRT1 protects the lungs from inflammation caused by viral-mediated oxidative stress. Scopoletin, as a modulator of the SIRT1 cascade, can regulate autophagy and inhibit the entry and life cycle of XBB.1.5 COVID-19 in host cells.

Keywords: Gelseminic, coumarin, anti-inflammatory, antioxidant, autophagy, ACE2.

Graphical Abstract

[1]
Alhmoud E, Abdelsamad O, Soaly E, et al. Anticoagulation clinic drive-up service during COVID-19 pandemic in Qatar. J Thromb Thrombolysis 2021; 51: 297-300.
[http://dx.doi.org/10.1007/s11239-020-02206-4]
[2]
Barnes GD, Burnett A, Allen A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis 2020; 50(1): 72-81.
[http://dx.doi.org/10.1007/s11239-020-02138-z] [PMID: 32440883]
[3]
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20(5): 533-4.
[http://dx.doi.org/10.1016/S1473-3099(20)30120-1] [PMID: 32087114]
[4]
Aliabadi F, Ajami M, Pazoki-Toroudi H. Why does COVID‐19 pathology have several clinical forms? BioEssays 2020; 42(12): 2000198.
[http://dx.doi.org/10.1002/bies.202000198] [PMID: 33174637]
[5]
Farasati Far B, Bokov D, Widjaja G, et al. Metronidazole, acyclovir and tetrahydrobiopterin may be promising to treat COVID-19 patients, through interaction with interleukin-12. J Biomol Struct Dyn 2023; 41(10): 4253-71.
[http://dx.doi.org/10.1080/07391102.2022.2064917] [PMID: 35446232]
[6]
Ganesan A. The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 2008; 12(3): 306-17.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.016] [PMID: 18423384]
[7]
Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011; 46(10): 4769-807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[8]
Ren J, Yang L, Qiu S, Zhang AH, Wang XJ. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine. Trends Endocrinol Metab 2023; 34(3): 146-57.
[http://dx.doi.org/10.1016/j.tem.2023.01.005] [PMID: 36710216]
[9]
Calixto JB. The role of natural products in modern drug discovery. An Acad Bras Cienc 2019; 91 (Suppl. 3): e20190105.
[http://dx.doi.org/10.1590/0001-3765201920190105] [PMID: 31166478]
[10]
Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis 2022; 9(1): 80-94.
[http://dx.doi.org/10.1016/j.gendis.2021.03.007] [PMID: 35005109]
[11]
Sotoudeheian M, Hoseini S, Mirahmadi SMS, Farahmandian N, Pazoki-Toroudi H. Oleuropein as a therapeutic agent for non-alcoholic fatty liver disease during hepatitis C. Rev Bras Farmacogn 2023; 33(4): 688-95.
[http://dx.doi.org/10.1007/s43450-023-00396-5]
[12]
Zhu Y, Jiang Z, Liu L, et al. Scopoletin reactivates latent HIV-1 by inducing NF-κB expression without global T cell activation. Int J Mol Sci 2023; 24(16): 12649.
[http://dx.doi.org/10.3390/ijms241612649] [PMID: 37628826]
[13]
Ajami M, Sotoudeheian M, Houshiar-Rad A, et al. Quercetin may reduce the risk of developing the symptoms of COVID-19. Avicenna J Phytomed 2023.
[http://dx.doi.org/10.22038/AJP.2023.22920]
[14]
Abdelmohsen UR, Albohy A, Abdulrazik BS, et al. Natural coumarins as potential anti-SARS-CoV-2 agents supported by docking analysis. RSC Advances 2021; 11(28): 16970-9.
[http://dx.doi.org/10.1039/D1RA01989A] [PMID: 35479715]
[15]
Mirzay-Razaz J, Hassanghomi M, Ajami M, Koochakpoor G, Hosseini-Esfahani F, Mirmiran P. Effective food hygiene principles and dietary intakes to reinforce the immune system for prevention of COVID-19: A systematic review. BMC Nutr 2022; 8(1): 53.
[http://dx.doi.org/10.1186/s40795-022-00546-3] [PMID: 35655264]
[16]
Miller K, McGrath ME, Hu Z, et al. Coronavirus interactions with the cellular autophagy machinery. Autophagy 2020; 16(12): 2131-9.
[http://dx.doi.org/10.1080/15548627.2020.1817280] [PMID: 32964796]
[17]
Diao F, Jiang C, Sun Y, et al. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog 2023; 19(3): e1011295.
[http://dx.doi.org/10.1371/journal.ppat.1011295] [PMID: 36972295]
[18]
Jassey A, Jackson WT. Viruses and autophagy: Bend, but don’t break. Nat Rev Microbiol 2023; 1-13.
[http://dx.doi.org/10.1038/s41579-023-00995-y] [PMID: 38102460]
[19]
Morris G, Athan E, Walder K, et al. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19? Life Sci 2020; 262: 118541.
[http://dx.doi.org/10.1016/j.lfs.2020.118541] [PMID: 33035581]
[20]
Delorme-Axford E, Klionsky DJ. Highlights in the fight against COVID-19: Does autophagy play a role in SARS-CoV-2 infection?. Taylor & Francis 2020; pp. 2123-7.
[http://dx.doi.org/10.1080/15548627.2020.1844940]
[21]
Qu Y, Wang X, Zhu Y, et al. ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication. Front Cell Dev Biol 2021; 9: 716208.
[http://dx.doi.org/10.3389/fcell.2021.716208] [PMID: 34386498]
[22]
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous roles of autophagy and proteasome in neurodegenerative proteinopathies. Int J Mol Sci 2020; 21(8): 3028.
[http://dx.doi.org/10.3390/ijms21083028] [PMID: 32344772]
[23]
Limanaqi F, Busceti CL, Biagioni F, et al. Cell clearing systems as targets of polyphenols in viral infections: Potential implications for COVID-19 pathogenesis. Antioxidants 2020; 9(11): 1105.
[http://dx.doi.org/10.3390/antiox9111105] [PMID: 33182802]
[24]
Broussy S, Laaroussi H, Vidal M. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat). J Enzyme Inhib Med Chem 2020; 35(1): 1124-36.
[http://dx.doi.org/10.1080/14756366.2020.1758691] [PMID: 32366137]
[25]
Yoo A, Narayan VP, Hong EY, Whang WK, Park T. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver. Sci Rep 2017; 7(1): 2251.
[http://dx.doi.org/10.1038/s41598-017-02416-6] [PMID: 28533555]
[26]
Alossaimi MA, Alzeer MA, Abdel Bar FM, ElNaggar MH. Pelargonium sidoides root extract: Simultaneous HPLC separation, determination, and validation of selected biomolecules and evaluation of SARS-CoV-2 inhibitory activity. Pharmaceuticals 2022; 15(10): 1184.
[http://dx.doi.org/10.3390/ph15101184] [PMID: 36297296]
[27]
Sun W, Shahrajabian MH. Therapeutic potential of phenolic compounds in medicinal plants—natural health products for human health. Molecules 2023; 28(4): 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[28]
He BT, Liu ZH, Li BZ, Yuan YJ. Advances in biosynthesis of scopoletin. Microb Cell Fact 2022; 21(1): 152.
[http://dx.doi.org/10.1186/s12934-022-01865-7] [PMID: 35918699]
[29]
Firmansyah A, Winingsih W, Manobi JDY. Review of scopoletin: Isolation, analysis process, and pharmacological activity. Biointerface Res Appl Chem 2020; 11(4): 12006-19.
[http://dx.doi.org/10.33263/BRIAC114.1200612019]
[30]
Khan NMU, Hossain MS. Scopoletin and Î2-sitosterol glucoside from roots of Ipomoea digitata. J Pharmacogn Phytochem 2015; 4: 5-7.
[31]
Gnonlonfin GJB, Sanni A, Brimer L. Review scopoletin–a coumarin phytoalexin with medicinal properties. Crit Rev Plant Sci 2012; 31(1): 47-56.
[http://dx.doi.org/10.1080/07352689.2011.616039]
[32]
Tripathi N, Singh R, Lepcha STS, et al. Isolation of scopoletin via LC-MS in roots of Girardinia diversifolia. Mater Today Proc 2023; 80: 363-6.
[http://dx.doi.org/10.1016/j.matpr.2023.02.372]
[33]
PubChem Information NCfB PubChem Compound Summary for CID 5280460, Scopoletin PubChem Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Scopoletin
[34]
Parama D, Girisa S, Khatoon E, et al. An overview of the pharmacological activities of scopoletin against different chronic diseases. Pharmacol Res 2022; 179: 106202.
[http://dx.doi.org/10.1016/j.phrs.2022.106202] [PMID: 35378275]
[35]
Zeng Y, Li S, Wang X, Gong T, Sun X, Zhang Z. Validated LC-MS/MS method for the determination of scopoletin in rat plasma and its application to pharmacokinetic studies. Molecules 2015; 20(10): 18988-9001.
[http://dx.doi.org/10.3390/molecules201018988] [PMID: 26492227]
[36]
Wang Y, Xing X, Cao Y, et al. Development and application of an UHPLC-MS/MS method for comparative pharmacokinetic study of eight major bioactive components from yin chen hao tang in normal and acute liver injured rats. Evid Based Complement Alternat Med 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3239785] [PMID: 30519262]
[37]
Tabana YM, Hassan LEA, Ahamed MBK, et al. Scopoletin, an active principle of tree tobacco (Nicotiana glauca) inhibits human tumor vascularization in xenograft models and modulates ERK1, VEGF-A, and FGF-2 in computer model. Microvasc Res 2016; 107: 17-33.
[http://dx.doi.org/10.1016/j.mvr.2016.04.009] [PMID: 27133199]
[38]
Bhanuvalli RS, Lotha R, Sivasubramanian A. Phenyl propanoid rich extract of edible plant Halosarcia indica exert diuretic, analgesic, and anti-inflammatory activity on Wistar albino rats. Nat Prod Res 2020; 34(11): 1616-20.
[http://dx.doi.org/10.1080/14786419.2018.1521404] [PMID: 30394103]
[39]
Agarwal P, Sharma B, Alok S. Screening of anti-inflammatory and anti analgesic activity of Convolvulus pluricaulis Choisy. Int J Pharm Sci Res 2014; 5(6): 2458.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.5(6).2458-63]
[40]
Cottam EM, Maier HJ, Manifava M, et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 2011; 7(11): 1335-47.
[http://dx.doi.org/10.4161/auto.7.11.16642] [PMID: 21799305]
[41]
Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy 2014; 10(8): 1426-41.
[http://dx.doi.org/10.4161/auto.29309] [PMID: 24991833]
[42]
Kindrachuk J, Ork B, Hart BJ, Mazur S. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. agents chemother 2015; 59: 1088-99.
[http://dx.doi.org/10.1128/AAC.03659-14]
[43]
Gassen NC, Papies J, Bajaj T, et al. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxiv 2020; 2020.04.
[http://dx.doi.org/10.1101/2020.04.15.997254]
[44]
Carmona-Gutierrez D, Bauer MA, Zimmermann A, et al. Digesting the crisis: Autophagy and coronaviruses. Microb Cell 2020; 7(5): 119-28.
[http://dx.doi.org/10.15698/mic2020.05.715] [PMID: 32391393]
[45]
Kudchodkar SB, Levine B. Viruses and autophagy. Rev Med Virol 2009; 19(6): 359-78.
[http://dx.doi.org/10.1002/rmv.630] [PMID: 19750559]
[46]
Jackson WT. Viruses and the autophagy pathway. Virology 2015; 479-480: 450-6.
[http://dx.doi.org/10.1016/j.virol.2015.03.042] [PMID: 25858140]
[47]
Chude C, Amaravadi R. Targeting autophagy in cancer: Update on clinical trials and novel inhibitors. Int J Mol Sci 2017; 18(6): 1279.
[http://dx.doi.org/10.3390/ijms18061279] [PMID: 28621712]
[48]
Fitzwalter BE, Towers CG, Sullivan KD, et al. Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover. Dev Cell 2018; 44: 555-65.
[http://dx.doi.org/10.1016/j.devcel.2018.02.014]
[49]
Tompkins KD, Thorburn A. Regulation of apoptosis by autophagy to enhance cancer therapy. Biol Med 2019; 92(4): 707-18.
[PMID: 31866785]
[50]
Zeh HJ, Bahary N, Boone BA, et al. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients. Clin Cancer Res 2020; 26(13): 3126-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-4042] [PMID: 32156749]
[51]
Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. In: Autophagy. 3rd edition. 2016; 12: pp. 1-222.
[http://dx.doi.org/10.1080/15548627.2015.1100356]
[52]
Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182(4): 685-701.
[http://dx.doi.org/10.1083/jcb.200803137] [PMID: 18725538]
[53]
Lamb CA, Yoshimori T, Tooze SA. The autophagosome: Origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14(12): 759-74.
[http://dx.doi.org/10.1038/nrm3696] [PMID: 24201109]
[54]
Tooze SA. Current views on the source of the autophagosome membrane. Essays Biochem 2013; 55: 29-38.
[http://dx.doi.org/10.1042/bse0550029] [PMID: 24070469]
[55]
Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol 2002; 76(8): 3697-708.
[http://dx.doi.org/10.1128/JVI.76.8.3697-3708.2002] [PMID: 11907209]
[56]
Knoops K, Kikkert M, Worm SHE, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 2008; 6(9): e226.
[http://dx.doi.org/10.1371/journal.pbio.0060226] [PMID: 18798692]
[57]
Ulasli M, Verheije MH, de Haan CA, Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cel microbiol 2010; 12: 844-61.
[http://dx.doi.org/10.1111/j.1462-5822.2010.01437.x]
[58]
van den Worm SHE, Knoops K, Zevenhoven-Dobbe JC, et al. Development and RNA-synthesizing activity of coronavirus replication structures in the absence of protein synthesis. J Virol 2011; 85(11): 5669-73.
[http://dx.doi.org/10.1128/JVI.00403-11] [PMID: 21430047]
[59]
Maier H, Britton P. Involvement of autophagy in coronavirus replication. Viruses 2012; 4(12): 3440-51.
[http://dx.doi.org/10.3390/v4123440] [PMID: 23202545]
[60]
Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19(21): 5720-8.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[61]
Prentice E, McAuliffe J, Lu X, Subbarao K, Denison MR. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol 2004; 78(18): 9977-86.
[http://dx.doi.org/10.1128/JVI.78.18.9977-9986.2004] [PMID: 15331731]
[62]
Menon MB, Dhamija S. Beclin 1 phosphorylation – at the center of autophagy regulation. Front Cell Dev Biol 2018; 6: 137.
[http://dx.doi.org/10.3389/fcell.2018.00137] [PMID: 30370269]
[63]
Limanaqi F, Biagioni F, Busceti CL, et al. Phytochemicals bridging autophagy induction and alpha-synuclein degradation in parkinsonism. Int J Mol Sci 2019; 20(13): 3274.
[http://dx.doi.org/10.3390/ijms20133274] [PMID: 31277285]
[64]
Lystad AH, Carlsson SR, Simonsen A. Toward the function of mammalian ATG12–ATG5-ATG16L1 complex in autophagy and related processes. Autophagy 2019; 15(8): 1485-6.
[http://dx.doi.org/10.1080/15548627.2019.1618100] [PMID: 31122169]
[65]
Sanchez-Wandelmer J, Reggiori F. Amphisomes: Out of the autophagosome shadow? EMBO J 2013; 32(24): 3116-8.
[http://dx.doi.org/10.1038/emboj.2013.246] [PMID: 24219988]
[66]
Limanaqi F, Biagioni F, Gambardella S, Ryskalin L, Fornai F. Interdependency between autophagy and synaptic vesicle trafficking: Implications for dopamine release. Front Mol Neurosci 2018; 11: 299.
[http://dx.doi.org/10.3389/fnmol.2018.00299] [PMID: 30186112]
[67]
Lin Y, Wu C, Wang X, et al. Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Autophagy 2020; 16(3): 548-61.
[http://dx.doi.org/10.1080/15548627.2019.1632104] [PMID: 31204557]
[68]
Gassen NC, Niemeyer D, Muth D, et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection. Nat Commun 2019; 10(1): 5770.
[http://dx.doi.org/10.1038/s41467-019-13659-4] [PMID: 31852899]
[69]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[70]
Chen X, Wang K, Xing Y, et al. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell 2014; 5(12): 912-27.
[http://dx.doi.org/10.1007/s13238-014-0104-6] [PMID: 25311841]
[71]
Chen M, Yi L, Jin X, et al. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway. Autophagy 2013; 9(12): 2033-45.
[http://dx.doi.org/10.4161/auto.26336] [PMID: 24145604]
[72]
Gurusamy N, Lekli I, Mukherjee S, et al. Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 2010; 86(1): 103-12.
[http://dx.doi.org/10.1093/cvr/cvp384] [PMID: 19959541]
[73]
Wang B, Yang Q, Sun Y, et al. Resveratrol‐enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 2014; 18(8): 1599-611.
[http://dx.doi.org/10.1111/jcmm.12312] [PMID: 24889822]
[74]
Kim YH, Bae JU, Kim IS, Chang CL, Oh SO, Kim CD. SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets. Platelets 2016; 27(8): 735-42.
[http://dx.doi.org/10.1080/09537104.2016.1190005] [PMID: 27275930]
[75]
Guixé-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol 2017; 66(1): 86-94.
[http://dx.doi.org/10.1016/j.jhep.2016.07.051] [PMID: 27545498]
[76]
Lin YF, Lee YH, Hsu YH, et al. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine 2017; 12(22): 2741-56.
[http://dx.doi.org/10.2217/nnm-2017-0256] [PMID: 28884615]
[77]
Huang FC, Kuo HC, Huang YH, Yu HR, Li SC, Kuo HC. Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: Implication for the treatment of Kawasaki disease. BMC Pharmacol Toxicol 2017; 18(1): 3.
[http://dx.doi.org/10.1186/s40360-016-0109-2] [PMID: 28069066]
[78]
Guo D, Xie J, Zhao J, Huang T, Guo X, Song J. Resveratrol protects early brain injury after subarachnoid hemorrhage by activating autophagy and inhibiting apoptosis mediated by the Akt/mTOR pathway. Neuroreport 2018; 29(5): 368-79.
[http://dx.doi.org/10.1097/WNR.0000000000000975] [PMID: 29360689]
[79]
Al Azzaz J, Rieu A, Aires V, et al. Resveratrol-induced xenophagy promotes intracellular bacteria clearance in intestinal epithelial cells and macrophages. Front immun 2019; 9: 3149.
[http://dx.doi.org/10.3389/fimmu.2018.03149]
[80]
Yang QB, He YL, Zhong XW, Xie WG, Zhou JG. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients. Inflammopharmacology 2019; 27(1): 47-56.
[http://dx.doi.org/10.1007/s10787-018-00555-4] [PMID: 30600470]
[81]
Le K, Chibaatar Daliv E, Wu S, et al. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol 2019; 75: 105779.
[http://dx.doi.org/10.1016/j.intimp.2019.105779] [PMID: 31362164]
[82]
Xing J, Liu H, Yang H, Chen R, Chen Y, Xu J. Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy. PLoS One 2014; 9(12): e116165.
[http://dx.doi.org/10.1371/journal.pone.0116165] [PMID: 25541949]
[83]
Rahman I, Kinnula VL, Gorbunova V, Yao H. SIRT1 as a therapeutic target in inflammaging of the pulmonary disease. Prev Med 2012; 54(Suppl)(Suppl): S20-8.
[http://dx.doi.org/10.1016/j.ypmed.2011.11.014] [PMID: 22178470]
[84]
Arabian M, Aboutaleb N, Soleimani M, Mehrjerdi FZ, Ajami M, Pazoki-Toroudi H. Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice. Iran J Basic Med Sci 2015; 18(1): 14-21.
[http://dx.doi.org/10.22038/ijbms.2015.3881] [PMID: 25810871]
[85]
Potente M, Dimmeler S. NO targets SIRT1: A novel signaling network in endothelial senescence. Am Heart Assoc 2008; 28: 1577-9.
[http://dx.doi.org/10.1161/ATVBAHA.108.173682]
[86]
Liu X, Yang T, Sun T, Shao K. SIRT1-mediated regulation of oxidative stress induced by Pseudomonas aeruginosa lipopolysaccharides in human alveolar epithelial cells. Mol Med Rep 2017; 15(2): 813-8.
[http://dx.doi.org/10.3892/mmr.2016.6045] [PMID: 28000862]
[87]
Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment. Antioxid Redox Signal 2009; 11(4): 777-90.
[http://dx.doi.org/10.1089/ars.2008.2270] [PMID: 18828708]
[88]
Javedan G, Shidfar F, Davoodi SH, et al. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol Nutr Food Res 2016; 60(12): 2665-77.
[http://dx.doi.org/10.1002/mnfr.201600112] [PMID: 27466783]
[89]
Sotoudeheian M, Soleimani M, Farahmandian N. Molecular pathways disturbances during COVID-19 lead to cardiomyocyte necroptosis. Preprints 2023; 4: 8-82.
[http://dx.doi.org/10.20944/preprints202304.0882.v1]
[90]
Nam H, Kim MM. Scopoletin has a potential activity for anti-aging via autophagy in human lung fibroblasts. Phytomedicine 2015; 22(3): 362-8.
[http://dx.doi.org/10.1016/j.phymed.2015.01.004] [PMID: 25837273]
[91]
Narasimhan KKS, Jayakumar D, Velusamy P, et al. Morinda citrifolia and its active principle scopoletin mitigate protein aggregation and neuronal apoptosis through augmenting the DJ-1/Nrf2/ARe signaling pathway. Oxid Med Cell Longev 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/2761041] [PMID: 31191797]
[92]
Zhao P, Dou Y, Chen L, et al. SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria. Fitoterapia 2015; 104: 31-40.
[http://dx.doi.org/10.1016/j.fitote.2015.05.002] [PMID: 25964188]
[93]
Sotoudeheian M, Hoseini S. Therapeutic properties of polyphenols affect AMPK molecular pathway in hyperlipidemia. Preprints 2023.
[http://dx.doi.org/10.20944/preprints202301.0528.v1]
[94]
Chattree V, Singh K, Singh K, Goel A, Maity A, Lone A. A comprehensive review on modulation of SIRT1 signaling pathways in the immune system of COVID ‐19 patients by phytotherapeutic melatonin and epigallocatechin‐3‐gallate. J Food Biochem 2022; 46(12): e14259.
[http://dx.doi.org/10.1111/jfbc.14259] [PMID: 35662052]
[95]
Khan H, Patel S, Majumdar A. Role of NRF2 and Sirtuin activators in COVID-19. Clin Immunol 2021; 233: 108879.
[http://dx.doi.org/10.1016/j.clim.2021.108879] [PMID: 34798239]
[96]
Clarke NE, Belyaev ND, Lambert DW, Turner AJ. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin Sci 2014; 126(7): 507-16.
[http://dx.doi.org/10.1042/CS20130291] [PMID: 24147777]
[97]
Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. J Infect Dis 2020; 222(4): 556-63.
[http://dx.doi.org/10.1093/infdis/jiaa332] [PMID: 32526012]
[98]
Sahu S, Patil CR, Kumar S, Apparsundaram S, Goyal RK. Role of ACE2-Ang (1–7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem 2022; 477(1): 225-40.
[http://dx.doi.org/10.1007/s11010-021-04275-2] [PMID: 34655418]
[99]
Shamir I, Abutbul-Amitai M, Abbas-Egbariya H, Pasmanik-Chor M, Paret G, Nevo-Caspi Y. STAT3 isoforms differentially affect ACE2 expression: A potential target for COVID‐19 therapy. J Cell Mol Med 2020; 24(21): 12864-8.
[http://dx.doi.org/10.1111/jcmm.15838] [PMID: 32949179]
[100]
Liang L, Wang D, Yu H, et al. Transcriptional regulation and small compound targeting of ACE2 in lung epithelial cells. Acta Pharmacol Sin 2022; 43(11): 2895-904.
[http://dx.doi.org/10.1038/s41401-022-00906-6] [PMID: 35468992]
[101]
Karbasforooshan H, Roohbakhsh A, Karimi G. SIRT1 and microRNAs: The role in breast, lung and prostate cancers. Exp Cell Res 2018; 367(1): 1-6.
[http://dx.doi.org/10.1016/j.yexcr.2018.03.023] [PMID: 29574020]
[102]
Xu G, Cai J, Wang L, et al. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2018; 362(2): 268-78.
[http://dx.doi.org/10.1016/j.yexcr.2017.11.027] [PMID: 29174979]
[103]
Zhuo Y, Zhang S, Li C, Yang L, Gao H, Wang X. Resolvin D1 promotes SIRT1 expression to counteract the activation of STAT3 and NF-κB in mice with septic-associated lung injury. Inflammation 2018; 41(5): 1762-71.
[http://dx.doi.org/10.1007/s10753-018-0819-2] [PMID: 30014231]
[104]
Zhou Y, Zhang F, Ding J. As a modulator, multitasking roles of SIRT1 in respiratory diseases. Immune Netw 2022; 22(3): e21.
[http://dx.doi.org/10.4110/in.2022.22.e21] [PMID: 35799705]
[105]
Jafarzadeh A, Nemati M, Jafarzadeh S. Contribution of STAT3 to the pathogenesis of COVID-19. Microb Pathog 2021; 154: 104836.
[http://dx.doi.org/10.1016/j.micpath.2021.104836] [PMID: 33691172]
[106]
Hennighausen L, Lee HK. Activation of the SARS-CoV-2 receptor Ace2 by cytokines through pan JAK-STAT enhancers. BioRxiv 2020.
[107]
Gottschalk G, Knox K, Roy A. ACE2: At the crossroad of COVID-19 and lung cancer. Gene Rep 2021; 23: 101077.
[http://dx.doi.org/10.1016/j.genrep.2021.101077] [PMID: 33723522]
[108]
Yue C, Song W, Wang L, et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis 2023; 23(3): 278-80.
[http://dx.doi.org/10.1016/S1473-3099(23)00010-5] [PMID: 36746173]
[109]
Callaway E. Is coronavirus variant XBB. 1.5 a global threat. Nature 2023; 613: 222-3.
[http://dx.doi.org/10.1038/d41586-023-00014-3] [PMID: 36624320]
[110]
Atanasoff KE, Brambilla L, Adelsberg DC, et al. An in vitro experimental pipeline to characterize the epitope of a SARS-CoV-2 neutralizing antibody. MBio 2023; e02477-23.
[http://dx.doi.org/10.1128/mbio.02477-23] [PMID: 38054729]
[111]
Eurosurveillance editorial team. Using the rear-view mirror to look forward. Euro Surveill 2023; 28(2): 220112e.
[http://dx.doi.org/10.2807/1560-7917.ES.2023.28.2.220112e]
[112]
Graham F. Daily briefing: Is subvariant XBB. 1.5 a global threat? Nature 2023. Available from: https://www.nature.com/articles/d41586-023-00052-x Accessed 20 January 2023.
[113]
Shi Z, Li N, Chen C, et al. Novel NO-releasing scopoletin derivatives induce cell death via mitochondrial apoptosis pathway and cell cycle arrest. Eur J Med Chem 2020; 200: 112386.
[http://dx.doi.org/10.1016/j.ejmech.2020.112386] [PMID: 32438251]
[114]
Modanwal S, Mishra N. Rejuvenation of traditional medicine in the twenty-first century against SARS-CoV-2. Nat Singap 2023; 115-36.
[http://dx.doi.org/10.1007/978-981-99-3664-9_5]
[115]
Ikanovic T, Sehercehajic E, Saric B, et al. In silico analysis of scopoletin interaction with potential SARS-CoV-2 target. International Conference “New Technologies, Development and Applications”: NT. 897-903.
[http://dx.doi.org/10.1007/978-3-030-75275-0_99]
[116]
Gay NH, Suwanjang W, Ruankham W, et al. Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Advances 2020; 10(28): 16593-606.
[http://dx.doi.org/10.1039/C9RA06056A] [PMID: 35498835]
[117]
Zhang T, Xu L, Guo X, et al. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2023.
[http://dx.doi.org/10.1016/j.jpha.2023.09.001]
[118]
Yan T, Zheng R, Li Y, et al. Epidemiological insights into the omicron outbreak via meltarray-assisted real-time tracking of SARS-CoV-2 variants. Viruses 2023; 15(12): 2397.
[http://dx.doi.org/10.3390/v15122397] [PMID: 38140638]
[119]
Parums DV. Editorial: The XBB.1.5 (‘Kraken’) subvariant of omicron SARS-CoV-2 and its rapid global spread. Med Sci Monit 2023; 29: e939580.
[http://dx.doi.org/10.12659/MSM.939580] [PMID: 36722047]
[120]
Devasundaram S, Terpos E, Rosati M, et al. XBB. 1.5 neutralizing antibodies upon bivalent COVID ‐19 vaccination are similar to XBB but lower than BQ. 1.1. Am J Hematol 2023; 98(5): E123-6.
[http://dx.doi.org/10.1002/ajh.26887] [PMID: 36810791]
[121]
van Werkhoven H, Valk A-W, Smagge B, et al. Early COVID-19 vaccine effectiveness of XBB. 1.5 vaccine against hospitalization and ICU admission, the Netherlands. medRxiv 12.
[http://dx.doi.org/10.1101/2023.12.12.23299855]
[122]
Uraki R, Ito M, Kiso M, et al. Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate. Lancet Infect Dis 2023; 23(4): 402-3.
[http://dx.doi.org/10.1016/S1473-3099(23)00070-1] [PMID: 36773622]
[123]
Baggieri M, Gioacchini S, Borgonovo G, et al. Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2. Biomed Pharmacother 2023; 168: 115682.
[http://dx.doi.org/10.1016/j.biopha.2023.115682] [PMID: 37832410]