Quassinoids from Eurycoma longifolia as Potential Dihydrofolate Reductase Inhibitors: A Computational Study

Page: [2154 - 2165] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Quassinoids are degraded triterpene compounds that can be obtained from various species of the Simaroubaceae plant family, including Eurycoma longifolia. Quassinoids are the major compounds in E. longifolia, and they are known to have various medicinal potentials, such as anticancer and antimalarial properties. Dihydrofolate reductase (DHFR) was reported to be one of the important targets for certain anticancer and antimalarial drugs. Twelve quassinoids from E. longifolia were identified to have anticancer effects based on their IC50 values. This study aimed to evaluate the interactions of these twelve quassinoids with DHFR via Autodock 4.2 software and Biovia Discovery Studio Visualiser.

Methods: Twelve quassinoids from E. longifolia and their interactions with DHFR were evaluated via Autodock 4.2 software and Biovia Discovery Studio Visualiser. Their drug-likeness and pharmacokinetic properties were also assessed using the ADMETlab 2.0 program.

Results: The molecular docking results showed that eleven quassinoids showed better docking scores than methotrexate, in which the binding energy (BE) of these quassinoids ranged from - 7.87 to -9.58 kcal/mol. Their inhibition constant (Ki) ranged from 0.095 to 1.71 μM. At the same time, the BE and Ki values for methotrexate were -7.80 kcal/mol and 1.64 μM, respectively.

Conclusion: From the analysis, 6-dehydrolongilactone and eurycomalide B are among the twelve compounds that showed great potential as hit-to-lead compounds based on the docking score on DHFR, drug-likeness, and ADMET properties. These results suggest a great potential to pursue validation studies via in vitro and in vivo models.

Graphical Abstract

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021, 149(4), 778-789.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[2]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[3]
World Health Organization (WHO) WHO report on cancer: Setting priorities, investing wisely and providing care for all. 2020. Available from: https://www.google.com/search?client=firefox-b-d&q=World+Health+Organization+%28WHO%29+WHO+report+on+cancer%3A+ setting+priorities%2C+investing+wisely+and+providing+care+for+all
[4]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[5]
Duan, Z.K.; Zhang, Z.J.; Dong, S.H.; Wang, Y.X.; Song, S.J.; Huang, X.X. Quassinoids: Phytochemistry and antitumor prospect. Phytochemistry, 2021, 187, 112769.
[http://dx.doi.org/10.1016/j.phytochem.2021.112769] [PMID: 33887559]
[6]
Li, Z.; Ruan, J.; Sun, F.; Yan, J.; Wang, J.; Zhang, Z.; Zhang, Y.; Wang, T. Relationship between structural characteristics and plant sources along with pharmacology research of quassinoids. Chem. Pharm. Bull., 2019, 67(7), 654-665.
[http://dx.doi.org/10.1248/cpb.c18-00958] [PMID: 31257321]
[7]
Yunos, N.M.; Wahab, H.A.; Al-Thiabat, M.G.; Sallehudin, N.J.; Jauri, M.H. In vitro and in silico analysis of the anti-cancer effects of eurycomanone and eurycomalactone from Eurycoma longifolia. Plants, 2023, 12(15), 2827.
[http://dx.doi.org/10.3390/plants12152827] [PMID: 37570981]
[8]
Vardhini, S.R.D. In silico analysis of protein-ligand docking of DHFR (dihydro folate reductase) and quassinoids. Int. J. Comput. Appl., 2013, 62, 14-19.
[http://dx.doi.org/10.5120/10131-4919]
[9]
Hall, I.H.; Lee, K.H.; Elgebaly, S.A.; Imakura, Y.; Sumida, Y.; Wu, R.Y. Antitumor agents. XXXIV: Mechanism of action of bruceoside A and brusatol on nucleic acid metabolism of P-388 lymphocytic leukemia cells. J. Pharm. Sci., 1979, 68(7), 883-887.
[http://dx.doi.org/10.1002/jps.2600680726] [PMID: 458610]
[10]
Hall, I.H.; Liou, Y.F.; Okano, M.; Lee, K.H. Antitumor agents XLVI: In vitro effects of esters of brusatol, bisbrusatol, and related compounds on nucleic acid and protein synthesis of P-388 lymphocytic leukemia cells. J. Pharm. Sci., 1982, 71(3), 345-348.
[http://dx.doi.org/10.1002/jps.2600710321] [PMID: 7069596]
[11]
Neradil, J.; Pavlasova, G.; Veselska, R. New mechanisms for an old drug; DHFR-and non-DHFR-mediated effects of methotrexate in cancer cells. Klinicka Oncologie, 2012, 25, 87-92.
[12]
Raimondi, M.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules, 2019, 24(6), 1140.
[http://dx.doi.org/10.3390/molecules24061140] [PMID: 30909399]
[13]
Boik, J.C.; Newman, R.A. Structure-activity models of oral clearance, cytotoxicity, and LD50: A screen for promising anticancer compounds. BMC Pharmacol., 2008, 8(1), 12.
[http://dx.doi.org/10.1186/1471-2210-8-12] [PMID: 18554402]
[14]
Miyake, K.; Tezuka, Y.; Awale, S.; Li, F.; Kadota, S. Quassinoids from Eurycoma longifolia. J. Nat. Prod., 2009, 72, 2135-2140.
[http://dx.doi.org/10.1021/np900486f] [PMID: 19919052]
[15]
Miyake, K.; Li, F.; Tezuka, Y.; Awale, S.; Kadota, S. Cytotoxic activity of quassinoids from Eurycoma longifolia. Nat. Prod. Commun., 2010, 5, 1009-1012.
[http://dx.doi.org/10.1177/1934578X1000500704] [PMID: 20734929]
[16]
Itokawa, H.; Kishi, E.; Morita, H.; Takeya, K. Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifolia. Chem. Pharm. Bull., 1992, 40, 1053-1055.
[http://dx.doi.org/10.1248/cpb.40.1053]
[17]
Jiwajinda, S.; Santisopasri, V.; Murakami, A.; Kawanaka, M.; Kawanaka, H.; Gasquet, M.; Eilas, R.; Balansard, G.; Ohigashi, H. In vitro anti-tumor promoting and anti-parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in Southeast Asia. J. Ethnopharmacol., 2002, 82, 55-58.
[http://dx.doi.org/10.1016/S0378-8741(02)00160-5] [PMID: 12169407]
[18]
Kuo, P.C.; Damu, A.G.; Lee, K.H.; Wu, T.S. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia. Bioorg. Med. Chem., 2004, 12, 537-544.
[http://dx.doi.org/10.1016/j.bmc.2003.11.017] [PMID: 14738962]
[19]
Muhamad, S.; Pihie, A.H.L.; Latif, J.; Rha, C.; Sambandan, T.G. Induction of apoptosis in MCF-7 via the caspase pathway by longilactone from Eurycoma longifolia. Res. Pharm. Biotechnol., 2011, 3, 1-10.
[http://dx.doi.org/10.5897/RPB.9000018]
[20]
Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. Highly oxygenated quassinoids from Eurycoma longifolia. Phytochemistry, 1993, 33, 691-696.
[http://dx.doi.org/10.1016/0031-9422(93)85475-7]
[21]
Hajjouli, S.; Chateauvieux, S.; Teiten, M.H.; Orlikova, B.; Schumacher, M.; Dicato, M.; Choo, C.Y.; Diederich, M. Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signalling pathways involved in proliferation, cell death and inflammation. Mol., 2014, 19, 14649-14666.
[http://dx.doi.org/10.3390/molecules190914649] [PMID: 25230121]
[22]
Pei, X.D.; He, S.Q.; Shen, L.Q.; Wei, J.C.; Li, X.S.; Wei, Y.Y.; Zhang, Y.M.; Wang, X.Y.; Lin, F.; He, Z.L.; Jiang, L.H. 14,15β-dihydroxyklaineanone inhibits HepG2 cell proliferation and migration through p38MAPK pathway. J. Pharm. Pharmacol., 2020, 72, 1165-1175.
[http://dx.doi.org/10.1111/jphp.13289] [PMID: 32419149]
[23]
Shu, Y.; Sun, X.; Ye, G.; Xu, M.; Wu, Z.; Wu, C.; Li, S.; Tian, J.; Han, H.; Zhang, J. DHOK exerts anti-cancer effect through autophagy inhibition in colorectal cancer. Front. Cell Dev. Biol., 2021, 9, 760022.
[http://dx.doi.org/10.3389/fcell.2021.760022]
[24]
Yang, W.Q.; Tang, W.; Huang, X.J.; Song, J.G.; Li, Y.Y.; Xiong, Y.; Fan, C.L.; Wu, Z.L.; Wang, Y.; Ye, W.C. Quassinoids from the roots of Eurycoma longifolia and their anti-proliferation activities. Mol., 2021, 26, 5939.
[http://dx.doi.org/10.1016/j.drudis.2020.12.006] [PMID: 33316375]
[25]
Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol., 2003, 10, 980.
[26]
Saeed, A.; Hussain, H.; Shamraiz, U.; Rehman, N.U.; Khan, H.Y.; Badshah, A.; Heller, L.; Csuk, R.; Ali, M.; Khan, A.; Al-Harrasi, A. Synthesis of new triterpenic monomers and dimers as potential antiproliferative agents and their molecular docking studies. Eur. J. Med. Chem., 2018, 143, 948-957.
[27]
Eswar, N.; Eramian, D.; Webb, B.; Shen, M.Y.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol., 2008, 426, 145-159.
[28]
Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 2007, 35, W522-W525.
[29]
Olsson, M.H.M. SØndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput., 2011, 7, 525-537.
[30]
Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; Jain, S.; Lewis, S.M.; Arendal, III, W.B.; Snoeyink, J.; Adams, P.D.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci., 2018, 27, 293-315.
[31]
Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30, 2785-2791.
[32]
Forli, S.; Olson, A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem., 2012, 55, 623-638.
[33]
Biovia, D.S. Discovery studio visualizer, available online: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 26 November 2022).
[34]
Rowland, M.; Tozer, T.N.; Derendorf, H.; Hochhaus, G. Chapter 1. Therapeutic Relevance In: Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications; 4th ed.; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, 2011. ISBN 9780781750097.
[35]
Shargel, L.; Andrew, B.; Wu-Pong, S. Applied Biopharmaceutics & Pharmacokinetics; Appleton & Lange Stamford, 1999, Vol 264, .
[36]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49, W5-W14.
[37]
De Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinforma. Chem., 2016, 1-11.
[38]
Amir Rawa, M.S.; Al-Thiabat, M.G.; Nogawa, T.; Futamura, Y.; Okano, A.; Wahab, H.A. Naturally occurring 8ß, 13ß-kaur-15-en-17-al and anti-malarial activity from Podocarpus polystachyus leaves. Pharmaceuticals, 2022, 15, 902.
[39]
Larue, L.; Kenzhebayeva, B.; Al-Thiabat, M.G.; Jouan-Hureaux, V.; Mohd-Gazzali, A.; Wahab, H.A.; Boura, C.; Yeligbayeva, G.; Nakan, U.; Frochot, C.; Acherar, S. tLyp–1: a peptide suitable to target NRP–1 receptor. Bioorg. Chem., 2023, 130, 106200.
[40]
Al-Thiabat, M.G.; Gazzali, A.M.; Mohtar, N.; Murugaiyah, V.; Kamarulzaman, E.E.; Yap, B.K.; Rahman, N.A.; Othman, R.; Wahab, H.A. Conjugated β-cyclodextrin enhances the affinity of folic acid towards FRα: molecular dynamics study. Mol., 2021, 17, 5304.
[41]
Alidmat, M.M.; Khairuddean, M.; Kamal, N.N.S.N.M.; Muhammad, M.; Wahab, H.A.; Al-Thiabat, M.G.; Alhawarri, M.B. Synthesis, characterization, molecular docking and cytotoxicity evaluation of new thienyl chalcone derivatives against breast cancer cells. Sys. Rev. Pharm., 2022, 13, 1-11.
[42]
Wright, N.J.; Fedor, J.G.; Zhang, H.; Jeong, P.; Suo, Y.; Yoo, J.; Hong, J.; Im, W.; Lee, S.Y. Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature, 2022, 609, 1056-1062.
[43]
Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an old drug with new tricks. Int. J. Mol. Sci., 2019, 20, 5023.
[44]
Wang, Y.; Xing, J.; Xu, Y.; Zhou, N.; Peng, J.; Xiong, Z.; Liu, X.; Luo, X.; Luo, C.; Chen, K.; Zheng, M.; Jiang, H. In silico ADME/T modelling for rational drug design. Q. Rev. Biophys., 2015, 48, 488-515.
[45]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[46]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23, 3-25.
[47]
Giménez, B.G.; Santos, M.S.; Ferrarini, M.; Dos Santos Fernandes, J.P. Evaluation of blockbuster drugs under the rule-of-five. Pharmazie, 2010, 65, 148-152.
[48]
Weinblatt, M.E. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans. Am. Clin. Climatol. Assoc., 2013, 124, 25.
[49]
Colom, H.; Farré, R.; Soy, D.; Peraire, C.; Cendros, J.M.; Pardo, N.; Torrent, M.; Domenech, J.; Mangues, M.A. Population pharmacokinetics of high-dose methotrexate after intravenous administration in pediatric patients with osteosarcoma. Ther. Drug Monit., 2009, 31, 76-85.
[50]
Furst, D.E.; Koehnke, R.; Burmeister, L.F.; Kohler, J.; Cargill, I. Increasing methotrexate effect with increasing dose in the treatment of resistant rheumatoid arthritis. J. Rheumatol., 1989, 16, 313-320.
[51]
Malaviya, A.N.; Sharma, A.; Agarwal, D.; Kapoor, S.; Garg, S.; Sawhney, S. Low-dose and high-dose methotrexate are two different drugs in practical terms. Int. J. Rheum. Dis., 2010, 13, 288-293.
[52]
Nurhanan, M.Y.; Nor Datiakma, M.A.; Muhammad Haffiz, J.; Sui Kiong, L.; Nor Hasnida, H.; Nor Jannah, S. The in vitro anti-cancer activities and mechanisms of action of 9-methoxycanthin-6-one from Eurycoma longifolia in selected cancer cell lines. Mol., 2022, 27, 585.