Current Bioinformatics

Author(s): Guanghui Li*, Ziyan Cao, Cheng Liang, Qiu Xiao and Jiawei Luo*

DOI: 10.2174/0115748936288616240212073805

DownloadDownload PDF Flyer Cite As
MCHAN: Prediction of Human Microbe-drug Associations Based on Multiview Contrastive Hypergraph Attention Network

Page: [70 - 86] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Complex and diverse microbial communities play a pivotal role in human health and have become a new drug target. Exploring the connections between drugs and microbes not only provides profound insights into their mechanisms but also drives progress in drug discovery and repurposing. The use of wet lab experiments to identify associations is time-consuming and laborious. Hence, the advancement of precise and efficient computational methods can effectively improve the efficiency of association identification between microorganisms and drugs.

Objective: In this experiment, we propose a new deep learning model, a new multiview comparative hypergraph attention network (MCHAN) method for human microbe–drug association prediction.

Methods: First, we fuse multiple similarity matrices to obtain a fused microbial and drug similarity network. By combining graph convolutional networks with attention mechanisms, we extract key information from multiple perspectives. Then, we construct two network topologies based on the above fused data. One topology incorporates the concept of hypernodes to capture implicit relationships between microbes and drugs using virtual nodes to construct a hyperheterogeneous graph. Next, we propose a cross-contrastive learning task that facilitates the simultaneous guidance of graph embeddings from both perspectives, without the need for any labels. This approach allows us to bring nodes with similar features and network topologies closer while pushing away other nodes. Finally, we employ attention mechanisms to merge the outputs of the GCN and predict the associations between drugs and microbes.

Results: To confirm the effectiveness of this method, we conduct experiments on three distinct datasets. The results demonstrate that the MCHAN model surpasses other methods in terms of performance. Furthermore, case studies provide additional evidence confirming the consistent predictive accuracy of the MCHAN model.

Conclusion: MCHAN is expected to become a valuable tool for predicting potential associations between microbiota and drugs in the future.

Keywords: Microbe–drug associations, deep learning, multiview networks, attention mechanisms, hyperheterogeneous, contrastive learning, graph convolutional networks.

Graphical Abstract

[1]
Relman DA. The human body as microbial observatory. Nat Genet 2002; 30(2): 131-3.
[http://dx.doi.org/10.1038/ng0202-131] [PMID: 11818955]
[2]
Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases. Int J Oral Sci 2022; 14(1): 14.
[http://dx.doi.org/10.1038/s41368-022-00163-7] [PMID: 35236828]
[3]
Ventura M, O’Flaherty S, Claesson MJ, et al. Genome-scale analyses of health-promoting bacteria: Probiogenomics. Nat Rev Microbiol 2009; 7(1): 61-71.
[http://dx.doi.org/10.1038/nrmicro2047] [PMID: 19029955]
[4]
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018; 16(3): 143-55.
[http://dx.doi.org/10.1038/nrmicro.2017.157] [PMID: 29332945]
[5]
Al-Nasiry S, Ambrosino E, Schlaepfer M, et al. The interplay between reproductive tract microbiota and immunological system in human reproduction. Front Immunol 2020; 378
[http://dx.doi.org/10.3389/fimmu.2020.00378]
[6]
Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, et al. Applications of machine learning in human microbiome studies: A review on feature selection, biomarker identification, disease prediction and treatment. Front Microbiol 2021; 12: 634511.
[http://dx.doi.org/10.3389/fmicb.2021.634511] [PMID: 33737920]
[7]
Doré J, Simrén M, Buttle L, Guarner F. Hot topics in gut microbiota. United European Gastroenterol J 2013; 1(5): 311-8.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040776/
[http://dx.doi.org/10.1177/2050640613502477] [PMID: 24917977]
[8]
Eppinga H, Fuhler GM, Peppelenbosch MP, Hecht GA. Gut microbiota developments with emphasis on inflammatory bowel disease: report from the gut microbiota for health world summit 2016. Gastroenterology 2016; 151(2): e1-4.
[http://dx.doi.org/10.1053/j.gastro.2016.06.024] [PMID: 27371370]
[9]
Wu H, Rao Q, Ma GC, Yu XH, Zhang CE, Ma ZJ. Effect of triptolide on dextran sodium sulfate-induced ulcerative colitis and gut microbiota in mice. Front Pharmacol 2020; 10: 1652.
[http://dx.doi.org/10.3389/fphar.2019.01652] [PMID: 32063856]
[10]
Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol 2021; 27(25): 3837-50.
[http://dx.doi.org/10.3748/wjg.v27.i25.3837] [PMID: 34321848]
[11]
Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord 2015; 16(1): 55-65.
[http://dx.doi.org/10.1007/s11154-015-9309-0] [PMID: 25619480]
[12]
Peene I, Elewaut D. Changing the wolf from outside: How microbiota trigger systemic lupus erythematosus. Ann Rheum Dis 2019; 78(7): 867-9.
[http://dx.doi.org/10.1136/annrheumdis-2019-215221] [PMID: 31076388]
[13]
Wu X, He B, Liu J, et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int J Mol Sci 2016; 17(3): 431.
[http://dx.doi.org/10.3390/ijms17030431] [PMID: 27011180]
[14]
Lubomski M, Davis RL, Sue CM. Gastrointestinal dysfunction in Parkinson’s disease. J Neurol 2020; 267(5): 1377-88.
[http://dx.doi.org/10.1007/s00415-020-09723-5] [PMID: 31989280]
[15]
Du Y, Gao XR, Peng L, Ge JF. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 2020; 6(6): e04097.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04097] [PMID: 32529075]
[16]
Sun YZ, Zhang DH, Cai SB, Ming Z, Li JQ, Chen X. MDAD: A special resource for microbe-drug associations. Front Cell Infect Microbiol 2018; 8: 424.
[http://dx.doi.org/10.3389/fcimb.2018.00424] [PMID: 30581775]
[17]
Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: A resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[18]
Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[19]
Zhu L, Duan G, Yan C, et al. Prediction of microbe-drug associations based on Katz measure. IEEE international conference on bioinformatics and biomedicine 2019; 183-7.
[20]
Yang H, Ding Y, Tang J, et al. Inferring human microbe-drug associations via multiple kernel fusion on graph neural network. Knowl Based Syst 2022; 238: 107888.
[http://dx.doi.org/10.1016/j.knosys.2021.107888]
[21]
Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe–drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36(19): 4918-27.
[http://dx.doi.org/10.1093/bioinformatics/btaa598] [PMID: 32597948]
[22]
Long Y, Min W, Liu Y, et al. Ensembling graph attention networks for human microbe-drug association prediction. Bioinformatics 2020; 36(2): 779-86.https://academic.oup.com/bioinformatics/article/36/Supplement_2/i779/
[http://dx.doi.org/10.1093/bioinformatics/btaa891]
[23]
Long Y, Luo J. Association mining to identify microbe drug interactions based on heterogeneous network embedding representation. IEEE J Biomed Health Inform 2021; 25(1): 266-75.https://ieeexplore.ieee.org/abstract/document/9104849
[http://dx.doi.org/10.1109/JBHI.2020.2998906] [PMID: 32750918]
[24]
Ma Y, Liu Q. Generalized matrix factorization based on weighted hypergraph learning for microbe-drug association prediction. Comput Biol Med 2022; 145: 105503.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105503] [PMID: 35427986]
[25]
Ohri K, Kumar M. Review on self-supervised image recognition using deep neural networks. Knowl Based Syst 2021; 224https://www.sciencedirect.com/science/article/abs/pii/S0950705121003
[http://dx.doi.org/10.1016/j.knosys.2021.107090]
[26]
Luo X, Ju W, Qu M, et al. Dualgraph: Improving semi-supervised graph classification via dual contrastive learning[c]//2022 ieee 38th international conference on data engineering. IEEE 2022; 699-712.https://ieeexplore.ieee.org/abstract/document/9835533
[27]
Luo X, Ju W, Gu Y, et al. Self-supervised graph-level representation learning with adversarial contrastive learning. ACM Trans Knowl Discov Data 2024; 18(2): 1-23.
[http://dx.doi.org/10.1145/3624018]
[28]
Luo X, Ju W, Qu M, et al. Clear: Cluster-enhanced contrast for self-supervised graph representation learning[J]. IEEE Transactions on Neural Networks and Learning Systems 2022.https://ieeexplore.ieee.org/document/9791433
[29]
Chen W, Wang H, Liang C. Deep multi-view contrastive learning for cancer subtype identification. Brief Bioinform 2023; 24(5): bbad282.
[http://dx.doi.org/10.1093/bib/bbad282] [PMID: 37539822]
[30]
Zhao X, Wu J, Zhao X, Yin M. Multi-view contrastive heterogeneous graph attention network for lncRNA–disease association prediction. Brief Bioinform 2023; 24(1): bbac548.
[http://dx.doi.org/10.1093/bib/bbac548] [PMID: 36528809]
[31]
Liu W, Tang T, Lu X, et al. MPCLCDA: Predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning. Briefings in Bioinformatics 2272023;
[32]
Chen Y, Hu Y, Hu X, Feng C, Chen M. CoGO: A contrastive learning framework to predict disease similarity based on gene network and ontology structure. Bioinformatics 2022; 38(18): 4380-6.
[http://dx.doi.org/10.1093/bioinformatics/btac520] [PMID: 35900147]
[33]
Zheng J, Qian Y, He J, Kang Z, Deng L. Graph neural network with self-supervised learning for noncoding rna–drug resistance association prediction. J Chem Inf Model 2022; 62(15): 3676-84.
[http://dx.doi.org/10.1021/acs.jcim.2c00367] [PMID: 35838124]
[34]
Tang Z, Li Z, Hou T, et al. SiGra: single-cell spatial elucidation through an image-augmented graph transformer. Nat Commun 2023; 14(1): 5618.https://www.nature.com/articles/s41467-023-41437-w
[http://dx.doi.org/10.1038/s41467-023-41437-w] [PMID: 37699885]
[35]
Tang Z, Liu X, Li Z, et al. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Brief Bioinform 2023; 24(6): bbad338.https://academic.oup.com/bib/article/24/6/bbad338/7291994
[http://dx.doi.org/10.1093/bib/bbad338] [PMID: 37798249]
[36]
Li G, Bai P, Liang C, et al. Node-adaptive graph Transformer with structural encoding for accurate and robust lncRNA-disease association prediction. BMC Genomics 2024; 25(1): 73.https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-024-
[37]
Yin N, Feng F, Luo Z, et al. Dynamic hypergraph convolutional network. IEEE 38th International Conference on Data Engineering 2022; 1621-34.https://ieeexplore.ieee.org/abstract/document/9835240
[38]
Zhao Y, Luo X, Ju W, et al. Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting. ICDE 2023. C
[http://dx.doi.org/10.1109/ICDE55515.2023.00178]
[39]
Wang L, Ding Y, Tiwari P, et al. A deep multiple kernel learning-based higher-order fuzzy inference system for identifying DNA N4-methylcytosine sites. Information Sciences 2023; 630: 40-52.https://www.sciencedirect.com/science/article/abs/pii/S0020025523001
[40]
Wang H, Ding Y, Tang J, et al. Identify RNA-associated subcellular localizations based on multi-label learning using Chou’s 5-steps rule. BMC genomics 2021; 22(1): 1-14.https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-020-
[41]
Jia X, Jiang M, Dong Y, et al. Multimodal heterogeneous graph attention network. Neural Comput Appl 2023; 35(4): 3357-72.https://link.springer.com/article/10.1007/s00521-022-07862-6 [J].
[http://dx.doi.org/10.1007/s00521-022-07862-6]
[42]
Ding J, Xu J, Wei J, et al. A multi-scale multi-model deep neural network via ensemble strategy on high-throughput microscopy image for protein subcellular localization. Expert Systems with Applications 2023; 212: 118744.https://www.sciencedirect.com/science/article/abs/pii/S0957417422017
[43]
Wang Y, Song J, Wei M, Duan X. Predicting potential drug–disease associations based on hypergraph learning with subgraph matching. Interdiscip Sci 2023; 15(2): 249-61.https://link.springer.com/article/10.1007/s12539-023-00556-0
[http://dx.doi.org/10.1007/s12539-023-00556-0] [PMID: 36906712]
[44]
Zhang L, Chen M, Hu X, Deng L. Graph convolutional network and contrastive learning small nucleolar rna (snorna) disease associations (gclsda): Predicting snorna–disease associations via graph convolutional network and contrastive learning. Int J Mol Sci 2023; 24(19): 14429.https://www.mdpi.com/1422-0067/24/19/14429
[http://dx.doi.org/10.3390/ijms241914429] [PMID: 37833876]
[45]
Ai C, Yang H, Ding Y, et al. Low rank matrix factorization algorithm based on multi-graph regularization for detecting drug-disease association. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2023.https://ieeexplore.ieee.org/document/10122135
[46]
Kamneva OK. Genome composition and phylogeny of microbes predict their co-occurrence in the environment. PLoS Comput Biol 2017; 13(2): 1005366.https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1
[47]
Hattori M, Tanaka N, Kanehisa M, Goto S. SIMCOMP/SUBCOMP: Chemical structure search servers for network analyses. Nucleic Acids Res 2010; 38(Web Server) (Suppl. 2): W652-6.
[http://dx.doi.org/10.1093/nar/gkq367] [PMID: 20460463]
[48]
Shi X, Zhu J, Long Y, Liang C. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks. Brief Bioinform 2023; 24(5): bbad278.
[http://dx.doi.org/10.1093/bib/bbad278] [PMID: 37544658]
[49]
Liang C, Shang M, Luo J. Cancer subtype identification by consensus guided graph autoencoders. Bioinformatics 2021; 37(24): 4779-86.
[http://dx.doi.org/10.1093/bioinformatics/btab535] [PMID: 34289034]
[50]
Ning Q, Zhao Y, Gao J, et al. AMHMDA: attention aware multi-view similarity networks and hypergraph learning for miRNA–disease associations identification. Brief Bioinform 2023; 24(2): bbad094.https://academic.oup.com/bib/article-abstract/24/2/bbad094/7076121
[http://dx.doi.org/10.1093/bib/bbad094] [PMID: 36907654]
[51]
Shang M, Liang C, Luo J, et al. Incomplete multi-view clustering by simultaneously learning robust representations and optimal graph structures. Information Sciences 2023; 640: 119038.https://www.sciencedirect.com/science/article/abs/pii/S0020025523006
[52]
Liang C, Wang L, Liu L, et al. Multi-view unsupervised feature selection with tensor robust principal component analysis and consensus graph learning. Pattern recognition 2023; 141: 109632.https://www.sciencedirect.com/science/article/abs/pii/S0031320323003
[53]
Qian Y, Ding Y, Zou Q, Guo F. Multi-view kernel sparse representation for identification of membrane protein types. IEEE/ACM Trans Comput Biol Bioinformatics 2023; 20(2): 1234-45.
[http://dx.doi.org/10.1109/TCBB.2022.3191325] [PMID: 35857734]
[54]
Zou Y, Ding Y, Tang J, Guo F, Peng L. FKRR-MVSF: A fuzzy kernel ridge regression model for identifying DNA-binding proteins by multi-view sequence features via Chou’s five-step rule. Int J Mol Sci 2019; 20(17): 4175.https://www.mdpi.com/1422-0067/20/17/4175
[http://dx.doi.org/10.3390/ijms20174175] [PMID: 31454964]
[55]
Wang Y, Ding Y, Tang J, Dai Y, Guo F. CrystalM: A multi-view fusion approach for protein crystallization prediction. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(1): 325-35.
[PMID: 31027046]
[56]
Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. International Conference on Machine Learning PMLR 2020; 1597-607.
[57]
Yang C, Liu Z, Zhao D, et al. Network representation learning with rich text information. IJCAI (U S) 2015; 2015: 2111-7.https://dl.acm.org/doi/10.5555/2832415.2832542 [C].
[58]
Sohn K. Improved deep metric learning with multi-class n-pair loss objective. Adv Neural Inf Process Syst 2016; 29.
[59]
Deng L, Huang Y, Liu X, Liu H. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe–drug associations. Bioinformatics 2022; 38(4): 1118-25.https://academic.oup.com/bioinformatics/article/38/4/1118/6433669
[http://dx.doi.org/10.1093/bioinformatics/btab792] [PMID: 34864873]
[60]
Yu Z, Huang F, Zhao X, Xiao W, Zhang W. Predicting drug–disease associations through layer attention graph convolutional network. Brief Bioinform 2021; 22(4): bbaa243.
[http://dx.doi.org/10.1093/bib/bbaa243] [PMID: 33078832]
[61]
Qu Y, Zhang H, Liang C, Dong X. KATZMDA: Prediction of miRNA-disease associations based on KATZ model. IEEE Access 2018; 6: 3943-50.
[http://dx.doi.org/10.1109/ACCESS.2017.2754409]
[62]
Lou Z, Cheng Z, Li H, Teng Z, Liu Y, Tian Z. Predicting miRNA–disease associations via learning multimodal networks and fusing mixed neighborhood information. Brief Bioinform 2022; 23(5): bbac159.https://academic.oup.com/bib/articleabstract/23/5/bbac159/6582005
[http://dx.doi.org/10.1093/bib/bbac159] [PMID: 35524503]
[63]
Tian Z, Yu Y, Fang H, Xie W, Guo M. Predicting microbe–drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy. Brief Bioinform 2023; 24(2): bbac634.https://academic.oup.com/bib/articleabstract/24/2/bbac634/7009077
[http://dx.doi.org/10.1093/bib/bbac634] [PMID: 36715986]
[64]
Akhtar R, Yousaf M, Naqvi SAR, et al. Synthesis of ciprofloxacin-based compounds: A review. Synth Commun 2016; 46(23): 1849-79.
[http://dx.doi.org/10.1080/00397911.2016.1234622]
[65]
Svenningsen SW, Frederiksen RF, Counil C, Ficker M, Leisner JJ, Christensen JB. Synthesis and antimicrobial properties of a ciprofloxacin and pamam-dendrimer conjugate. Molecules 2020; 25(6): 1389.
[http://dx.doi.org/10.3390/molecules25061389] [PMID: 32197523]
[66]
Hacioglu M, Haciosmanoglu E, Birteksoz-Tan AS, Bozkurt-Guzel C, Savage PB. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn Microbiol Infect Dis 2019; 95(3): 114863.
[http://dx.doi.org/10.1016/j.diagmicrobio.2019.06.014] [PMID: 31471074]
[67]
Marta Carreira , Joana Pimenta . Methicillin-Resistant Staphylococcus aureus and Candida albicans Secondary Bloodstream Co-Infection in a Patient with Tubular Oesophageal Duplication. Eur J Case Rep Intern Med 2020; 7(LATEST ONLINE): 001991.
[http://dx.doi.org/10.12890/2020_001991] [PMID: 33457357]
[68]
Zhang R, Jones MM, Moussa H, et al. Polymer–antibiotic conjugates as antibacterial additives in dental resins. Biomater Sci 2019; 7(1): 287-95.https://pubs.rsc.org/en/content/articlehtml/2019/bm/c8bm01228h
[http://dx.doi.org/10.1039/C8BM01228H] [PMID: 30468214]
[69]
Suci P, Young M. Selective killing of aggregatibacter actinomycetemcomitans by ciprofloxacin during development of a dual species biofilm with streptococcus sanguinis. Arch Oral Biol 2011; 56(10): 1055-63.
[http://dx.doi.org/10.1016/j.archoralbio.2011.03.013] [PMID: 21507381]
[70]
Miravitlles M, Anzueto A. Moxifloxacin: A respiratory fluoroquinolone. Expert Opin Pharmacother 2008; 9(10): 1755-72.
[http://dx.doi.org/10.1517/14656566.9.10.1755] [PMID: 18570608]
[71]
Speciale A, Musumeci R, Blandino G, et al. Minimal inhibitory concentrations and time-kill determination of moxifloxacin against aerobic and anaerobic isolates. International Journal of Antimicrobial Agents 2002; 19(2): 111-8.https://www.sciencedirect.com/science/article/abs/pii/S0924857901004
[72]
Thornsberry C, Brown NP, Draghi DC, Evangelista AT, Yee YC, Sahm DF. Antimicrobial activity among multidrug-resistant Streptococcus pneumoniae isolated in the United States, 2001-2005. Postgrad Med 2008; 120: 32-8.
[http://dx.doi.org/10.3810/pgm.2008.09.suppl52.282] [PMID: 18931469]
[73]
Chon JW, Seo KH, Bae D, Park JH, Khan S, Sung K. Prevalence, toxin gene profile, antibiotic resistance, and molecular characterization of Clostridium perfringens from diarrheic and non-diarrheic dogs in Korea. J Vet Sci 2018; 19(3): 368-74.
[http://dx.doi.org/10.4142/jvs.2018.19.3.368] [PMID: 29486533]
[74]
Grillon A, Schramm F, Kleinberg M, et al. Comparative activity of ciprofloxacin, levofloxacin and moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia assessed by minimum inhibitory concentrations and time-kill studies. PloS one 2016; 11(6): 0156690.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.01566
[75]
Alharbi NS, Khaled JM, Kadaikunnan S, et al. Prevalence of escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J Biol Sci 2019; 26(7): 1557-62.https://www.sciencedirect.com/science/article/pii/S1319562X18302948
[http://dx.doi.org/10.1016/j.sjbs.2018.11.016] [PMID: 31762626]