Anti-Cancer Agents in Medicinal Chemistry

Author(s): Suman Kumar Ray and Sukhes Mukherjee*

DOI: 10.2174/0118715206290816240220062545

Hyperoxic-hypoxic Paradox: Breast Cancer Microenvironment and an Innovative Treatment Strategy

Page: [729 - 732] Pages: 4

  • * (Excluding Mailing and Handling)

Abstract

A small therapeutic range of oxygen is required for effective metabolism. As a result, hypoxia (low oxygen concentration) is one of the most potent inducers of gene expression, metabolic alterations, and regenerative processes, such as angiogenesis, stem cell proliferation, migration, and differentiation. The cellular response is controlled by sensing the increased oxygen levels (hyperoxia) or hypoxia via specific chemoreceptor cells. Surprisingly, changes in free oxygen concentration instead of absolute oxygen levels may be regarded as a deficiency of oxygen at the cellular level. Recurrent intermittent hyperoxia may trigger many mediators of cellular pathways typically generated during hypoxia. The dilemma of hyperoxic-hypoxic conditions is known as the hyperoxic-hypoxic paradox. According to the latest data, the hypoxic microenvironment, crucial during cancer formation, has been demonstrated to play a key role in regulating breast cancer growth and metastasis. Hypoxic circumstances cause breast cancer cells to respond in a variety of ways. Transcription factors are identified as hypoxia-inducible factors (HIFs) that have been suggested to be a factor in the pathobiology of breast cancer and a possible therapeutic target, driving the cellular response to hypoxia. Breast cancer has a dismal prognosis due to a high level of resistance to practically all well-known cancer management that has been related to hypoxia-based interactions between tumor cells and the stromal milieu. We attempt to review the enigma by exploring the starring roles of HIFs in breast cancer, the HIF paradox, and the hyperoxic-hypoxic enigma.

Graphical Abstract

[1]
Thiemens, M.H. Oxygen origins. Nat. Chem., 2012, 4(1), 66.
[http://dx.doi.org/10.1038/nchem.1226] [PMID: 22169875]
[2]
Michiels, C. Physiological and pathological responses to hypoxia. Am. J. Pathol., 2004, 164(6), 1875-1882.
[http://dx.doi.org/10.1016/S0002-9440(10)63747-9] [PMID: 15161623]
[3]
Hadanny, A.; Efrati, S. The hyperoxic-hypoxic paradox. Biomolecules, 2020, 10(6), 958.
[http://dx.doi.org/10.3390/biom10060958] [PMID: 32630465]
[4]
Todd, V.M.; Johnson, R.W. Hypoxia in bone metastasis and osteolysis. Cancer Lett., 2020, 489, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2020.06.004] [PMID: 32561416]
[5]
Johnson, R.W.; Sowder, M.E.; Giaccia, A.J. Hypoxia and bone metastatic disease. Curr. Osteoporos. Rep., 2017, 15(4), 231-238.
[http://dx.doi.org/10.1007/s11914-017-0378-8] [PMID: 28597139]
[6]
Meneses, A.M.; Wielockx, B. PHD2: From hypoxia regulation to disease progression. Hypoxia, 2016, 4, 53-67.
[PMID: 27800508]
[7]
Corcoran, S.E.; O’Neill, L.A.J. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest., 2016, 126(10), 3699-3707.
[http://dx.doi.org/10.1172/JCI84431] [PMID: 27571407]
[8]
Ray, S.K.; Mukherjee, S. Consequences of extracellular matrix remodeling in headway and metastasis of cancer along with novel immunotherapies: A great promise for future endeavor. Anticancer Agents Med. Chem., 2022, 22(7), 1257-1271.
[http://dx.doi.org/10.2174/1871520621666210712090017] [PMID: 34254930]
[9]
Mukherjee, S.; Ray, S.K. Imitating hypoxia and tumor microenvironment with immune evasion by employing three dimensional in vitro cellular models: impressive tool in drug discovery. Recent Patents Anticancer Drug Discov., 2022, 17(1), 80-91.
[http://dx.doi.org/10.2174/1574892816666210728115605] [PMID: 34323197]
[10]
Mukherjee, S.; Ray, S.K. Targeting tumor hypoxia and hypoxia-inducible factors (HIFs) for the treatment of cancer- A story of transcription factors with novel approach in molecular medicine. Curr. Mol. Med., 2022, 22(4), 285-286.
[http://dx.doi.org/10.2174/156652402204220325161921] [PMID: 35603885]
[11]
Davis, N.M.; Sokolosky, M.; Stadelman, K.; Abrams, S.L.; Libra, M.; Candido, S.; Nicoletti, F.; Polesel, J.; Maestro, R.; D’Assoro, A.; Drobot, L.; Rakus, D.; Gizak, A.; Laidler, P.; Dulińska-Litewka, J.; Basecke, J.; Mijatovic, S.; Maksimovic-Ivanic, D.; Montalto, G.; Cervello, M.; Fitzgerald, T.L.; Demidenko, Z.N.; Martelli, A.M.; Cocco, L.; Steelman, L.S.; McCubrey, J.A. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget, 2014, 5(13), 4603-4650.
[http://dx.doi.org/10.18632/oncotarget.2209] [PMID: 25051360]
[12]
Hamanaka, R.B.; Chandel, N.S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol., 2009, 21(6), 894-899.
[http://dx.doi.org/10.1016/j.ceb.2009.08.005] [PMID: 19781926]
[13]
Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Hypoxia-induced epithelial-mesenchymal transition in cancers: HIF-1α and beyond. Front. Oncol., 2020, 10, 486.
[http://dx.doi.org/10.3389/fonc.2020.00486] [PMID: 32322559]
[14]
Echevarría, M.; Muñoz-Cabello, A.M.; Sánchez-Silva, R.; Toledo-Aral, J.J.; López-Barneo, J. Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression. J. Biol. Chem., 2007, 282(41), 30207-30215.
[http://dx.doi.org/10.1074/jbc.M702639200] [PMID: 17673462]
[15]
Choudhury, R. Hypoxia and hyperbaric oxygen therapy: A review. Int. J. Gen. Med., 2018, 11, 431-442.
[http://dx.doi.org/10.2147/IJGM.S172460] [PMID: 30538529]
[16]
Koh, M.Y.; Darnay, B.G.; Powis, G. Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation. Mol. Cell. Biol., 2008, 28(23), 7081-7095.
[http://dx.doi.org/10.1128/MCB.00773-08] [PMID: 18838541]
[17]
Hewitson, K.S.; McNeill, L.A.; Riordan, M.V.; Tian, Y.M.; Bullock, A.N.; Welford, R.W.; Elkins, J.M.; Oldham, N.J.; Bhattacharya, S.; Gleadle, J.M.; Ratcliffe, P.J.; Pugh, C.W.; Schofield, C.J. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem., 2002, 277(29), 26351-26355.
[http://dx.doi.org/10.1074/jbc.C200273200] [PMID: 12042299]
[18]
Belisario, D.C.; Kopecka, J.; Pasino, M.; Akman, M.; De Smaele, E.; Donadelli, M.; Riganti, C. Hypoxia dictates metabolic rewiring of tumors: Implications for chemoresistance. Cells, 2020, 9(12), 2598.
[http://dx.doi.org/10.3390/cells9122598] [PMID: 33291643]
[19]
Herrera-Campos, A.B.; Zamudio-Martinez, E.; Delgado-Bellido, D.; Fernández-Cortés, M.; Montuenga, L.M.; Oliver, F.J.; Garcia-Diaz, A. Implications of hyperoxia over the tumor microenvironment: An overview highlighting the importance of the immune system. Cancers, 2022, 14(11), 2740.
[http://dx.doi.org/10.3390/cancers14112740] [PMID: 35681719]
[20]
Ristescu, A.I.; Tiron, C.E.; Tiron, A.; Grigoras, I. Exploring hyperoxia effects in cancer—from perioperative clinical data to potential molecular mechanisms. Biomedicines, 2021, 9(9), 1213.
[http://dx.doi.org/10.3390/biomedicines9091213] [PMID: 34572400]
[21]
Tiron, A.; Ristescu, I.; Postu, P.A.; Tiron, C.E.; Zugun-Eloae, F.; Grigoras, I. Long-term deleterious effects of short-term hyperoxia on cancer progression—is brain-derived neurotrophic factor an important mediator? An experimental study. Cancers, 2020, 12(3), 688.
[http://dx.doi.org/10.3390/cancers12030688] [PMID: 32183322]
[22]
Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch. Toxicol., 2023, 97(10), 2499-2574.
[http://dx.doi.org/10.1007/s00204-023-03562-9] [PMID: 37597078]
[23]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[24]
Golhani, V.; Ray, S.K.; Mukherjee, S. Role of MicroRNAs and long non-coding RNAs in regulating angiogenesis in human breast cancer: A molecular medicine perspective. Curr. Mol. Med., 2022, 22(10), 882-893.
[http://dx.doi.org/10.2174/1566524022666211217114527] [PMID: 34923940]
[25]
Zhang, Y.; Zhang, H.; Wang, M.; Schmid, T.; Xin, Z.; Kozhuharova, L.; Yu, W.K.; Huang, Y.; Cai, F.; Biskup, E. Hypoxia in breast cancer—scientific translation to therapeutic and diagnostic clinical applications. Front. Oncol., 2021, 11, 652266.
[http://dx.doi.org/10.3389/fonc.2021.652266] [PMID: 33777815]
[26]
Kim, J.; Bae, J.S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/6058147] [PMID: 26966341]
[27]
Baek, J.H.; Jang, J.E.; Kang, C.M.; Chung, H.Y.; Kim, N.D.; Kim, K.W. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene, 2000, 19(40), 4621-4631.
[http://dx.doi.org/10.1038/sj.onc.1203814] [PMID: 11030151]
[28]
Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer cell metabolism in hypoxia: Role of HIF-1 as key regulator and therapeutic target. Int. J. Mol. Sci., 2021, 22(11), 5703.
[http://dx.doi.org/10.3390/ijms22115703] [PMID: 34071836]
[29]
Gilkes, D.M.; Semenza, G.L. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol., 2013, 9(11), 1623-1636.
[http://dx.doi.org/10.2217/fon.13.92] [PMID: 24156323]
[30]
Cai, F.F.; Xu, C.; Pan, X.; Cai, L.; Lin, X.Y.; Chen, S.; Biskup, E. Prognostic value of plasma levels of HIF-1a and PGC-1a in breast cancer. Oncotarget, 2016, 7(47), 77793-77806.
[http://dx.doi.org/10.18632/oncotarget.12796] [PMID: 27780920]
[31]
Hung, S.P.; Yang, M.H.; Tseng, K.F.; Lee, O.K. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant., 2013, 22(10), 1869-1882.
[http://dx.doi.org/10.3727/096368912X657954] [PMID: 23067574]
[32]
Kummar, S.; Raffeld, M.; Juwara, L.; Horneffer, Y.; Strassberger, A.; Allen, D.; Steinberg, S.M.; Rapisarda, A.; Spencer, S.D.; Figg, W.D.; Chen, X.; Turkbey, I.B.; Choyke, P.; Murgo, A.J.; Doroshow, J.H.; Melillo, G. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α in advanced solid tumors. Clin. Cancer Res., 2011, 17(15), 5123-5131.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0682] [PMID: 21673063]
[33]
Wong, C.C.L.; Gilkes, D.M.; Zhang, H.; Chen, J.; Wei, H.; Chaturvedi, P.; Fraley, S.I.; Wong, C.M.; Khoo, U.S.; Ng, I.O.L.; Wirtz, D.; Semenza, G.L. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc. Natl. Acad. Sci. USA, 2011, 108(39), 16369-16374.
[http://dx.doi.org/10.1073/pnas.1113483108] [PMID: 21911388]
[34]
Hunter, F.W.; Wouters, B.G.; Wilson, W.R. Hypoxia-activated prodrugs: Paths forward in the era of personalised medicine. Br. J. Cancer, 2016, 114(10), 1071-1077.
[http://dx.doi.org/10.1038/bjc.2016.79] [PMID: 27070712]