Mini-Reviews in Organic Chemistry

Author(s): Ning Chen, Xue Tian, Bing Liu*, Ting Zhu, Jintong Zhao and Ting Li

DOI: 10.2174/0118756298284383240110080227

DownloadDownload PDF Flyer Cite As
Cyclodepsipeptides: Isolation, Bioactivities, Biosynthesis and Total Synthesis

Page: [99 - 120] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Cyclodepsipeptides, mainly derived from marine organisms and soil microorganisms, are amphiphilic molecules consisting of short oligopeptides with fatty acid tails attached to form a macrocyclic structure. Studies on the activity of cyclodepsipeptides have shown that they have cytotoxicity, antibacterial and anthelmintic effects, and are widely used in biological control, drug development, environmental remediation and disease treatment. Cyclodepsipeptides play a prominent role in the development of new drugs and drug lead compounds, especially as antibiotics with great medicinal potentiall, and are slowly seeping into the public consciousness. The biosynthesis of cyclodepsipeptides is mainly based on the synthesis of non-ribosomal peptide synthases, and selection of key regulatory enzymes for homologue regulation and biosynthetic strategies using genetic engineering and metabolic engineering approaches. The biosynthesis method is miniaturised, recyclable, and safer. The total synthesis methods of cyclodepsipeptides are mainly combined solid-liquid phase methods, which synthesise cyclodepsipeptides faster and are easy to purify. This paper reviews the biological activities of cyclodepsipeptides, their biosynthesis, and total synthesis.

Keywords: Cyclodepsipeptides, antibacterial, bioactivities, biosynthesis, amphiphilic molecules, macrocyclic structure.

Graphical Abstract

[1]
Conrado, R.; Gomes, T.C.; Roque, G.S.C.; De Souza, A.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics, 2022, 11(11), 1604.
[http://dx.doi.org/10.3390/antibiotics11111604] [PMID: 36421247]
[2]
Zhao, Y.; Cartabia, A.; Lalaymia, I.; Declerck, S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza, 2022, 32(3-4), 221-256.
[http://dx.doi.org/10.1007/s00572-022-01079-0] [PMID: 35556179]
[3]
Teymuri, M.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Inhibitory effects and mechanism of antifungal action of the natural cyclic depsipeptide, aureobasidin A against Cryptococcus neoformans. Bioorg. Med. Chem. Lett., 2021, 41, 128013.
[http://dx.doi.org/10.1016/j.bmcl.2021.128013] [PMID: 33811994]
[4]
Wang, Y.; Lai, Y.S.; Zhang, Y.H. Advances in the research on synthesis and bioactivity of cyclic peptide. Pro Pharm Sci., 2008, (10), 440-446.
[5]
Liu, S.X.; Ou-Yang, S.Y.; Lu, Y.F.; Guo, C.L.; Dai, S.Y.; Li, C.; Yu, T.Y.; Pei, Y.H. Recent advances on cyclodepsipeptides: Biologically active compounds for drug research. Front. Microbiol., 2023, 14, 1276928.
[http://dx.doi.org/10.3389/fmicb.2023.1276928] [PMID: 37849925]
[6]
Ribeiro, R.; Pinto, E.; Fernandes, C.; Sousa, E. Marine cyclic peptides: Antimicrobial activity and synthetic strategies. Mar. Drugs, 2022, 20(6), 397.
[http://dx.doi.org/10.3390/md20060397] [PMID: 35736200]
[7]
Köcher, S.; Resch, S.; Kessenbrock, T.; Schrapp, L.; Ehrmann, M.; Kaiser, M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat. Prod. Rep., 2020, 37(2), 163-174.
[http://dx.doi.org/10.1039/C9NP00033J] [PMID: 31451830]
[8]
Dong, W.B. Research progress in natural APD-containing cyclic depsipeptide products. Int J Biologicals., 2018, 41(6), 306-309.
[http://dx.doi.org/10.3760/cma.j.issn.1673-4211.2018.06.011]
[9]
Benz, F.; Knüsel, F.; Nüesch, J.; Treichler, H.; Voser, W.; Nyfeler, R.; Keller-Schierlein, W. Stoffwechselprodukte von Mikroorganismen 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid‐Antibioticum aus Aspergillus nidulans var. echinulatus : Isolierung und Bausteine. Helv. Chim. Acta, 1974, 57(8), 2459-2477.
[http://dx.doi.org/10.1002/hlca.19740570818] [PMID: 4613708]
[10]
Michon, S.; Cavelier, F.; Salom-Roig, X.J. Synthesis and biological activities of cyclodepsipeptides of aurilide family from marine origin. Mar. Drugs, 2021, 19(2), 55.
[http://dx.doi.org/10.3390/md19020055] [PMID: 33498789]
[11]
Schneider, T.; Müller, A.; Miess, H.; Gross, H. Cyclic lipopeptides as antibacterial agents – Potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbiol., 2014, 304(1), 37-43.
[http://dx.doi.org/10.1016/j.ijmm.2013.08.009] [PMID: 24119568]
[12]
Cheng, Z.G.; Li, L.M.; Lv, Y.N. Advances in solid-phase cyclization strategies for cyclic peptides. Pharm. Biotechnol., 2021, 28(06), 641-647.
[http://dx.doi.org/10.19526/j.cnki.1005-8915.20210619]
[13]
Wang, X.J.; Yang., L.; Chen, L.G. Total synthesis of natural cyclic depsipetide-obyanamide. J. Org. Chem., 2007, (08), 1007-1012.
[14]
Wang, Y.; Lai, Y.S.; Zhang, Y.H. Advances in the research on synthesis and bioactivity of cyclic peptides. Prog Pharm Sci., 2008, (10), 440-446.
[15]
Ge, J.A.; Liu, C.; Gong, J.G.; Liu, Y.Q. Progress in the study of antimicrobial cyclic peptides. Chin. J. Biotechnol., 2018, 38(11), 76-83.
[http://dx.doi.org/10.13523/j.cb.20181110]
[16]
Huang, Y.; Li, J.; Chen, S.; Liu, W.; Wu, M.; Zhu, D.; Xie, Y. [Advances in the biosynthesis of cyclodipeptide type natural products derived from actinomycetes]. Chin. J. Biotechnol., 2023, 39(11), 4497-4516.
[PMID: 38013180]
[17]
Wang, C.; Xu, Y. [Advances in engineering non-ribosomal peptide synthetase]. Chin. J. Biotechnol., 2021, 37(6), 1845-1857.
[PMID: 34227280]
[18]
Ueoka, R.; Bhushan, A.; Probst, S.I.; Bray, W.M.; Lokey, R.S.; Linington, R.G.; Piel, J. Genome‐based identification of a plant‐associated marine bacterium as a rich natural product source. Angew. Chem. Int. Ed., 2018, 57(44), 14519-14523.
[http://dx.doi.org/10.1002/anie.201805673] [PMID: 30025185]
[19]
Mondal, J.; Sarkar, R.; Sen, P.; Goswami, R.K. Total synthesis and stereochemical assignment of sunshinamide and its anticancer activity. Org. Lett., 2020, 22(3), 1188-1192.
[http://dx.doi.org/10.1021/acs.orglett.0c00070] [PMID: 31965806]
[20]
Wang, Y.J.; Liu, C.Y.; Wang, Y.L.; Zhang, F.X.; Lu, Y.F.; Dai, S.Y.; Li, C.; Sun, Y.; Pei, Y.H. Cytotoxic cyclodepsipeptides and cyclopentane derivatives from a plant-associated fungus Fusarium sp. J. Nat. Prod., 2022, 85(11), 2592-2602.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00555] [PMID: 36288556]
[21]
Liu, Z.; Sun, Y.; Tang, M.; Sun, P.; Wang, A.; Hao, Y.; Wang, Y.; Pei, Y. Trichodestruxins A–D: Cytotoxic cyclodepsipeptides from the endophytic fungus Trichoderma harzianum. J. Nat. Prod., 2020, 83(12), 3635-3641.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00808] [PMID: 33301677]
[22]
Medina, R.A.; Goeger, D.E.; Hills, P.; Mooberry, S.L.; Huang, N.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H.; McPhail, K.L. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem. Soc., 2008, 130(20), 6324-6325.
[http://dx.doi.org/10.1021/ja801383f] [PMID: 18444611]
[23]
Hau, A.M.; Greenwood, J.A.; Löhr, C.V.; Serrill, J.D.; Proteau, P.J.; Ganley, I.G.; McPhail, K.L.; Ishmael, J.E. Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells. PLoS One, 2013, 8(6), e65250.
[http://dx.doi.org/10.1371/journal.pone.0065250] [PMID: 23762328]
[24]
Wu, C.; Cheng, Z.; Lu, D.; Liu, K.; Cheng, Y.; Wang, P.; Zhou, Y.; Li, M.; Shao, X.; Li, H.; Su, W.; Fang, L. Novel N -methylated cyclodepsipeptide prodrugs for targeted cancer therapy. J. Med. Chem., 2021, 64(2), 991-1000.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01387] [PMID: 33417771]
[25]
Shi, W.; Lu, D.; Wu, C.; Li, M.; Ding, Z.; Li, Y.; Chen, B.; Lin, X.; Su, W.; Shao, X.; Xia, Z.; Fang, L.; Liu, K.; Li, H. Coibamide A kills cancer cells through inhibiting autophagy. Biochem. Biophys. Res. Commun., 2021, 547, 52-58.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.112] [PMID: 33592379]
[26]
Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Corbett, T.H. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc., 2001, 123(23), 5418-5423.
[http://dx.doi.org/10.1021/ja010453j] [PMID: 11389621]
[27]
Zhang, W.; Liu, G.; Yin, R.; Li, Y. Research progress of apratoxin A:A marine cyclicdepsipeptide with significant anti-cancer activity. Youji Huaxue, 2014, 34(3), 475-484.
[http://dx.doi.org/10.6023/cjoc201310033]
[28]
Paatero, A.O.; Kellosalo, J.; Dunyak, B.M.; Almaliti, J.; Gestwicki, J.E.; Gerwick, W.H.; Taunton, J.; Paavilainen, V.O. Apratoxin kills cells by direct blockade of the sec61 protein translocation channel. Cell Chem. Biol., 2016, 23(5), 561-566.
[http://dx.doi.org/10.1016/j.chembiol.2016.04.008] [PMID: 27203376]
[29]
Torres, J.P.; Lin, Z.; Fenton, D.S.; Leavitt, L.U.; Niu, C.; Lam, P.Y.; Robes, J.M.; Peterson, R.T.; Concepcion, G.P.; Haygood, M.G.; Olivera, B.M.; Schmidt, E.W. Boholamide A, an APD-class, hypoxia-selective cyclodepsipeptide. J. Nat. Prod., 2020, 83(4), 1249-1257.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00038] [PMID: 32186874]
[30]
Jacobsen, K.M.; Villadsen, N.L.; Tørring, T.; Nielsen, C.B.; Salomón, T.; Nielsen, M.M.; Tsakos, M.; Sibbersen, C.; Scavenius, C.; Nielsen, R.; Christensen, E.I.; Guerra, P.F.; Bross, P.; Pedersen, J.S.; Enghild, J.J.; Johannsen, M.; Frøkiær, J.; Overgaard, J.; Horsman, M.R.; Busk, M.; Poulsen, T. B. Cyclolipodepsipeptides target mitochondrial function in hypoxic cancer cells. Cell Chem Biol., 2018, 25(11), 1337-1349,e12..
[http://dx.doi.org/10.1016/j.chembiol.2018.07.010]
[31]
Monteith, G.R.; Davis, F.M.; Roberts-Thomson, S.J. Calcium channels and pumps in cancer: Changes and consequences. J. Biol. Chem., 2012, 287(38), 31666-31673.
[http://dx.doi.org/10.1074/jbc.R112.343061] [PMID: 22822055]
[32]
Terracciano, S.; Bruno, I.; D’Amico, E.; Bifulco, G.; Zampella, A.; Sepe, V.; Smith, C.D.; Riccio, R. Synthetic and pharmacological studies on new simplified analogues of the potent actin-targeting Jaspamide. Bioorg. Med. Chem., 2008, 16(13), 6580-6588.
[http://dx.doi.org/10.1016/j.bmc.2008.05.019] [PMID: 18508272]
[33]
Zhou, H.; Cong, B.; Tian, Y.; He, Y.; Yang, H. Characterization of novel cyclic lipopeptides produced by Bacillus sp. SY27F. Process Biochem., 2019, 83(83), 206-213.
[http://dx.doi.org/10.1016/j.procbio.2019.04.015]
[34]
Routhu, S.R.; Nagarjuna Chary, R.; Shaik, A.B.; Prabhakar, S.; Ganesh, K.C.; Kamal, A. Induction of apoptosis in lung carcinoma cells by antiproliferative cyclic lipopeptides from marine algicolous isolate Bacillus atrophaeus strain AKLSR1. Process Biochem., 2019, 79(79), 142-154.
[http://dx.doi.org/10.1016/j.procbio.2018.12.010]
[35]
Luo, D.; Putra, M.; Ye, T.; Paul, V.; Luesch, H. Isolation, structure elucidation and biological evaluation of lagunamide D: A new cytotoxic macrocyclic depsipeptide from marine cyanobacteria. Mar. Drugs, 2019, 17(2), 83.
[http://dx.doi.org/10.3390/md17020083] [PMID: 30717076]
[36]
Luo, D.; Ratnayake, R.; Atanasova, K.R.; Paul, V.J.; Luesch, H. Targeted and functional genomics approaches to the mechanism of action of lagunamide D, a mitochondrial cytotoxin from marine cyanobacteria. Biochem. Pharmacol., 2023, 213, 115608.
[http://dx.doi.org/10.1016/j.bcp.2023.115608] [PMID: 37201874]
[37]
Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schäberle, T.F.; Hughes, D.E.; Epstein, S.; Jones, M.; Lazarides, L.; Steadman, V.A.; Cohen, D.R.; Felix, C.R.; Fetterman, K.A.; Millett, W.P.; Nitti, A.G.; Zullo, A.M.; Chen, C.; Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature, 2015, 517(7535), 455-459.
[http://dx.doi.org/10.1038/nature14098] [PMID: 25561178]
[38]
Yang, H.; Wierzbicki, M.; Du Bois, D.R.; Nowick, J.S. X-ray crystallographic structure of a teixobactin derivative reveals amyloid-like assembly. J. Am. Chem. Soc., 2018, 140(43), 14028-14032.
[http://dx.doi.org/10.1021/jacs.8b07709] [PMID: 30296063]
[39]
Guo, C.; Mandalapu, D.; Ji, X.; Gao, J.; Zhang, Q. Chemistry and biology of teixobactin. Chemistry, 2018, 24(21), 5406-5422.
[http://dx.doi.org/10.1002/chem.201704167] [PMID: 28991382]
[40]
Liang, M.; Lyu, H.N.; Ma, Z.Y.; Li, E.W.; Cai, L.; Yin, W.B. Genomics-driven discovery of a new cyclodepsipeptide from the guanophilic fungus Amphichorda guana. Org. Biomol. Chem., 2021, 19(9), 1960-1964.
[http://dx.doi.org/10.1039/D1OB00100K] [PMID: 33599675]
[41]
Zhang, L.; Wang, Y.; Huang, W.; Wei, Y.; Jiang, Z.; Kong, L.; Wu, A.; Hu, Z.; Huang, H.; Xu, Q.; Li, L.; Deng, X. Biosynthesis and chemical diversification of verucopeptin leads to structural and functional versatility. Org. Lett., 2020, 22(11), 4366-4371.
[http://dx.doi.org/10.1021/acs.orglett.0c01387] [PMID: 32459492]
[42]
Sun, C.; Yang, Z.; Zhang, C.; Liu, Z.; He, J.; Liu, Q.; Zhang, T.; Ju, J.; Ma, J. Genome mining of Streptomyces atratus SCSIO ZH16: Discovery of atratumycin and identification of its biosynthetic gene cluster. Org. Lett., 2019, 21(5), 1453-1457.
[http://dx.doi.org/10.1021/acs.orglett.9b00208] [PMID: 30746943]
[43]
Liu, Q.; Liu, Z.; Sun, C.; Shao, M.; Ma, J.; Wei, X.; Zhang, T.; Li, W.; Ju, J. Discovery and biosynthesis of atrovimycin, an antitubercular and antifungal cyclodepsipeptide featuring vicinal-dihydroxylated cinnamic acyl chain. Org. Lett., 2019, 21(8), 2634-2638.
[http://dx.doi.org/10.1021/acs.orglett.9b00618] [PMID: 30958008]
[44]
Bai, M.; Zhong, Z.J.; Li, X.J.; Peng, Y.H.; Xu, L.X. Secondary metabolites of endophytic Fusarium sporotrichioides SC1608 from Eichhornia crassipes. Junwu Xuebao, 2021, 40(1), 232-239.
[http://dx.doi.org/10.13346/j.mycosystema.200224]
[45]
Gong, A.D.; Li, H.P.; Yuan, Q.S.; Song, X.S.; Yao, W.; He, W.J.; Zhang, J.B.; Liao, Y.C. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One, 2015, 10(2), e0116871.
[http://dx.doi.org/10.1371/journal.pone.0116871] [PMID: 25689464]
[46]
Zhao, X.; Zhou, L.; Xu, X.; Ai, C.; Zhao, P.; Yan, L.; Jiang, C.; Shi, J. Recovery of Ag+ by cyclic lipopeptide iturin A and corresponding chain peptide: reaction mechanisms, kinetics, toxicity reduction, and applications. Sci. Total Environ., 2021, 763, 142988.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142988] [PMID: 33129541]
[47]
Shan, M.Y.; Meng, F.Q.; Zhou, L.B.; Lu, F.X.; Bie, X.M.; Zhao, H.Z.; Lu, Z.X. Surfactin inhibits the growth of Propionibacterium acnes by destroying the cell wall and membrane. Lett. Appl. Microbiol., 2021, 73(6), 684-693.
[http://dx.doi.org/10.1111/lam.13576] [PMID: 34607389]
[48]
Chen, X.; Lu, Y.; Shan, M.; Zhao, H.; Lu, Z.; Lu, Y. A mini-review: Mechanism of antimicrobial action and application of surfactin. World J. Microbiol. Biotechnol., 2022, 38(8), 143.
[http://dx.doi.org/10.1007/s11274-022-03323-3] [PMID: 35718798]
[49]
Zhang, L.; Sun, C. Fengycins, cyclic lipopeptides from marine bacillus subtilis strains, kill the plant-pathogenic fungus magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl. Environ. Microbiol., 2018, 84(18), e00445-18.
[http://dx.doi.org/10.1128/AEM.00445-18] [PMID: 29980550]
[50]
Bie, X.; Lu, Z.; Lu, F. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Methods, 2009, 79(3), 272-278.
[http://dx.doi.org/10.1016/j.mimet.2009.09.013] [PMID: 19781583]
[51]
Jin, Q.; Xiao, M. Novel antimicrobial peptides: Surfactin, iturin and fengycin. J Microb. Infect., 2018, 13(1), 56-64.
[52]
Zhu, H.J.; Wu, S.L.; Tang, S.J.; Xu, J.; He, Y.L.; Ren, Z.H.; Liu, E. Isolation, identification and characterization of biopotential cyclic lipopeptides from Bacillus subtilis strain JN005 and its antifungal activity against rice pathogen Magnaporthe oryzae. Biol. Control., 2023, 182, 105241.
[http://dx.doi.org/10.1016/j.biocontrol.2023.105241]
[53]
Liu, J.; Liu, M.; Wang, J.; Yao, J.M.; Pan, R.R.; Yu, Z.L. Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation. Appl. Microbiol. Biotechnol., 2005, 69(2), 223-228.
[http://dx.doi.org/10.1007/s00253-005-1981-7] [PMID: 15838674]
[54]
Cheng, W.; Ren, J.; Jing, D.; Wang, C.; Wang, C. Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma, 2016, 63(2), 215-222.
[http://dx.doi.org/10.4149/206_150518N270] [PMID: 26774143]
[55]
Tawfik, K.A.; Jeffs, P.; Bray, B.; Dubay, G.; Falkinham, J.O., III; Mesbah, M.; Youssef, D.; Khalifa, S.; Schmidt, E.W. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org. Lett., 2010, 12(4), 664-666.
[http://dx.doi.org/10.1021/ol9029269] [PMID: 20085289]
[56]
Konno, H.; Otsuki, Y.; Matsuzaki, K.; Nosaka, K. Synthesis and antifungal activities of cyclic octa-lipopeptide burkholdine analogues. Bioorg. Med. Chem. Lett., 2013, 23(14), 4244-4247.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.091] [PMID: 23769641]
[57]
Viehrig, K.; Surup, F.; Harmrolfs, K.; Jansen, R.; Kunze, B.; Müller, R. Concerted action of P450 plus helper protein to form the amino-hydroxy-piperidone moiety of the potent protease inhibitor crocapeptin. J. Am. Chem. Soc., 2013, 135(45), 16885-16894.
[http://dx.doi.org/10.1021/ja4047153] [PMID: 24171398]
[58]
Nagarajan, M.; Maruthanayagam, V.; Sundararaman, M. SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: A review. J. Appl. Toxicol., 2013, 33(5), 313-349.
[http://dx.doi.org/10.1002/jat.2833] [PMID: 23172644]
[59]
Kodani, S.; Komaki, H.; Hemmi, H.; Miyake, Y.; Kaweewan, I.; Dohra, H. Streptopeptolin, a cyanopeptolin-type peptide from Streptomyces olivochromogenes. ACS Omega, 2018, 3(7), 8104-8110.
[http://dx.doi.org/10.1021/acsomega.8b01042] [PMID: 30087936]
[60]
Köcher, S.; Rey, J.; Bongard, J.; Tiaden, A.N.; Meltzer, M.; Richards, P.J.; Ehrmann, M.; Kaiser, M. Tailored Ahp‐cyclodepsipeptides as potent non‐covalent serine protease inhibitors. Angew. Chem. Int. Ed., 2017, 56(29), 8555-8558.
[http://dx.doi.org/10.1002/anie.201701771] [PMID: 28514117]
[61]
Keller, L.; Canuto, K.M.; Liu, C.; Suzuki, B.M.; Almaliti, J.; Sikandar, A.; Naman, C.B.; Glukhov, E.; Luo, D.; Duggan, B.M.; Luesch, H.; Koehnke, J.; O’Donoghue, A.J.; Gerwick, W.H. Tutuilamides A–C: Vinyl-chloride-containing cyclodepsipeptides from marine cyanobacteria with potent elastase inhibitory properties. ACS Chem. Biol., 2020, 15(3), 751-757.
[http://dx.doi.org/10.1021/acschembio.9b00992] [PMID: 31935054]
[62]
Du, F.Y.; Li, X.M.; Sun, Z.C.; Meng, L.H.; Wang, B.G. Secondary metabolites with agricultural antagonistic potentials from Beauveria felina, a marine-derived entomopathogenic fungus. J. Agric. Food Chem., 2020, 68(50), 14824-14831.
[http://dx.doi.org/10.1021/acs.jafc.0c05696] [PMID: 33322905]
[63]
Lam, K.T.; Williams, D.L., Jr; Sigmund, J.M.; Sanchez, M.; Genilloud, O.; Kong, Y.L.; Stevens-Miles, S.; Huang, L.; Garrity, G.M. Cochinmicins, novel and potent cyclodepsipeptide endothelin antagonists from a Microbispora sp. I. Production, isolation, and characterization. J. Antibiot., 1992, 45(11), 1709-1716.
[http://dx.doi.org/10.7164/antibiotics.45.1709] [PMID: 1468977]
[64]
Lam, K.T.; Zink, D.L.; Williams, D.L., Jr; Burgess, B.W. Additional cochinmicins from A Microbispora sp. J. Antibiot., 1992, 45(11), 1792-1794.
[http://dx.doi.org/10.7164/antibiotics.45.1792] [PMID: 1468988]
[65]
Carrillo, C.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim. Biophys. Acta Biomembr., 2003, 1611(1-2), 91-97.
[http://dx.doi.org/10.1016/S0005-2736(03)00029-4] [PMID: 12659949]
[66]
Yuan, L.; Zhang, S.; Wang, Y.; Li, Y.; Wang, X.; Yang, Q. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. J. Virol., 2018, 92(21), e00809-18.
[http://dx.doi.org/10.1128/JVI.00809-18] [PMID: 30068648]
[67]
Shekunov, E.V.; Zlodeeva, P.D.; Efimova, S.S.; Muryleva, A.A.; Zarubaev, V.V.; Slita, A.V.; Ostroumova, O.S. Cyclic lipopeptides as membrane fusion inhibitors against SARS-CoV-2: New tricks for old dogs. Antiviral Res., 2023, 212, 105575.
[http://dx.doi.org/10.1016/j.antiviral.2023.105575] [PMID: 36868316]
[68]
Wu, Y.S.; Ngai, S.C.; Goh, B.H.; Chan, K.G.; Lee, L.H.; Chuah, L.H. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front. Pharmacol., 2017, 8, 761.
[http://dx.doi.org/10.3389/fphar.2017.00761] [PMID: 29123482]
[69]
Duarte, C.; Gudiña, E.J.; Lima, C.F.; Rodrigues, L.R. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express, 2014, 4(1), 40.
[http://dx.doi.org/10.1186/s13568-014-0040-0] [PMID: 24949273]
[70]
Gu, Y.L.; Li, J.Z. Pseudomonas cyclic lipopeptide medpeptin: Biosynthesis and modulation of plant immunity. Eng., 2023, 28, 153-165.
[71]
Yang, Q.; Cheng, B.T.; Tang, Z. Applications and prospects of genome mining in the discovery of natural products. Synth. Biol., 2021, 2(5), 697-715.
[72]
Schnegotzki, R.; Wiebach, V.; Sánchez-Hidalgo, M.; Tietzmann, M.; zur Bonsen, A.B.; Genilloud, O.; Süssmuth, R.D. Total synthesis and biosynthesis of cyclodepsipeptide cochinmicin I. Org. Lett., 2022, 24(12), 2344-2348.
[http://dx.doi.org/10.1021/acs.orglett.2c00525] [PMID: 35311291]
[73]
Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; Breitling, R.; Takano, E.; Medema, M.H. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res., 2015, 43(W1), W237-W243.
[http://dx.doi.org/10.1093/nar/gkv437] [PMID: 25948579]
[74]
Wu, Q.; Liang, J.; Lin, S.; Zhou, X.; Bai, L.; Deng, Z.; Wang, Z. Characterization of the biosynthesis gene cluster for the pyrrole polyether antibiotic calcimycin (A23187) in Streptomyces chartreusis NRRL 3882. Antimicrob. Agents Chemother., 2011, 55(3), 974-982.
[http://dx.doi.org/10.1128/AAC.01130-10] [PMID: 21173184]
[75]
Pfeifer, V.; Nicholson, G.J.; Ries, J.; Recktenwald, J.; Schefer, A.B.; Shawky, R.M.; Schröder, J.; Wohlleben, W.; Pelzer, S. A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine. J. Biol. Chem., 2001, 276(42), 38370-38377.
[http://dx.doi.org/10.1074/jbc.M106580200] [PMID: 11495926]
[76]
Gaudelli, N.M.; Townsend, C.A. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis. Nat. Chem. Biol., 2014, 10(4), 251-258.
[http://dx.doi.org/10.1038/nchembio.1456] [PMID: 24531841]
[77]
Süssmuth, R.D.; Mainz, A. Nonribosomal peptide synthesis—principles and prospects. Angew. Chem. Int. Ed., 2017, 56(14), 3770-3821.
[http://dx.doi.org/10.1002/anie.201609079] [PMID: 28323366]
[78]
Walsh, C.T. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat. Prod. Rep., 2016, 33(2), 127-135.
[http://dx.doi.org/10.1039/C5NP00035A] [PMID: 26175103]
[79]
Zou, X.; Hui, Z.; Shepherd, R.A.; Zhao, S.; Wu, Y.; Shen, Z.; Pang, C.; Zhou, S.; Yu, Z.; Zhou, J.; Moore, B.S.; Sanchez, L.M.; Tang, X. Unveiling a CAAX protease‐like protein involved in didemnin drug maturation and secretion. Adv. Sci., 2023, 2306044.
[http://dx.doi.org/10.1002/advs.202306044] [PMID: 38032137]
[80]
Reimer, D.; Pos, K.M.; Thines, M.; Grün, P.; Bode, H.B. A natural prodrug activation mechanism in nonribosomal peptide synthesis. Nat. Chem. Biol., 2011, 7(12), 888-890.
[http://dx.doi.org/10.1038/nchembio.688] [PMID: 21926994]
[81]
White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; Martinez-Romero, C.; Batra, J.; Rojc, A.; Bouhaddou, M.; Fabius, J.M.; Obernier, K.; Dejosez, M.; Guillén, M.J.; Losada, A.; Avilés, P.; Schotsaert, M.; Zwaka, T.; Vignuzzi, M.; Shokat, K.M.; Krogan, N.J.; García-Sastre, A. Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371(6532), 926-931.
[http://dx.doi.org/10.1126/science.abf4058] [PMID: 33495306]
[82]
Manolaridis, I.; Kulkarni, K.; Dodd, R.B.; Ogasawara, S.; Zhang, Z.; Bineva, G.; O’Reilly, N.; Hanrahan, S.J.; Thompson, A.J.; Cronin, N.; Iwata, S.; Barford, D. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature, 2013, 504(7479), 301-305.
[http://dx.doi.org/10.1038/nature12754] [PMID: 24291792]
[83]
Rahmadani, A.; Masruhim, M.A.; Rijai, L.; Hidayat, A.T.; Supratman, U.; Maharani, T. Total synthesis of cyclohexadepsipeptides exumolides A and B. Tetrahedron, 2021, 83, 131987.
[http://dx.doi.org/10.1016/j.tet.2021.131987]
[84]
Jenkins, K.M.; Renner, M.K.; Jensen, P.R.; Fenical, W. Exumolides A and B: Antimicroalgal cyclic depsipeptides produced by a marine fungus of the genus Scytalidium. Tetrahedron Lett., 1998, 39(17), 2463-2466.
[http://dx.doi.org/10.1016/S0040-4039(98)00288-3]
[85]
Coin, I.; Beerbaum, M.; Schmieder, P.; Bienert, M.; Beyermann, M. Solid-phase synthesis of a cyclodepsipeptide: cotransin. Org. Lett., 2008, 10(17), 3857-3860.
[http://dx.doi.org/10.1021/ol800855p] [PMID: 18651745]
[86]
Ohsawa, K.; Fukaya, S.; Doi, T. Total synthesis and structural determination of cyclodepsipeptide decatransin. Org. Lett., 2022, 24(30), 5552-5556.
[http://dx.doi.org/10.1021/acs.orglett.2c02085] [PMID: 35867629]
[87]
Yoshida, M.; Sato, H.; Ishida, Y.; Nakagawa, H.; Doi, T. Scalable solution-phase synthesis of the biologically active cyclodepsipeptide destruxin E, a potent negative regulator of osteoclast morphology. J. Org. Chem., 2014, 79(1), 296-306.
[http://dx.doi.org/10.1021/jo402437z] [PMID: 24251640]
[88]
Crimmins, M.T.; Emmitte, K.A.; Katz, J.D. Diastereoselective alkylations of oxazolidinone glycolates: a useful extension of the Evans asymmetric alkylation. Org. Lett., 2000, 2(14), 2165-2167.
[http://dx.doi.org/10.1021/ol006091m] [PMID: 10891257]
[89]
Kitamura, M.; Shirakawa, S.; Maruoka, K. Powerful chiral phase-transfer catalysts for the asymmetric synthesis of alpha-alkyl- and alpha,alpha-dialkyl-alpha-amino acids. Angew. Chem. Int. Ed., 2005, 44(10), 1549-1551.
[http://dx.doi.org/10.1002/anie.200462257] [PMID: 15685673]
[90]
Li, K.W.; Wu, J.; Xing, W.; Simon, J.A. Total synthesis of the antitumor depsipeptide FR-901,228. J. Am. Chem. Soc., 1996, 118(30), 7237-7238.
[http://dx.doi.org/10.1021/ja9613724]
[91]
Pelay-Gimeno, M.; García-Ramos, Y.; Jesús Martin, M.; Spengler, J.; Molina-Guijarro, J.M.; Munt, S.; Francesch, A.M.; Cuevas, C.; Tulla-Puche, J.; Albericio, F. The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nat. Commun., 2013, 4(1), 2352.
[http://dx.doi.org/10.1038/ncomms3352] [PMID: 23989475]
[92]
Spengler, J.; Pelay, M.; Tulla-Puche, J.; Albericio, F. Synthesis of orthogonally protected l-threo-β-ethoxyasparagine. Amino Acids, 2010, 39(1), 161-165.
[http://dx.doi.org/10.1007/s00726-009-0389-6] [PMID: 19921395]
[93]
Çalimsiz, S.; Morales Ramos, Á.I.; Lipton, M.A. Solid-phase synthesis and configurational reassigment of callipeltin E. Implications for the structures of callipeltins A and B. J. Org. Chem., 2006, 71(17), 6351-6356.
[http://dx.doi.org/10.1021/jo060351h] [PMID: 16901115]
[94]
Çalimsiz, S.; Lipton, M.A. Synthesis of N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine: An application of lanthanide-catalyzed transamidation. J. Org. Chem., 2005, 70(16), 6218-6221.
[http://dx.doi.org/10.1021/jo050518r] [PMID: 16050680]
[95]
Acevedo, C.M.; Kogut, E.F.; Lipton, M.A. Synthesis and analysis of the sterically constrained l-glutamine l-pyroglutamic acid. Tetrahedron, 2001, 57(30), 6353-6359.
[http://dx.doi.org/10.1016/S0040-4020(01)00501-4]
[96]
Kim, S.; McAlpine, S. Solid phase versus solution phase synthesis of heterocyclic macrocycles. Molecules, 2013, 18(1), 1111-1121.
[http://dx.doi.org/10.3390/molecules18011111] [PMID: 23325099]
[97]
Prior, A.; Hori, T.; Fishman, A.; Sun, D. Recent reports of solid-phase cyclohexapeptide synthesis and applications. Molecules, 2018, 23(6), 1475.
[http://dx.doi.org/10.3390/molecules23061475] [PMID: 29912160]