The Future of Cystic Fibrosis Care: Exploring AI's Impact on Detection and Therapy

Page: [302 - 321] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Cystic Fibrosis (CF) is a fatal hereditary condition marked by thicker mucus production, which can cause problems with the digestive and respiratory systems. The quality of life and survival rates of CF patients can be improved by early identification and individualized therapy measures. With an emphasis on its applications in diagnosis and therapy, this paper investigates how Artificial Intelligence (AI) is transforming the management of Cystic Fibrosis (CF). AI-powered algorithms are revolutionizing CF diagnosis by utilizing huge genetic, clinical, and imaging data databases. In order to identify CF mutations quickly and precisely, machine learning methods evaluate genomic profiles. Furthermore, AI-driven imaging analysis helps to identify lung and gastrointestinal issues linked to cystic fibrosis early and allows for prompt treatment. Additionally, AI aids in individualized CF therapy by anticipating how patients will react to already available medications and enabling customized treatment regimens. Drug repurposing algorithms find prospective candidates from already-approved drugs, advancing treatment choices. Additionally, AI supports the optimization of pharmacological combinations, enhancing therapeutic results while minimizing side effects. AI also helps with patient stratification by connecting people with CF mutations to therapies that are best for their genetic profiles. Improved treatment effectiveness is promised by this tailored strategy. The transformational potential of artificial intelligence (AI) in the field of cystic fibrosis is highlighted in this review, from early identification to individualized medication, bringing hope for better patient outcomes, and eventually prolonging the lives of people with this difficult ailment.

[1]
Vankeerberghen A, Cuppens H, Cassiman JJ. The cystic fibrosis transmembrane conductance regulator: An intriguing protein with pleiotropic functions. J Cyst Fibros 2002; 1(1): 13-29.
[http://dx.doi.org/10.1016/S1569-1993(01)00003-0] [PMID: 15463806]
[2]
Moskowitz SM, Chmiel JF, Sternen DL, et al. Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genet Med 2008; 10(12): 851-68.
[http://dx.doi.org/10.1097/GIM.0b013e31818e55a2] [PMID: 19092437]
[3]
Ferec C, Cutting GR. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med 2012; 2(12): a009480.
[http://dx.doi.org/10.1101/cshperspect.a009480] [PMID: 23209179]
[4]
Rafeeq MM, Murad HAS. Cystic fibrosis: Current therapeutic targets and future approaches. J Transl Med 2017; 15(1): 84.
[http://dx.doi.org/10.1186/s12967-017-1193-9] [PMID: 28449677]
[5]
Jacob J, Bartholmai BJ, Rajagopalan S, et al. Automated quantitative computed tomography versus visual computed tomography scoring in idiopathic pulmonary fibrosis. J Thorac Imaging 2016; 31(5): 304-11.
[http://dx.doi.org/10.1097/RTI.0000000000000220] [PMID: 27262146]
[6]
Ramos KJ, Smith PJ, McKone EF, et al. Lung transplant referral for individuals with cystic fibrosis: Cystic fibrosis foundation consensus guidelines. J Cyst Fibros 2019; 18(3): 321-33.
[http://dx.doi.org/10.1016/j.jcf.2019.03.002] [PMID: 30926322]
[7]
Keogh RH, Seaman SR, Barrett JK, Taylor-Robinson D, Szczesniak R. Dynamic prediction of survival in cystic fibrosis. Epidemiology 2019; 30(1): 29-37.
[http://dx.doi.org/10.1097/EDE.0000000000000920] [PMID: 30234550]
[8]
Ohno Y, Aoyagi K, Takenaka D, et al. Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases. Eur J Radiol 2021; 134: 109410.
[http://dx.doi.org/10.1016/j.ejrad.2020.109410] [PMID: 33246272]
[9]
Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011; 183(6): 788-824.
[http://dx.doi.org/10.1164/rccm.2009-040GL] [PMID: 21471066]
[10]
Alaa AM, van der Schaar M. Prognostication and risk factors for cystic fibrosis via automated machine learning. Sci Rep 2018; 8(1): 11242.
[http://dx.doi.org/10.1038/s41598-018-29523-2] [PMID: 30050169]
[11]
Demeyer S, De Boeck K, Witters P, Cosaert K. Beyond pancreatic insufficiency and liver disease in cystic fibrosis. Eur J Pediatr 2016; 175(7): 881-94.
[http://dx.doi.org/10.1007/s00431-016-2719-5] [PMID: 27055450]
[12]
Ronan NJ, Elborn JS, Plant BJ. Current and emerging comorbidities in cystic fibrosis. Presse Med 2017; 46(6): e125-38.
[http://dx.doi.org/10.1016/j.lpm.2017.05.011] [PMID: 28554721]
[13]
Schroeder TH, Reiniger N, Meluleni G, Grout M, Coleman FT, Pier GB. Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. J Immunol 2001; 166(12): 7410-8.
[http://dx.doi.org/10.4049/jimmunol.166.12.7410] [PMID: 11390493]
[14]
Servidoni MF, Gomez CCS, Marson FAL, et al. Sweat test and cystic fibrosis: Overview of test performance at public and private centers in the state of São Paulo, Brazil. J Bras Pneumol 2017; 43(2): 121-8.
[http://dx.doi.org/10.1590/s1806-37562016000000076] [PMID: 28538779]
[15]
Schmidt H, Sharma G.  Sweat Testing StatPearls. Treasure Island (FL).: StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC. 2023.
[16]
Crossley JR, Smith PA, Edgar BW, Gluckman PD, Elliott RB. Neonatal screening for cystic fibrosis, using immunoreactive trypsin assay in dried blood spots. Clin Chim Acta 1981; 113(2): 111-21.
[http://dx.doi.org/10.1016/0009-8981(81)90145-5] [PMID: 7249357]
[17]
Crossle JR, Elliot RB, Smith P. Dried-blood spot screening for cystic fibrosis in the newborn. Lancet 1979; 313(8114): 472-4.
[http://dx.doi.org/10.1016/S0140-6736(79)90825-0] [PMID: 85057]
[18]
Kharrazi M, Sacramento C, Comeau A, et al. Missed cystic fibrosis newborn screening cases due to immunoreactive trypsinogen levels below program cutoffs: A national survey of risk factors. Int J Neonatal Screen 2022; 8(4): 58.
[http://dx.doi.org/10.3390/ijns8040058] [PMID: 36412584]
[19]
Castellani C, Cuppens H, Macek M Jr, et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 2008; 7(3): 179-96.
[http://dx.doi.org/10.1016/j.jcf.2008.03.009] [PMID: 18456578]
[20]
Borowitz D, Baker SS, Duffy L, et al. Use of fecal elastase-1 to classify pancreatic status in patients with cystic fibrosis. J Pediatr 2004; 145(3): 322-6.
[http://dx.doi.org/10.1016/j.jpeds.2004.04.049] [PMID: 15343184]
[21]
Capurso G, Traini M, Piciucchi M, Signoretti M, Arcidiacono PG. Exocrine pancreatic insufficiency: Prevalence, diagnosis, and management. Clin Exp Gastroenterol 2019; 12: 129-39.
[http://dx.doi.org/10.2147/CEG.S168266] [PMID: 30962702]
[22]
Rowe SM, Accurso F, Clancy JP. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc Am Thorac Soc 2007; 4(4): 387-98.
[http://dx.doi.org/10.1513/pats.200703-043BR] [PMID: 17652506]
[23]
Rowe SM, Clancy JP, Wilschanski M. Nasal potential difference measurements to assess CFTR ion channel activity. Methods Mol Biol 2011; 741: 69-86.
[http://dx.doi.org/10.1007/978-1-61779-117-8_6] [PMID: 21594779]
[24]
Schüler D, Sermet-Gaudelus I, Wilschanski M, et al. Basic protocol for transepithelial nasal potential difference measurements. J Cyst Fibros 2004; 3 (Suppl. 2): 151-5.
[http://dx.doi.org/10.1016/j.jcf.2004.05.032] [PMID: 15463949]
[25]
Clancy JP, Szczesniak RD, Ashlock MA, et al. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function. PLoS One 2013; 8(9): e73905.
[http://dx.doi.org/10.1371/journal.pone.0073905] [PMID: 24040112]
[26]
Graeber SY, Vitzthum C, Mall MA. Potential of intestinal current measurement for personalized treatment of patients with cystic fibrosis. J Pers Med 2021; 11(5): 384.
[http://dx.doi.org/10.3390/jpm11050384] [PMID: 34066648]
[27]
Farinha CM, Callebaut I. Molecular mechanisms of cystic fibrosis – How mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42(7): BSR20212006.
[http://dx.doi.org/10.1042/BSR20212006] [PMID: 35707985]
[28]
Moran O. The gating of the CFTR channel. Cell Mol Life Sci 2017; 74(1): 85-92.
[http://dx.doi.org/10.1007/s00018-016-2390-z] [PMID: 27696113]
[29]
Yeh JT, Yu YC, Hwang TC. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis. J Physiol 2019; 597(2): 543-60.
[http://dx.doi.org/10.1113/JP277042] [PMID: 30408177]
[30]
Shrimpton AE, McIntosh I, Brock DJ. The incidence of different cystic fibrosis mutations in the Scottish population: Effects on prenatal diagnosis and genetic counselling. J Med Genet 1991; 28(5): 317-21.
[http://dx.doi.org/10.1136/jmg.28.5.317] [PMID: 1713973]
[31]
abadi B, hiary M, Khasawneh R, et al. Cystic fibrosis gene mutation frequency among a group of suspected children in king hussein medical center. Med Arh 2019; 73(2): 118-20.
[http://dx.doi.org/10.5455/medarh.2019.73.118-120] [PMID: 31391700]
[32]
Siryani I, Jama M, Rumman N, et al. Distribution of cystic fibrosis transmembrane conductance regulator (CFTR) mutations in a cohort of patients residing in palestine. PLoS One 2015; 10(7): e0133890.
[http://dx.doi.org/10.1371/journal.pone.0133890] [PMID: 26208274]
[33]
Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 2022; 39(8): 120.
[http://dx.doi.org/10.1007/s12032-022-01711-1] [PMID: 35704152]
[34]
Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. Artificial Intelligence in healthcare. Elsevier 2020; pp. 25-60.
[http://dx.doi.org/10.1016/B978-0-12-818438-7.00002-2]
[35]
Johnson KB, Wei WQ, Weeraratne D, et al. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci 2021; 14(1): 86-93.
[http://dx.doi.org/10.1111/cts.12884] [PMID: 32961010]
[36]
Godard B, ten Kate L, Evers-Kiebooms G, Aymé S. Population genetic screening programmes: Principles, techniques, practices, and policies. Eur J Hum Genet 2003; 11(S2) (Suppl. 2): S49-87.
[http://dx.doi.org/10.1038/sj.ejhg.5201113] [PMID: 14718938]
[37]
Horton RH, Lucassen AM. Recent developments in genetic/genomic medicine. Clin Sci 2019; 133(5): 697-708.
[http://dx.doi.org/10.1042/CS20180436] [PMID: 30837331]
[38]
Lucas GM, Gratch J, King A, Morency L-P. It’s only a computer: Virtual humans increase willingness to disclose. Comput Human Behav 2014; 37: 94-100.
[http://dx.doi.org/10.1016/j.chb.2014.04.043]
[39]
Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014; 16(1): 441.
[http://dx.doi.org/10.1007/s11886-013-0441-8] [PMID: 24338557]
[40]
Li CX, Shen CB, Xue K, et al. Artificial intelligence in dermatology. Chin Med J 2019; 132(17): 2017-20.
[http://dx.doi.org/10.1097/CM9.0000000000000372] [PMID: 31425274]
[41]
Fernandez-Granero MA, et al. A machine learning approach to prediction of exacerbations of chronic obstructive pulmonary disease. June 1-5, 2015; Springer. Proceedings, Part I 6. 2015; Springer.
[http://dx.doi.org/10.1007/978-3-319-18914-7_32]
[42]
Jacob J, Bartholmai BJ, Rajagopalan S, et al. Mortality prediction in idiopathic pulmonary fibrosis: Evaluation of computer-based CT analysis with conventional severity measures. Eur Respir J 2017; 49(1): 1601011.
[http://dx.doi.org/10.1183/13993003.01011-2016] [PMID: 27811068]
[43]
Oostveen E, MacLeod D, Lorino H, et al. The forced oscillation technique in clinical practice: Methodology, recommendations and future developments. Eur Respir J 2003; 22(6): 1026-41.
[http://dx.doi.org/10.1183/09031936.03.00089403] [PMID: 14680096]
[44]
Ionescu CM, Desager K, Vandersteen G, De Keyser R. Respiratory mechanics in children with cystic fibrosis. Biomed Signal Process Control 2014; 11: 74-9.
[http://dx.doi.org/10.1016/j.bspc.2014.02.008]
[45]
Lebecque P, Stănescu D. Respiratory resistance by the forced oscillation technique in asthmatic children and cystic fibrosis patients. Eur Respir J 1997; 10(4): 891-5.
[http://dx.doi.org/10.1183/09031936.97.10040891] [PMID: 9150330]
[46]
Pandit C, Valentin R, De Lima J, et al. Effect of general anesthesia on pulmonary function and clinical status on children with cystic fibrosis. Paediatr Anaesth 2014; 24(2): 164-9.
[http://dx.doi.org/10.1111/pan.12256] [PMID: 24004189]
[47]
Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 2020; 42(2): 318-27.
[http://dx.doi.org/10.1109/TPAMI.2018.2858826] [PMID: 30040631]
[48]
Walsh SLF, Calandriello L, Silva M, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case-cohort study. Lancet Respir Med 2018; 6(11): 837-45.
[http://dx.doi.org/10.1016/S2213-2600(18)30286-8] [PMID: 30232049]
[49]
Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. Peer J 2019; 7: e7702.
[http://dx.doi.org/10.7717/peerj.7702] [PMID: 31592346]
[50]
Sharma H, Mavuduru RS, Singh SK, Prasad R. Heterogeneous spectrum of mutations in CFTR gene from Indian patients with congenital absence of the vas deferens and their association with cystic fibrosis genetic modifiers. Mol Hum Reprod 2014; 20(9): 827-35.
[http://dx.doi.org/10.1093/molehr/gau047] [PMID: 24958810]
[51]
Ahmed Z, et al. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020.
[http://dx.doi.org/10.1093/database/baaa010]
[52]
Stafie CS, Sufaru IG, Ghiciuc CM, et al. Exploring the intersection of artificial intelligence and clinical healthcare: A multidisciplinary review. Diagnostics 2023; 13(12): 1995.
[http://dx.doi.org/10.3390/diagnostics13121995] [PMID: 37370890]
[53]
Hlapčić I, Belamarić D, Bosnar M, Kifer D, Vukić Dugac A, Rumora L. Combination of systemic inflammatory biomarkers in assessment of chronic obstructive pulmonary disease: diagnostic performance and identification of networks and clusters. Diagnostics 2020; 10(12): 1029.
[http://dx.doi.org/10.3390/diagnostics10121029] [PMID: 33266187]
[54]
Kleniewska A, Walusiak-Skorupa J, Piotrowski W, Nowakowska-Świrta E, Wiszniewska M. Comparison of biomarkers in serum and induced sputum of patients with occupational asthma and chronic obstructive pulmonary disease. J Occup Health 2016; 58(4): 333-9.
[http://dx.doi.org/10.1539/joh.15-0317-BR] [PMID: 27265531]
[55]
Kołodziej M, de Veer MJ, Cholewa M, Egan GF, Thompson BR. Lung function imaging methods in cystic fibrosis pulmonary disease. Respir Res 2017; 18(1): 96.
[http://dx.doi.org/10.1186/s12931-017-0578-x] [PMID: 28514950]
[56]
Dournes G, Walkup LL, Benlala I, et al. The clinical use of lung MRI in cystic fibrosis. Chest 2021; 159(6): 2205-17.
[http://dx.doi.org/10.1016/j.chest.2020.12.008] [PMID: 33345950]
[57]
Habehh H, Gohel S. Machine learning in healthcare. Curr Genomics 2021; 22(4): 291-300.
[http://dx.doi.org/10.2174/1389202922666210705124359] [PMID: 35273459]
[58]
Abul-Husn NS, Kenny EE. Personalized medicine and the power of electronic health records. Cell 2019; 177(1): 58-69.
[http://dx.doi.org/10.1016/j.cell.2019.02.039] [PMID: 30901549]
[59]
Freimuth RR, Formea CM, Hoffman JM, Matey E, Peterson JF, Boyce RD. Implementing genomic clinical decision support for drug-based precision medicine. CPT Pharmacometrics Syst Pharmacol 2017; 6(3): 153-5.
[http://dx.doi.org/10.1002/psp4.12173] [PMID: 28109071]
[60]
Breuer O, Caudri D, Stick S, Turkovic L. Predicting disease progression in cystic fibrosis. Expert Rev Respir Med 2018; 12(11): 905-17.
[http://dx.doi.org/10.1080/17476348.2018.1519400] [PMID: 30173593]
[61]
Sui H, Xu X, Su Y, et al. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13: 1015926.
[http://dx.doi.org/10.3389/fphar.2022.1015926] [PMID: 36304167]
[62]
Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput 2023; 14(7): 8459-86.
[http://dx.doi.org/10.1007/s12652-021-03612-z] [PMID: 35039756]
[63]
Visibelli A, Roncaglia B, Spiga O, Santucci A. The impact of artificial intelligence in the odyssey of rare diseases. Biomedicines 2023; 11(3): 887.
[http://dx.doi.org/10.3390/biomedicines11030887] [PMID: 36979866]
[64]
Imrie F, Cebere B, McKinney EF, van der Schaar M. AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning. PLOS Digital Health 2023; 2(6): e0000276.
[http://dx.doi.org/10.1371/journal.pdig.0000276] [PMID: 37347752]
[65]
Athanasopoulou K, Daneva GN, Adamopoulos PG, Scorilas A. Artificial intelligence: The milestone in modern biomedical research. BioMedInformatics 2022; 2(4): 727-44.
[http://dx.doi.org/10.3390/biomedinformatics2040049]
[66]
Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med 2021; 13(1): 152.
[http://dx.doi.org/10.1186/s13073-021-00968-x] [PMID: 34579788]
[67]
Lin E, Lin CH, Lane HY. Precision psychiatry applications with pharmacogenomics: artificial intelligence and machine learning approaches. Int J Mol Sci 2020; 21(3): 969.
[http://dx.doi.org/10.3390/ijms21030969] [PMID: 32024055]
[68]
Tai AMY, Albuquerque A, Carmona NE, et al. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif Intell Med 2019; 99: 101704.
[http://dx.doi.org/10.1016/j.artmed.2019.101704] [PMID: 31606109]
[69]
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J 2019; 6(2): 94-8.
[http://dx.doi.org/10.7861/futurehosp.6-2-94] [PMID: 31363513]
[70]
Pan I, Agarwal S, Merck D. Generalizable inter-institutional classification of abnormal chest radiographs using efficient convolutional neural networks. J Digit Imaging 2019; 32(5): 888-96.
[http://dx.doi.org/10.1007/s10278-019-00180-9] [PMID: 30838482]
[71]
Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018; 9(4): 611-29.
[http://dx.doi.org/10.1007/s13244-018-0639-9] [PMID: 29934920]
[72]
Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv 2014; 1412: 6980.
[73]
Kerem E, Conway S, Elborn S, Heijerman H. Standards of care for patients with cystic fibrosis: A European consensus. J Cyst Fibros 2005; 4(1): 7-26.
[http://dx.doi.org/10.1016/j.jcf.2004.12.002] [PMID: 15752677]
[74]
Tang Y, Kosorok MR. Developing adaptive personalized therapy for cystic fibrosis using reinforcement learning. Collection of Biostatistics Research Archive 2012.
[75]
Allen L, Allen L, Carr SB, et al. Future therapies for cystic fibrosis. Nat Commun 2023; 14(1): 693.
[http://dx.doi.org/10.1038/s41467-023-36244-2] [PMID: 36755044]
[76]
Ziaian T, Sawyer MG, Reynolds KE, et al. Treatment burden and health-related quality of life of children with diabetes, cystic fibrosis and asthma. J Paediatr Child Health 2006; 42(10): 596-600.
[http://dx.doi.org/10.1111/j.1440-1754.2006.00943.x] [PMID: 16972965]
[77]
Ng RN, Tai AS, Chang BJ, Stick SM, Kicic A. Overcoming challenges to make bacteriophage therapy standard clinical treatment practice for cystic fibrosis. Front Microbiol 2021; 11: 593988.
[http://dx.doi.org/10.3389/fmicb.2020.593988] [PMID: 33505366]
[78]
Colombo C, Nobili RM, Alicandro G. Challenges with optimizing nutrition in cystic fibrosis. Expert Rev Respir Med 2019; 13(6): 533-44.
[http://dx.doi.org/10.1080/17476348.2019.1614917] [PMID: 31094240]
[79]
Kleven DT, McCudden CR, Willis MS. Cystic fibrosis: Newborn screening in America. MLO Med Lab Obs 2008; 40(7): 16-18, 22, 24-27.
[PMID: 18717498]
[80]
Hart SL, Harrison PT. Genetic therapies for cystic fibrosis lung disease. Curr Opin Pharmacol 2017; 34: 119-24.
[http://dx.doi.org/10.1016/j.coph.2017.10.006] [PMID: 29107808]
[81]
Kelsey R, Manderson Koivula FN, McClenaghan NH, Kelly C. Cystic fibrosis–related diabetes: Pathophysiology and therapeutic challenges. Clin Med Insights Endocrinol Diabetes 2019; 12: 1179551419851770.
[http://dx.doi.org/10.1177/1179551419851770] [PMID: 31191067]
[82]
Pilewski JM. Update on lung transplantation for cystic fibrosis. Clin Chest Med 2022; 43(4): 821-40.
[http://dx.doi.org/10.1016/j.ccm.2022.07.002] [PMID: 36344083]
[83]
Blair C, Cull A, Freeman CP. Psychosocial functioning of young adults with cystic fibrosis and their families. Thorax 1994; 49(8): 798-802.
[http://dx.doi.org/10.1136/thx.49.8.798] [PMID: 8091327]
[84]
Breathett K, Allen LA, Ambardekar AV. Patient-centered care for left ventricular assist device therapy. Curr Opin Cardiol 2016; 31(3): 313-20.
[http://dx.doi.org/10.1097/HCO.0000000000000279] [PMID: 26890085]
[85]
Pun FW, Ozerov IV, Zhavoronkov A. AI-powered therapeutic target discovery. Trends Pharmacol Sci 2023; 44(9): 561-72.
[http://dx.doi.org/10.1016/j.tips.2023.06.010] [PMID: 37479540]
[86]
Chakraborty S, Chopra H, Akash S, Chakraborty C, Dhama K. Artificial intelligence (AI) is paving the way for a critical role in drug discovery, drug design, and studying drug–drug interactions – correspondence. Int J Surg 2023; 109(10): 3242-4.
[http://dx.doi.org/10.1097/JS9.0000000000000564]
[87]
Cholon DM, Gentzsch M. Established and novel human translational models to advance cystic fibrosis research, drug discovery, and optimize CFTR-targeting therapeutics. Curr Opin Pharmacol 2022; 64: 102210.
[http://dx.doi.org/10.1016/j.coph.2022.102210] [PMID: 35462105]
[88]
Urban A, Sidorenko D, Zagirova D, et al. Precious1GPT: multimodal transformer-based transfer learning for aging clock development and feature importance analysis for aging and age-related disease target discovery. Aging 2023; 15(11): 4649-66.
[http://dx.doi.org/10.18632/aging.204788] [PMID: 37315204]
[89]
Anusha K, et al. Integrating of artificial intelligence in drug discovery and development: A comparative study. Pharmacophore 2023; 14(3): 223.
[90]
Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007; 28(7): 334-41.
[http://dx.doi.org/10.1016/j.tips.2007.05.004] [PMID: 17573123]
[91]
Li H, Valkenier H, Thorne AG, et al. Anion carriers as potential treatments for cystic fibrosis: Transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem Sci 2019; 10(42): 9663-72.
[http://dx.doi.org/10.1039/C9SC04242C] [PMID: 32055336]
[92]
Zainal Abidin N, Haq IJ, Gardner AI, Brodlie M. Ataluren in cystic fibrosis: Development, clinical studies and where are we now? Expert Opin Pharmacother 2017; 18(13): 1363-71.
[http://dx.doi.org/10.1080/14656566.2017.1359255] [PMID: 28730885]
[93]
Tomati V, Pesce E, Caci E, et al. High-throughput screening identifies FAU protein as a regulator of mutant cystic fibrosis transmembrane conductance regulator channel. J Biol Chem 2018; 293(4): 1203-17.
[http://dx.doi.org/10.1074/jbc.M117.816595] [PMID: 29158263]
[94]
Swinney DC, Lee JA. Recent advances in phenotypic drug discovery. F1000 Res 2020; 9: 944.
[http://dx.doi.org/10.12688/f1000research.25813.1] [PMID: 32850117]
[95]
Tobinick EL. The value of drug repositioning in the current pharmaceutical market. Drug News Perspect 2009; 22(2): 119-25.
[http://dx.doi.org/10.1358/dnp.2009.22.2.1343228] [PMID: 19330170]
[96]
Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: A machine-learning approach through data integration. J Cheminform 2013; 5(1): 30.
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[97]
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: New estimates of drug development costs. J Health Econ 2003; 22(2): 151-85.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[98]
Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc 2012; 19(1): 79-85.
[http://dx.doi.org/10.1136/amiajnl-2011-000214] [PMID: 21676938]
[99]
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019; 380(14): 1347-58.
[http://dx.doi.org/10.1056/NEJMra1814259] [PMID: 30943338]
[100]
Raies AB, Bajic VB. in silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 2016; 6(2): 147-72.
[http://dx.doi.org/10.1002/wcms.1240] [PMID: 27066112]
[101]
Segall MD, Barber C. Addressing toxicity risk when designing and selecting compounds in early drug discovery. Drug Discov Today 2014; 19(5): 688-93.
[http://dx.doi.org/10.1016/j.drudis.2014.01.006] [PMID: 24451294]
[102]
Wang Y, Xiao Q, Chen P, Wang B. In silico prediction of drug-induced liver injury based on ensemble classifier method. Int J Mol Sci 2019; 20(17): 4106.
[http://dx.doi.org/10.3390/ijms20174106] [PMID: 31443562]
[103]
Garcia de Lomana M, Svensson F, Volkamer A, Mathea M, Kirchmair J. Consideration of predicted small-molecule metabolites in computational toxicology. Digital Discovery 2022; 1(2): 158-72.
[http://dx.doi.org/10.1039/D1DD00018G]
[104]
Born J, Manica M, Oskooei A, Cadow J, Markert G, Rodríguez Martínez M. PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning. iScience 2021; 24(4): 102269.
[http://dx.doi.org/10.1016/j.isci.2021.102269] [PMID: 33851095]
[105]
Mazzaferro C. Predicting protein binding affinity with word embeddings and recurrent neural networks. bioRxiv 2017; 128223.
[http://dx.doi.org/10.1101/128223]
[106]
Krenn M, et al. Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Mach Learn: Sci Technol 2020; 1(4): 045024.
[107]
Rowland M, Tozer TN. PMCY 4200/6200 pharmaceutical sciences II. Policy 2020; 500: 69-75.
[108]
Huang S-M, et al. Atkinson’s principles of clinical pharmacology. Academic Press 2021.
[109]
Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat Rev Drug Discov 2014; 13(9): 655-72.
[http://dx.doi.org/10.1038/nrd4363] [PMID: 25103255]
[110]
Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87(8): 1315-530.
[http://dx.doi.org/10.1007/s00204-013-1078-5] [PMID: 23974980]
[111]
Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial intelligence in drug discovery: A comprehensive review of data-driven and machine learning approaches. Biotechnol Bioprocess Eng; BBE 2020; 25(6): 895-930.
[http://dx.doi.org/10.1007/s12257-020-0049-y] [PMID: 33437151]
[112]
Burns JL, Gibson RL, McNamara S, et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 2001; 183(3): 444-52.
[http://dx.doi.org/10.1086/318075] [PMID: 11133376]
[113]
Döring G, Elborn JS, Johannesson M, et al. Clinical trials in cystic fibrosis. J Cyst Fibros 2007; 6(2): 85-99.
[http://dx.doi.org/10.1016/j.jcf.2007.02.001] [PMID: 17350898]
[114]
Flume PA, Mogayzel PJ Jr, Robinson KA, et al. Cystic fibrosis pulmonary guidelines: Treatment of pulmonary exacerbations. Am J Respir Crit Care Med 2009; 180(9): 802-8.
[http://dx.doi.org/10.1164/rccm.200812-1845PP] [PMID: 19729669]
[115]
Lavori PW, Rush AJ, Wisniewski SR, et al. Strengthening clinical effectiveness trials: Equipoise-stratified randomization. Biol Psychiatry 2001; 50(10): 792-801.
[http://dx.doi.org/10.1016/S0006-3223(01)01223-9] [PMID: 11720698]
[116]
Murphy SA, van der Laan MJ, Robins JM. Marginal mean models for dynamic regimes. J Am Stat Assoc 2001; 96(456): 1410-23.
[http://dx.doi.org/10.1198/016214501753382327] [PMID: 20019887]
[117]
Naik N, Hameed BMZ, Shetty DK, et al. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front Surg 2022; 9: 862322.
[http://dx.doi.org/10.3389/fsurg.2022.862322] [PMID: 35360424]
[118]
Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: Ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res 2019; 21(5): e13216.
[http://dx.doi.org/10.2196/13216] [PMID: 31094356]
[119]
Schönberger D. Artificial intelligence in healthcare: A critical analysis of the legal and ethical implications. Int J Law Inf Technol 2019; 27(2): 171-203.
[120]
Mirbabaie M, Hofeditz L, Frick NRJ, Stieglitz S. Artificial intelligence in hospitals: Providing a status quo of ethical considerations in academia to guide future research. AI Soc 2022; 37(4): 1361-82.
[http://dx.doi.org/10.1007/s00146-021-01239-4] [PMID: 34219989]
[121]
Chen Y, Lv Q, Andrinopoulou ER, et al. Automatic bronchus and artery analysis on chest computed tomography to evaluate the effect of inhaled hypertonic saline in children aged 3-6 years with cystic fibrosis in a randomized clinical trial. J Cyst Fibros 2023; 22(5): 916-25.
[http://dx.doi.org/10.1016/j.jcf.2023.05.013] [PMID: 37246053]