The Potential of Natural Products in the Management of Cardiovascular Disease

Page: [624 - 638] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Cardiovascular Disease (CVD) is one of the most prevalent diseases in the world, comprising a variety of disorders such as hypertension, heart attacks, Peripheral Vascular Disease (PVD), dyslipidemias, strokes, coronary heart disease, and cardiomyopathies. The World Health Organization (WHO) predicts that 22.2 million people will die from CVD in 2030. Conventional treatments for CVDs are often quite expensive and also have several side effects. This potentiates the use of medicinal plants, which are still a viable alternative therapy for a number of diseases, including CVD. Natural products' cardio-protective effects result from their anti-oxidative, anti-hypercholesterolemia, anti-ischemic, and platelet aggregation-inhibiting properties. The conventional therapies used to treat CVD have the potential to be explored in light of the recent increase in the popularity of natural goods and alternative medicine. Some natural products with potential in the management of cardiovascular diseases such as Allium sativum L., Ginkgo biloba, Cinchona ledgeriana, Ginseng, Commiphora mukul, Digitalis lanata, Digitalis purpurea L., Murrayakoenigii, Glycyrrhiza glabra, Polygonum cuspidatum, Fenugreek, Capsicum annuum, etc. are discussed in this article.

[1]
Bachheti RK. Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review. Evid Based Complement Alternat Med 2022; 2022: 5741198.
[http://dx.doi.org/10.1155/2022/5741198]
[2]
Global status report on noncommunicable diseases 2014. World Health Organization 2014.
[3]
Dziemitko S, Harasim-Symbor E, Chabowski A. How do phytocannabinoids affect cardiovascular health? An update on the most common cardiovascular diseases. Ther Adv Chronic Dis 2023; 14.
[http://dx.doi.org/10.1177/20406223221143239] [PMID: 36636553]
[4]
Shaito A, Thuan DTB, Phu HT, et al. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front Pharmacol 2020; 11: 422.
[http://dx.doi.org/10.3389/fphar.2020.00422] [PMID: 32317975]
[5]
Yadav S. A review article on current pharmacological status of cardioprotective plant. Curr Res Pharmaceut Sci 2023; 27-43.
[6]
Hesari M, Mohammadi P, Khademi F, et al. Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases. Int J Nanomed 2021; 16: 3293-315.
[http://dx.doi.org/10.2147/IJN.S295508] [PMID: 34007178]
[7]
Jain S, Buttar HS, Chintameneni M, Kaur G. Prevention of cardiovascular diseases with anti-inflammatory and anti-oxidant nutraceuticals and herbal products: An overview of pre-clinical and clinical studies. Recent Pat Inflamm Allergy Drug Discov 2018; 12(2): 145-57.
[http://dx.doi.org/10.2174/1872213X12666180815144803] [PMID: 30109827]
[8]
Bress AP, Colantonio LD, Cooper RS, et al. Potential cardiovascular disease events prevented with adoption of the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline. Circulation 2019; 139(1): 24-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035640] [PMID: 30586736]
[9]
Chang X. Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxid Med Cell Longev 2020; 2020: 5430407.
[http://dx.doi.org/10.1155/2020/5430407]
[10]
Nyakudya TT, Tshabalala T, Dangarembizi R, Erlwanger KH, Ndhlala AR. The potential therapeutic value of medicinal plants in the management of metabolic disorders. Molecules 2020; 25(11): 2669.
[http://dx.doi.org/10.3390/molecules25112669] [PMID: 32526850]
[11]
Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[12]
Imaizumi VM, Laurindo LF, Manzan B, et al. Garlic: A systematic review of the effects on cardiovascular diseases. Crit Rev Food Sci Nutr 2023; 63(24): 6797-819.
[http://dx.doi.org/10.1080/10408398.2022.2043821] [PMID: 35193446]
[13]
Altaf R. Sources and possible mechanisms of action of important phytoconstituents with cardiovascular properties. Afr J Pharm Pharmacol 2012; 6(9): 563-80.
[14]
Daiber A, Xia N, Steven S, et al. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci 2019; 20(1): 187.
[http://dx.doi.org/10.3390/ijms20010187] [PMID: 30621010]
[15]
Majewski M. Allium sativum: Facts and myths regarding human health. Rocz Panstw Zakl Hig 2014; 65(1): 1-8.
[PMID: 24964572]
[16]
Shouk R, Abdou A, Shetty K, Sarkar D, Eid AH. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr Res 2014; 34(2): 106-15.
[http://dx.doi.org/10.1016/j.nutres.2013.12.005] [PMID: 24461311]
[17]
Entezari MH, Aslani N, Askari G, Maghsoudi Z, Maracy M. Effect of garlic and lemon juice mixture on lipid profile and some cardiovascular risk factors in people 30-60 years old with moderate hyperlipidaemia: A randomized clinical trial. Int J Prev Med 2016; 7(1): 95.
[http://dx.doi.org/10.4103/2008-7802.187248] [PMID: 27563431]
[18]
Lawson L, Hunsaker S. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients 2018; 10(7): 812.
[http://dx.doi.org/10.3390/nu10070812] [PMID: 29937536]
[19]
Yang Y, Li Y, Wang J, et al. Systematic investigation of Ginkgo biloba leaves for treating cardio-cerebrovascular diseases in an animal model. ACS Chem Biol 2017; 12(5): 1363-72.
[http://dx.doi.org/10.1021/acschembio.6b00762] [PMID: 28333443]
[20]
Mesquita TRR, de Jesus ICG, dos Santos JF, et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front Pharmacol 2017; 8: 220.
[http://dx.doi.org/10.3389/fphar.2017.00220] [PMID: 28553225]
[21]
Hong JM, Shin DH, Lim YA, Lee JS, Joo IS. Ticlopidine with Ginkgo biloba extract: A feasible combination for patients with acute cerebral ischemia. Thromb Res 2013; 131(4): e147-53.
[http://dx.doi.org/10.1016/j.thromres.2013.01.026] [PMID: 23477707]
[22]
Silva EAP, Carvalho JS, Guimarães AG, et al. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: A patent review (2008-2018). Expert Opin Ther Pat 2019; 29(1): 43-53.
[http://dx.doi.org/10.1080/13543776.2019.1558211] [PMID: 30583706]
[23]
Song CE. An overview of cinchona alkaloids in chemistry. In: Cinchona Alkaloids in Synthesis and Catalysis: Ligands, Immobilization and Organocatalysis. Wiley 2009.
[http://dx.doi.org/10.1002/9783527628179.ch1]
[24]
Mazzanti A, Tenuta E, Marino M, et al. Efficacy and limitations of quinidine in patients with Brugada syndrome. Circ Arrhythm Electrophysiol 2019; 12(5): e007143.
[http://dx.doi.org/10.1161/CIRCEP.118.007143]
[25]
Anwar MA, Al Disi SS, Eid AH. Anti-hypertensive herbs and their mechanisms of action: Part II. Front Pharmacol 2016; 7: 50.
[http://dx.doi.org/10.3389/fphar.2016.00050] [PMID: 27014064]
[26]
Kim JH. Cardiovascular diseases and Panax ginseng: A review on molecular mechanisms and medical applications. J Ginseng Res 2012; 36(1): 16-26.
[http://dx.doi.org/10.5142/jgr.2012.36.1.16] [PMID: 23717100]
[27]
Deng J, Wang YW, Chen WM, Wu Q, Huang XN. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010; 33(4): 631-5.
[http://dx.doi.org/10.1248/bpb.33.631] [PMID: 20410597]
[28]
Shahrajabian MH. A review of three ancient Chinese herbs, goji berry, ginger and ginseng in pharmacological and modern science. J Biol Environm Sci 2019; 13(39): 161-71.
[29]
Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014; 38(3): 161-6.
[http://dx.doi.org/10.1016/j.jgr.2014.03.001] [PMID: 25378989]
[30]
Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleogum resin of Commiphora wightii (Guggulu). Scientifica 2015; 2015
[31]
Chander R, Rizvi F, Khanna AK, Pratap R. Cardioprotective activity of synthetic guggulsterone (E and Z-isomers) in isoproterenol induced myocardial ischemia in rats: A comparative study. Indian J Clin Biochem 2003; 18(2): 71-9.
[http://dx.doi.org/10.1007/BF02867370] [PMID: 23105395]
[32]
Mota AH. A review of medicinal plants used in therapy of cardiovascular diseases. Int J Pharmacogn Phytochem Res 2016; 8: 572-91.
[33]
Dal Cero M, Saller R, Leonti M, Weckerle CS. Trends of medicinal plant use over the last 2000 years in central Europe. Plants 2022; 12(1): 135.
[http://dx.doi.org/10.3390/plants12010135] [PMID: 36616265]
[34]
Reddy BA. Digitalis therapy in patients with congestive heart failure. Int J Pharm Sci Rev Res 2010; 3(2): 90-5.
[35]
Abeysinghe D. Nutritive importance and therapeutics uses of three different varieties (Murraya koenigii, Micromelum minutum, and Clausena indica) of curry leaves: An updated review. Evid-Based Complemen Altern Med 2021; 2021.
[36]
Gopal R, Ambiha R, Sivasubramanian N, et al. Effect of curry leaves in lowering blood pressure among hypertensive Indian patients. Bioinformation 2023; 19(10): 1020-4.
[http://dx.doi.org/10.6026/973206300191020] [PMID: 37969660]
[37]
Wahab S, Annadurai S, Abullais SS, et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021; 10(12): 2751.
[http://dx.doi.org/10.3390/plants10122751] [PMID: 34961221]
[38]
Markina YV, Kirichenko TV, Markin AM, et al. Atheroprotective effects of Glycyrrhiza glabra L. Molecules 2022; 27(15): 4697.
[http://dx.doi.org/10.3390/molecules27154697] [PMID: 35897875]
[39]
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136: 111214.
[http://dx.doi.org/10.1016/j.biopha.2020.111214] [PMID: 33450488]
[40]
Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 2017; 57(13): 2889-95.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[41]
Karimi A, Moini Jazani A, Darzi M, Doost Azgomi RN, Vajdi M. Effects of curcumin on blood pressure: A systematic review and dose-response meta-analysis. Nutr Metab Cardiovasc Dis 2023; 33(11): 2089-101.
[http://dx.doi.org/10.1016/j.numecd.2023.07.003] [PMID: 37567790]
[42]
Du J, Sun LN, Xing WW, et al. Lipid-lowering effects of polydatin from Polygonum cuspidatum in hyperlipidemic hamsters. Phytomedicine 2009; 16(6-7): 652-8.
[http://dx.doi.org/10.1016/j.phymed.2008.10.001] [PMID: 19106037]
[43]
Ke J, Li MT, Xu S, Ma J, Liu MY, Han Y. Advances for pharmacological activities of Polygonum cuspidatum - A review. Pharm Biol 2023; 61(1): 177-88.
[http://dx.doi.org/10.1080/13880209.2022.2158349] [PMID: 36620922]
[44]
Fogacci F, Tocci G, Presta V, Fratter A, Borghi C, Cicero AFG. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr 2019; 59(10): 1605-18.
[http://dx.doi.org/10.1080/10408398.2017.1422480] [PMID: 29359958]
[45]
dos Santos Baião D, Vieira Teixeira da Silva D, Margaret Flosi Paschoalin V. A narrative review on dietary strategies to provide nitric oxide as a non-drug cardiovascular disease therapy: Beetroot formulations-A smart nutritional intervention. Foods 2021; 10(4): 859.
[http://dx.doi.org/10.3390/foods10040859] [PMID: 33920855]
[46]
Chauhan S, Chamoli K, Sharma S. Beetroot-A review paper. J Pharmacogn Phytochem 2020; 9(2S): 424-7.
[47]
Silva DVT, Baião DS, Ferreira VF, Paschoalin VMF. Betanin as a multipath oxidative stress and inflammation modulator: A beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit Rev Food Sci Nutr 2022; 62(2): 539-54.
[http://dx.doi.org/10.1080/10408398.2020.1822277] [PMID: 32997545]
[48]
Coles LT, Clifton PM. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr J 2012; 11(1): 106.
[http://dx.doi.org/10.1186/1475-2891-11-106] [PMID: 23231777]
[49]
Bhalla A. Native medicines and cardiovascular toxicity. In: Heart and toxins. Elsevier 2015; pp. 175-202.
[http://dx.doi.org/10.1016/B978-0-12-416595-3.00006-2]
[50]
Katare C, Saxena S, Agrawal S, et al. Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia. J Evid Based Complementary Altern Med 2014; 19(2): 112-8.
[http://dx.doi.org/10.1177/2156587214524229] [PMID: 24647091]
[51]
Upaganlawar A, Balaraman R. Cardioprotective effects of Lagenaria siceraria fruit juice on isoproterenol-induced myocardial infarction in wistar rats: A biochemical and histoarchitecture study. J Young Pharm 2011; 3(4): 297-303.
[http://dx.doi.org/10.4103/0975-1483.90241] [PMID: 22224036]
[52]
Syed QA, Rashid Z, Ahmad MH, et al. Nutritional and therapeutic properties of fenugreek (Trigonella foenum-graecum): A review. Int J Food Prop 2020; 23(1): 1777-91.
[http://dx.doi.org/10.1080/10942912.2020.1825482]
[53]
Jain PG. A comprehensive review on plant derived natural products for diabetes and its complication as nephropathy. J Drug Deliv Ther 2019; 9(2-s): 625-33.
[54]
Nikolaeva M, Johnstone M. Nitric oxide, its role in diabetes mellitus and methods to improve endothelial function. In: Diabetes and Cardiovascular Disease. Springer 2023.
[http://dx.doi.org/10.1007/978-3-031-13177-6_7]
[55]
Visuvanathan T, Than LTL, Stanslas J, Chew SY, Vellasamy S. Revisiting Trigonella foenum-graecum L.: Pharmacology and therapeutic potentialities. Plants 2022; 11(11): 1450.
[http://dx.doi.org/10.3390/plants11111450] [PMID: 35684222]
[56]
Heshmat-Ghahdarijani K, Mashayekhiasl N, Amerizadeh A, Teimouri Jervekani Z, Sadeghi M. Effect of fenugreek consumption on serum lipid profile: A systematic review and meta‐analysis. Phytother Res 2020; 34(9): 2230-45.
[http://dx.doi.org/10.1002/ptr.6690] [PMID: 32385866]
[57]
Askarpour M, Alami F, Campbell MS, Venkatakrishnan K, Hadi A, Ghaedi E. Effect of fenugreek supplementation on blood lipids and body weight: A systematic review and meta-analysis of randomized controlled trials. J Ethnopharmacol 2020; 253: 112538.
[http://dx.doi.org/10.1016/j.jep.2019.112538] [PMID: 32087319]
[58]
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15(5): 3517-55.
[http://dx.doi.org/10.3390/molecules15053517] [PMID: 20657497]
[59]
Stompor-Gorący M. The health benefits of emodin, a natural anthraquinone derived from rhubarb-A summary update. Int J Mol Sci 2021; 22(17): 9522.
[http://dx.doi.org/10.3390/ijms22179522] [PMID: 34502424]
[60]
Catalfamo LM, Marrone G, Basilicata M, et al. The utility of Capsicum annuum L. in internal medicine and in dentistry: A comprehensive review. Int J Environ Res Public Health 2022; 19(18): 11187.
[http://dx.doi.org/10.3390/ijerph191811187] [PMID: 36141454]
[61]
Eghbali S. Therapeutic effects of Punica granatum (pomegranate): An updated review of clinical trials. J Nutrit Metabol 2021.
[62]
Singh J, Kaur HP, Verma A, et al. Pomegranate peel phytochemistry, pharmacological properties, methods of extraction, and its application: A comprehensive review. ACS Omega 2023; 8(39): 35452-69.
[http://dx.doi.org/10.1021/acsomega.3c02586] [PMID: 37810640]
[63]
Rababa’h AM, Alzoubi MA. Origanum majorana L. extract protects against isoproterenol-induced cardiotoxicity in rats. Cardiovasc Toxicol 2021; 21(7): 543-52.
[http://dx.doi.org/10.1007/s12012-021-09645-2] [PMID: 33786740]
[64]
Karakol P, Kapi E. Use of selected antioxidant-rich spices and herbs in foods. In: Antioxidants-Benefits, Sources, Mechanisms of Action. intechopen 2021.
[http://dx.doi.org/10.5772/intechopen.96136]
[65]
Wang X, Yang S, Li Y, Jin X, Lu J, Wu M. Role of emodin in atherosclerosis and other cardiovascular diseases: Pharmacological effects, mechanisms, and potential therapeutic target as a phytochemical. Biomed Pharmacother 2023; 161: 114539.
[http://dx.doi.org/10.1016/j.biopha.2023.114539] [PMID: 36933375]
[66]
Dwivedi S, Chopra D. Revisiting Terminalia arjuna-An ancient cardiovascular drug. J Tradit Complement Med 2014; 4(4): 224-31.
[http://dx.doi.org/10.4103/2225-4110.139103] [PMID: 25379463]
[67]
Kumar V, Sharma N, Orfali R, et al. Multitarget potential of phytochemicals from traditional medicinal tree, Terminalia arjuna (roxb. ex dc.) wight & arnot as potential medicaments for cardiovascular disease: An in-silico approach. Molecules 2023; 28(3): 1046.
[http://dx.doi.org/10.3390/molecules28031046] [PMID: 36770716]
[68]
Dai N, Zhao F, Fang M, Pu F, Kong L, Liu J. Gynostemma pentaphyllum for dyslipidemia: A systematic review of randomized controlled trials. Front Pharmacol 2022; 13: 917521.
[http://dx.doi.org/10.3389/fphar.2022.917521] [PMID: 36091752]
[69]
Razavi B-M, Hosseinzadeh H. Cardiovascular effects of saffron and its active constituents. In: Saffron. Elsevier 2020; pp. 451-60.
[http://dx.doi.org/10.1016/B978-0-12-818638-1.00030-7]
[70]
Kamalipour M, Akhondzadeh S. Cardiovascular effects of saffron: An evidence-based review. J Tehran Univ Heart Cent 2011; 6(2): 59-61.
[PMID: 23074606]
[71]
Anaeigoudari F, Anaeigoudari A, Kheirkhah-Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11(15): e15785.
[http://dx.doi.org/10.14814/phy2.15785] [PMID: 37537722]
[72]
Ellis LR, Zulfiqar S, Holmes M, Marshall L, Dye L, Boesch C. A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers. Nutr Rev 2022; 80(6): 1723-37.
[http://dx.doi.org/10.1093/nutrit/nuab104] [PMID: 34927694]
[73]
Sapian S, Ibrahim Mze AA, Jubaidi FF, et al. Therapeutic potential of Hibiscus sabdariffa Linn. in attenuating cardiovascular risk factors. Pharmaceuticals 2023; 16(6): 807.
[http://dx.doi.org/10.3390/ph16060807] [PMID: 37375755]
[74]
Tiwari M, Barooah MS. A comprehensive review on the ethno-medicinal and pharmacological properties of Terminalia chebula fruit. Phytochem Rev 2023; 1-21.
[http://dx.doi.org/10.1007/s11101-023-09878-9]
[75]
Sultan MT, Anwar MJ, Imran M, et al. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. Int J Food Prop 2023; 26(1): 526-51.
[http://dx.doi.org/10.1080/10942912.2023.2166951]