[2]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000 Res 2018; 7: 2046-1402.
[10]
Uddin MS, Lim LW. Glial cells in Alzheimer’s disease: From neuropathological changes to therapeutic implications. Ageing Res Rev 2022; 78: 101-622.
[11]
Chun H, Marriott I, Lee CJ, Cho H. Elucidating the interactive roles of glia in Alzheimer’s disease using established and newly developed experimental models. Front Neurol 2018; 9: 1664-2295.
[12]
Qin Q, Teng Z, Liu C, Li Q, Yin Y, Tang Y. TREM2, microglia, and Alzheimer’s disease. Mech Ageing Dev 2021; 195: 111-438.
[16]
Wang Q, Yao H, Liu W, et al. Microglia polarization in Alzheimer’s disease: Mechanisms and a potential therapeutic target. Front Aging Neurosci 2021; 13: 7727-17.
[18]
Yuan Y, Wu C, Ling EA. Heterogeneity of microglia phenotypes: Developmental, functional and some therapeutic considerations. Curr Pharm Des 2019; 21: 2375-93.
[19]
Du L, Zhang Y, Chen Y, Zhu J, Yang Y, Zhang HA-O. Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol Neurobiol 2017; 10: 7567-84.
[20]
Zhou C, Li JX, Zheng CX, et al. Neuroprotective effects of Jie-duhuo- xue decoction on microglia pyroptosis after cerebral ischemia and reperfusion-from the perspective of glial-vascular unit. J Ethnopharmacol 2024; 318(Pt B): 116-990.
[21]
Subramaniam SR, Federoff HJ. Targeting microglial activation states as a therapeutic avenue in Parkinson’s disease. Front Aging Neurosci 2017; 9: 176.
[24]
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2021; 167: 382-94.
[25]
Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomed 2019; 14: 5541-54.
[26]
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877: 1730-90.
[27]
Zheng M, Zhu Y, Wei KAO, et al. Metformin attenuates the inflammatory response via the regulation of synovial m1 macrophage in osteoarthritis. Int J Mol Sci 2023; 6: 5355.
[33]
Quan X, Liang H, Chen Y, Qin Q, Wei Y, Liang Z. Related network and differential expression analyses identify nuclear genes and pathways in the hippocampus of Alzheimer disease. Med Sci Monit 2020; 26: e919311.
[43]
Meng X, Kuang H, Wang Q, Zhang H, Wang D, Kang T. A polysaccharide from Codonopsis pilosula roots attenuates carbon tetrachloride-induced liver fibrosis via modulation of TLR4/NF-κB and TGF-β1/Smad3 signaling pathway. Int Immunopharmacol 2023; 119: 1878-705.
[48]
Niyatee S, Lane-Donovan C, VandeVrede L, Adam LB. Tau pathology in neurodegenerative disease: Disease mechanisms and therapeutic avenues. J Clin Invest 2023; 133(12): e168553.
[49]
Zhang F, Zhong R, Li S, et al. Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Front Aging Neurosci 2017; 9: 282.
[50]
Chu W. TGFBR3, a potential negative regulator of TGF-β signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. J Cell Physiol 2011; 10: 1097-4652.
[51]
Philippeos C, Hughes RD, Dhawan A, Mitry RR. Introduction to cell culture. Methods Mol Biol 2012; 806: 1940-6029.
[53]
Zhao Y, Jaber VR, Pogue AI, Sharfman NM, Taylor C, Lukiw WJ. Lipopolysaccharides (LPSs) as potent neurotoxic glycolipids in Alzheimer’s disease (AD). Int J Mol Sci 2022; 23(20): 12671.
[54]
Narenderan ST, Meyyanathan SN, Karri V. Experimental design in pesticide extraction methods: A review. Food Chem 2019; 289: 384-95.
[55]
Bezerra MA, Ricardo ES, Eliane PO, Leonardo SV, Luciane AE. Escaleira, response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008; 76: 965-77.
[56]
Tabatabaei MS, Ahmed M. Enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 2022; 2508: 115-34.
[57]
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015; 72: 4-15.
[58]
Reen DJ. Enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 1994; 32: 461-6.
[59]
Hnasko TS, Hnasko RM. The western blot. Methods Mol Biol 2015; 1318: 87-96.
[60]
Priti K, Arvindhan N, Pradeep DU. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc 2018; 2018: 6.
[61]
Präbst K, Engelhardt H, Ringgeler S, Hübner H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. Methods Mol Biol 2017; 1601: 1-17.
[62]
Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA. A systematic approach to quantitative Western blot analysis. Anal Biochem 2020; 593: 113-608.
[63]
Hirano S. Western blot analysis. Methods Mol Biol 2012; 926: 87-97.
[64]
Kim B. Western blot techniques. Methods Mol Biol 2017; 1606: 133-9.
[65]
Taylor SC, Posch A. The design of a quantitative western blot experiment. Biomed Res Int 2014; 2014: 361-590.
[72]
Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front Immunol 2022; 13: 856376.
[73]
Ji Z, Liu C, Zhao W, Soto C, Zhou X. Multi-scale modeling for systematically understanding the key roles of microglia in AD development. Comput Biol Med 2021; 133: 104-374.
[74]
Wang C, Zong S, Cui X, et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front Immunol 2023; 14: 1117-72.