1,3-Diaryl Triazenes Incorporating Disulfonamides Show Both Antiproliferative Activity and Effective Inhibition of Tumor-associated Carbonic Anhydrases IX and XII

Page: [755 - 763] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aim: The aim of this study was to synthesize a library of novel di-sulfa drugs containing 1,3- diaryltriazene derivatives TS (1-13) by conjugation of diazonium salts of primary sulfonamides with sulfa drugs to investigate the cytotoxic effect of these new compounds in different cancer types and to determine their inhibitory activity against tumor-associated carbonic anhydrases IX and XII.

Materials and Methods: A carbonic anhydrase inhibitory activity of the obtained compounds was evaluated against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII) by a stoppedflow CO2 hydrase assay. In addition, in vitro, cytotoxicity studies were applied by using A549 (lung cancer), BEAS-2B (normal lung), MCF-7 (breast cancer), MDA-MB-231 (breast cancer), CRL-4010 (normal breast epithelium), HT-29 (colon cancer), and HCT -116 (colon cancer) cell lines.

Results: As a result of the inhibition data, the 4-aminobenzenesulfonamide derivatives were more active than their 3-aminobenzenesulfonamide counterparts. More specifically, compounds TS-1 and TS-2, both of which have primary sulfonamides on both sides of the triazene linker, showed the best inhibitory activity against hCA IX with Ki values of 19.5 and 13.7 nM and also against hCA XII with Ki values of 6.6 and 8.3 nM, respectively. In addition, in vitro cytotoxic activity on the human breast cancer cell line MCF-7 showed that some derivatives of di-sulfa triazenes, such as TS-5 and TS-13, were more active than SLC-0111.

Conclusion: With the aim of developing more potent and isoform-selective CA inhibitors, these novel hybrid molecules containing sulfa drugs, triazene linkers, and the classical primary sulfonamide chemotype may be considered an interesting example of effective enzyme inhibitors and important anticancer agents.

Graphical Abstract

[1]
Neri, D.; Supuran, C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov., 2011, 10(10), 767-777.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[2]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[3]
Supuran, C.T. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin. Drug Discov., 2017, 12(1), 61-88.
[http://dx.doi.org/10.1080/17460441.2017.1253677] [PMID: 27783541]
[4]
Akocak, S.; Alam, M.R.; Shabana, A.M.; Sanku, R.K.K.; Vullo, D.; Thompson, H.; Swenson, E.R.; Supuran, C.T.; Ilies, M.A. PEGylated bis-sulfonamide carbonic anhydrase inhibitors can efficiently control the growth of several carbonic anhydrase ix-expressing carcinomas. J. Med. Chem., 2016, 59(10), 5077-5088.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00492] [PMID: 27144971]
[5]
Akocak, S.; Ilies, M.A. Next-generation primary sulfonamide carbonic anhydrase inhibitors. In: Targeting Carbonic Anhydrases; Supuran, C.T.; Cappasso, C., Eds.; Future Science: London, 2014; pp. 35-51.
[http://dx.doi.org/10.4155/fseb2013.13.22]
[6]
Akocak, S.; Supuran, C.T. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: A review. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1652-1659.
[http://dx.doi.org/10.1080/14756366.2019.1664501] [PMID: 31530034]
[7]
Shabana, A.M.; Mondal, U.K.; Alam, M.R.; Spoon, T.; Ross, C.A.; Madesh, M.; Supuran, C.T.; Ilies, M.A. pH-Senstive multiligand gold nanoplatform targeting carbonic anhydrase IX enhances the delivery of Doxorubicin to hypoxic tumor spheroids and overcomes the hypoxia-induced chemoresistance. ACS Appl. Mater. Interfaces, 2018, 10(21), 17792-17808.
[http://dx.doi.org/10.1021/acsami.8b05607] [PMID: 29733576]
[8]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468.
[http://dx.doi.org/10.1021/cr200176r] [PMID: 22607219]
[9]
Nocentini, A.; Supuran, C.T. Carbonic anhydrase inhibitors as antitumor/antimetastatic agents: A patent review. Expert Opin. Ther. Pat, 2018, 729-740.
[10]
Supuran, C.T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem., 2016, 31(3), 345-360.
[http://dx.doi.org/10.3109/14756366.2015.1122001] [PMID: 26619898]
[11]
Zamanova, S.; Shabana, A.M.; Mondal, U.K.; Ilies, M.A. Carbonic anhydrases as disease markers. Expert Opin. Ther. Pat., 2019, 29(7), 509-533.
[http://dx.doi.org/10.1080/13543776.2019.1629419] [PMID: 31172829]
[12]
Lou, Y.; McDonald, P.C.; Oloumi, A.; Chia, S.; Ostlund, C.; Ahmadi, A.; Kyle, A.; auf dem Keller, U.; Leung, S.; Huntsman, D.; Clarke, B.; Sutherland, B.W.; Waterhouse, D.; Bally, M.; Roskelley, C.; Overall, C.M.; Minchinton, A.; Pacchiano, F.; Carta, F.; Scozzafava, A.; Touisni, N.; Winum, J.Y.; Supuran, C.T.; Dedhar, S. Targeting tumor hypoxia: Suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res., 2011, 71(9), 3364-3376.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4261] [PMID: 21415165]
[13]
Pacchiano, F.; Carta, F.; McDonald, P.C.; Lou, Y.; Vullo, D.; Scozzafava, A.; Dedhar, S.; Supuran, C.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem., 2011, 54(6), 1896-1902.
[http://dx.doi.org/10.1021/jm101541x] [PMID: 21361354]
[14]
Akocak, S.; Lolak, N.; Nocentini, A.; Karakoc, G.; Tufan, A.; Supuran, C.T. Synthesis and biological evaluation of novel aromatic and heterocyclic bis-sulfonamide Schiff bases as carbonic anhydrase I, II, VII and IX inhibitors. Bioorg. Med. Chem., 2017, 25(12), 3093-3097.
[http://dx.doi.org/10.1016/j.bmc.2017.03.063] [PMID: 28400084]
[15]
Lolak, N.; Akocak, S.; Türkeş, C.; Taslimi, P.; Işık, M.; Beydemir, Ş.; Gülçin, İ.; Durgun, M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg. Chem., 2020, 100, 103897.
[http://dx.doi.org/10.1016/j.bioorg.2020.103897] [PMID: 32413628]
[16]
Supuran, C.; Capasso, C. An overview of the bacterial carbonic anhydrases. Metabolites, 2017, 7(4), 56.
[http://dx.doi.org/10.3390/metabo7040056] [PMID: 29137134]
[17]
Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum —The η-carbonic anhydrases. Bioorg. Med. Chem. Lett., 2014, 24(18), 4389-4396.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.015] [PMID: 25168745]
[18]
Capasso, C.; Supuran, C.T. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin. Ther. Targets, 2015, 19(12), 1689-1704.
[http://dx.doi.org/10.1517/14728222.2015.1067685] [PMID: 26235676]
[19]
Supuran, C.T.; Capasso, C. Biomedical applications of prokaryotic carbonic anhydrases. Expert Opin. Ther. Pat, 2018, 28, 745-754.
[20]
Akocak, S.; Güzel-Akdemir, Ö.; Kishore Kumar Sanku, R.; Russom, S.S.; Iorga, B.I.; Supuran, C.T.; Ilies, M.A. Pyridinium derivatives of 3-aminobenzenesulfonamide are nanomolar-potent inhibitors of tumor-expressed carbonic anhydrase isozymes CA IX and CA XII. Bioorg. Chem., 2020, 103, 104204.
[http://dx.doi.org/10.1016/j.bioorg.2020.104204] [PMID: 32891000]
[21]
Andring, J.T.; Fouch, M.; Akocak, S.; Angeli, A.; Supuran, C.T.; Ilies, M.A.; McKenna, R. Structural basis of nanomolar inhibition of tumor-associated carbonic anhydrase IX: X-ray crystallographic and inhibition study of lipophilic inhibitors with acetazolamide backbone. J. Med. Chem., 2020, 63(21), 13064-13075.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01390] [PMID: 33085484]
[22]
Küçükbay, H.; Gönül, Z.; Küçükbay, F.Z.; Tekin, Z.; Angeli, A.; Bartolucci, G.; Supuran, C.T.; Tatlıcı, E.; Apohan, E.; Yeşilada, Ö. Synthesis of new 7‐amino‐3,4‐dihydroquinolin‐2(1 H)‐one‐peptide derivatives and their carbonic anhydrase enzyme inhibition, antioxidant, and cytotoxic activities. Arch. Pharm., 2021, 354(11), 2100122.
[http://dx.doi.org/10.1002/ardp.202100122]
[23]
Durgun, M.; Türkeş, C.; Işık, M.; Demir, Y.; Saklı, A.; Kuru, A.; Güzel, A.; Beydemir, Ş.; Akocak, S.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 950-962.
[http://dx.doi.org/10.1080/14756366.2020.1746784] [PMID: 32249705]
[24]
Ilies, M.A.; Vullo, D.; Pastorek, J.; Scozzafava, A.; Ilies, M.; Caproiu, M.T.; Pastorekova, S.; Supuran, C.T. Carbonic anhydrase inhibitors. inhibition of tumor-associated isozyme IX by halogenosulfanilamide and halogenophenylaminobenzolamide derivatives. J. Med. Chem., 2003, 46(11), 2187-2196.
[http://dx.doi.org/10.1021/jm021123s] [PMID: 12747790]
[25]
Capasso, C.; Supuran, C.T. Anti-infective carbonic anhydrase inhibitors: A patent and literature review. Expert opinion on therapeutic patents, 2013, 6, 693-704.
[http://dx.doi.org/10.1517/13543776.2013.778245]
[26]
Yolton, D. P.; Haesaert, S. P. Anti-infective drugs. Clin. Ocular Pharmacol., 2008, 219-264.
[27]
Winum, J. Y.; Scozzafava, A.; Montero, J. L.; Supuran, C. T. Inhibition of carbonic anhydrase IX: A new strategy against cancer. Anti-Cancer Agents in Med. Chem., 2009, 9, 693-702.
[http://dx.doi.org/10.2174/187152009788680028]
[28]
Mahboubi-Rabbani, M.; Zarghi, A. Dual human carbonic anhydrase/cyclooxygenase-2 inhibitors: A promising approach for cancer treatment. Anti-Cancer Agents in Med. Chem., 2021, 21, 2163-2180.
[29]
Redij, A.; Carradori, S.; Petreni, A.; Supuran, C. T.; Toraskar, M.P. Coumarin-pyrazoline hybrids as selective inhibitors of the tumor-associated carbonic anhydrase IX and XII. Anti-Cancer Agents in Med. Chem., 2023, 23, 1217-1223.
[http://dx.doi.org/10.2174/1871520623666230220162506]
[30]
Kimball, D.B.; Haley, M.M. Triazenes: A versatile tool in organic synthesis. Angew. Chem. Int. Ed., 2002, 41(18), 3338-3351.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3338:AID-ANIE3338>3.0.CO;2-7] [PMID: 12298030]
[31]
Marchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; Devecchis, L. Triazene compounds: Mechanism of action and related DNA repair systems. Pharmacol. Res., 2007, 56(4), 275-287.
[http://dx.doi.org/10.1016/j.phrs.2007.08.003] [PMID: 17897837]
[32]
Sousa, A.; Santos, F.; Gaspar, M.M.; Calado, S.; Pereira, J.D.; Mendes, E.; Francisco, A.P.; Perry, M.J. The selective cytotoxicity of new triazene compounds to human melanoma cells. Bioorg. Med. Chem., 2017, 25(15), 3900-3910.
[http://dx.doi.org/10.1016/j.bmc.2017.04.049] [PMID: 28602669]
[33]
Adibi, H.; Majnooni, M.B.; Mostafaie, A.; Mansouri, K.; Mohammadi, M. Synthesis, and in vitro cytotoxicity studies of a series of triazene derivatives on human cancer cell lines. Iran. J. Pharm. Res., 2013, 12(4), 695-703.
[PMID: 24523749]
[34]
Canakci, D.; Koyuncu, I.; Lolak, N.; Durgun, M.; Akocak, S.; Supuran, C.T. Synthesis and cytotoxic activities of novel copper and silver complexes of 1,3-diaryltriazene-substituted sulfonamides. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 110-116.
[http://dx.doi.org/10.1080/14756366.2018.1530994] [PMID: 30362387]
[35]
Lolak, N.; Akocak, S.; Bua, S.; Koca, M.; Supuran, C.T. Design and synthesis of novel 1,3-diaryltriazene-substituted sulfonamides as potent and selective carbonic anhydrase II inhibitors. Bioorg. Chem., 2018, 77, 542-547.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.015] [PMID: 29462772]
[36]
Akocak, S.; Lolak, N.; Bua, S.; Supuran, C.T. Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1575-1580.
[http://dx.doi.org/10.1080/14756366.2018.1515933] [PMID: 30296852]
[37]
Bilginer, S.; Gonder, B.; Gul, H.I.; Kaya, R.; Gulcin, I.; Anil, B.; Supuran, C.T. Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 325-329.
[http://dx.doi.org/10.1080/14756366.2019.1700240] [PMID: 31813300]
[38]
Işık, M.; Akocak, S.; Lolak, N.; Taslimi, P.; Türkeş, C.; Gülçin, İ.; Durgun, M.; Beydemir, Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3‐diaryltriazene‐substituted sulfathiazole derivatives. Arch. Pharm., 2020, 353(9), 2000102.
[http://dx.doi.org/10.1002/ardp.202000102] [PMID: 32529657]
[39]
Akocak, S.; Boga, M.; Lolak, N.; Tuneg, M.; Sanku, R.K.K. Design, synthesis and biological evaluation of 1,3-diaryltriazenesubstituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. J. Turkish Chem. Soc. Sec. A: Chem., 2019, 6(1), 63-70.
[http://dx.doi.org/10.18596/jotcsa.516444]
[40]
Aydin, H.; Akocak, S.; Lolak, N.; Uslu, U.; Sait, A.; Korkmaz, S.; Parmaksiz, A.; Ceylan, O.; Aksakal, A. In vitro multitarget activity of sulfadiazine substituted triazenes as antimicrobial, cytotoxic, and larvicidal agents. J. Biochem. Mol. Toxicol., 2023, 37(10), e23467.
[http://dx.doi.org/10.1002/jbt.23467] [PMID: 37466109]
[41]
Lolak, N.; Akocak, S.; Durgun, M.; Duran, H.E.; Necip, A.; Türkeş, C.; Işık, M.; Beydemir, Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol. Divers., 2023, 27(4), 1735-1749.
[http://dx.doi.org/10.1007/s11030-022-10527-0] [PMID: 36136229]
[42]
Draghici, B.; Vullo, D.; Akocak, S.; Walker, E.A.; Supuran, C.T.; Ilies, M.A. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect. Chem. Commun. (Camb.), 2014, 50(45), 5980-5983.
[http://dx.doi.org/10.1039/C4CC02346C] [PMID: 24763985]
[43]
Akocak, S.; Lolak, N.; Vullo, D.; Durgun, M.; Supuran, C.T. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1305-1312.
[http://dx.doi.org/10.1080/14756366.2017.1386660] [PMID: 29072105]
[44]
Akocak, S.; Lolak, N.; Bua, S.; Nocentini, A.; Karakoc, G.; Supuran, C.T. α-Carbonic anhydrases are strongly activated by spinaceamine derivatives. Bioorg. Med. Chem., 2019, 27(5), 800-804.
[http://dx.doi.org/10.1016/j.bmc.2019.01.017] [PMID: 30683554]
[45]
Akocak, S.; Lolak, N.; Bua, S.; Nocentini, A.; Supuran, C.T. Activation of human α-carbonic anhydrase isoforms I, II, IV and VII with bis-histamine schiff bases and bis-spinaceamine substituted derivatives. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1193-1198.
[http://dx.doi.org/10.1080/14756366.2019.1630616] [PMID: 31237157]
[46]
Akocak, S.; Lolak, N.; Bua, S.; Turel, I.; Supuran, C.T. Synthesis and biological evaluation of novel N,N′-diaryl cyanoguanidines acting as potent and selective carbonic anhydrase II inhibitors. Bioorg. Chem., 2018, 77, 245-251.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.022] [PMID: 29421699]
[47]
Lolak, N.; Akocak, S.; Bua, S.; Supuran, C.T. Design, synthesis and biological evaluation of novel ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as potent carbonic anhydrase IX inhibitors. Bioorg. Chem., 2019, 82, 117-122.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.005] [PMID: 30312866]
[48]
Lolak, N.; Akocak, S.; Bua, S.; Sanku, R.K.K.; Supuran, C.T. Discovery of new ureido benzenesulfonamides incorporating 1,3,5-triazine moieties as carbonic anhydrase I, II, IX and XII inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1588-1594.
[http://dx.doi.org/10.1016/j.bmc.2019.03.001] [PMID: 30846402]
[49]
McDonald, P.C.; Chafe, S.C.; Supuran, C.T.; Dedhar, S. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: From bench to bedside. Cancers, 2022, 14(14), 3297.
[http://dx.doi.org/10.3390/cancers14143297] [PMID: 35884358]
[50]
Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev., 2021, 13(2), 259-272.
[http://dx.doi.org/10.1007/s12551-021-00795-9] [PMID: 33936318]
[51]
Supuran, C. Special Issue: Sulfonamides. Molecules, 2017, 22(10), 1642.
[http://dx.doi.org/10.3390/molecules22101642] [PMID: 28961201]
[52]
Tačić, A.; Nikolić, V.; Nikolić, L.; Savić, I. Antimicrobial sulfonamide drugs. Adv. Technol., 2017, 6, 58-71.
[http://dx.doi.org/10.5937/savteh1701058T]
[53]
Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem., 1971, 246(8), 2561-2573.
[http://dx.doi.org/10.1016/S0021-9258(18)62326-9] [PMID: 4994926]
[54]
Onyılmaz, M.; Koca, M.; Bonardi, A.; Degirmenci, M.; Supuran, C.T. Isocoumarins: A new class of selective carbonic anhydrase IX and XII inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 743-748.
[http://dx.doi.org/10.1080/14756366.2022.2041630] [PMID: 35188025]
[55]
Thacker, P.S.; Alvala, M.; Arifuddin, M.; Angeli, A.; Supuran, C.T. Design, synthesis and biological evaluation of coumarin-3-carboxamides as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2019, 86, 386-392.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.004] [PMID: 30763885]
[56]
Eldehna, W.M.; Taghour, M.S.; Al-Warhi, T.; Nocentini, A.; Elbadawi, M.M.; Mahdy, H.A.; Abdelrahman, M.A.; Alotaibi, O.J.; Aljaeed, N.; Elimam, D.M.; Afarinkia, K.; Abdel-Aziz, H.A.; Supuran, C.T. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 531-541.
[http://dx.doi.org/10.1080/14756366.2021.2024528] [PMID: 34991416]
[57]
Pustenko, A.; Nocentini, A.; Gratteri, P.; Bonardi, A.; Vozny, I.; Žalubovskis, R.; Supuran, C.T. The antibiotic furagin and its derivatives are isoform-selective human carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1011-1020.
[http://dx.doi.org/10.1080/14756366.2020.1752201] [PMID: 32297543]
[58]
Tekeli, T.; Akocak, S.; Petreni, A.; Lolak, N.; Çete, S.; Supuran, C.T. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2185762.
[http://dx.doi.org/10.1080/14756366.2023.2185762] [PMID: 36880350]
[59]
Thacker, P.S.; Sridhar Goud, N.; Argulwar, O.S.; Soman, J.; Angeli, A.; Alvala, M.; Arifuddin, M.; Supuran, C.T. Synthesis and biological evaluation of some coumarin hybrids as selective carbonic anhydrase IX and XII inhibitors. Bioorg. Chem., 2020, 104, 104272.
[http://dx.doi.org/10.1016/j.bioorg.2020.104272] [PMID: 32961467]
[60]
Oguz, M.; Kalay, E.; Akocak, S.; Nocentini, A.; Lolak, N.; Boga, M.; Yilmaz, M.; Supuran, C.T. Synthesis of calix[4]azacrown substituted sulphonamides with antioxidant, acetylcholinesterase, butyrylcholinesterase, tyrosinase and carbonic anhydrase inhibitory action. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1215-1223.
[http://dx.doi.org/10.1080/14756366.2020.1765166] [PMID: 32401067]