Toxic Advanced Glycation End-Products-Dependent Alzheimer’s Disease- Like Alternation in the Microtubule System

Page: [677 - 681] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer's Disease (AD). However, the detailed mechanism underlying T2DM-related AD remains unknown. In DM, many types of advanced glycation end-products (AGEs) are formed and accumulated. In our previous study, we demonstrated that Glyceraldehyde (GA)-derived Toxic Advanced Glycation End-products (Toxic AGEs, TAGE) strongly showed cytotoxicity against neurons and induced similar alterations to those observed in AD. Further, GA induced dysfunctional neurite outgrowth via TAGE-β-- tubulin aggregation, which resulted in the TAGE-dependent abnormal aggregation of β-tubulin and tau phosphorylation. Herein, we provide a perspective on the possibility that T2DM increases the probability of AD onset and accelerates its progression.

[1]
Arvanitakis, Z.; Wilson, R.S.; Bienias, J.L.; Evans, D.A.; Bennett, D.A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch. Neurol., 2004, 61(5), 661-666.
[http://dx.doi.org/10.1001/archneur.61.5.661] [PMID: 15148141]
[2]
Surguchov, A. Caveolin: A new link between diabetes and AD. Cell. Mol. Neurobiol., 2020, 40(7), 1059-1066.
[http://dx.doi.org/10.1007/s10571-020-00796-4] [PMID: 31974905]
[3]
Sato, T.; Shimogaito, N.; Wu, X.; Kikuchi, S.; Yamagishi, S.; Takeuchi, M. Toxic advanced glycation end-products (TAGE) theory in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(3), 197-208.
[http://dx.doi.org/10.1177/1533317506289277] [PMID: 16869341]
[4]
Takeuchi, M.; Kikuchi, S.; Sasaki, N.; Suzuki, T.; Watai, T.; Iwaki, M.; Bucala, R.; Yamagishi, S. Involvement of advanced glycation end-products (AGEs) in Alzheimer’s disease. Curr. Alzheimer Res., 2004, 1(1), 39-46.
[http://dx.doi.org/10.2174/1567205043480582] [PMID: 15975084]
[5]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA Research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[6]
Wang, Y.; Zhang, Y.; Yu, E. Targeted examination of amyloid beta and tau protein accumulation via positron emission tomography for the differential diagnosis of Alzheimer’s disease based on the A/T(N) research framework. Clin. Neurol. Neurosurg., 2024, 236, 108071.
[http://dx.doi.org/10.1016/j.clineuro.2023.108071] [PMID: 38043158]
[7]
Tarkowski, E.; Issa, R.; Sjögren, M.; Wallin, A.; Blennow, K.; Tarkowski, A.; Kumar, P. Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer’s disease and vascular dementia. Neurobiol. Aging, 2002, 23(2), 237-243.
[http://dx.doi.org/10.1016/S0197-4580(01)00285-8] [PMID: 11804709]
[8]
Ando, K.; Maruko-Otake, A.; Ohtake, Y.; Hayashishita, M.; Sekiya, M.; Iijima, K.M. Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to augmentation of AD-related phosphorylation and Aβ42-induced tau toxicity. PLoS Genet., 2016, 12(3), e1005917.
[http://dx.doi.org/10.1371/journal.pgen.1005917] [PMID: 27023670]
[9]
Sampath Kumar, A.; Maiya, A.G.; Shastry, B.A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med., 2019, 62(2), 98-103.
[http://dx.doi.org/10.1016/j.rehab.2018.11.001] [PMID: 30553010]
[10]
Ortiz, G.G.; Huerta, M.; González-Usigli, H.A.; Torres-Sánchez, E.D.; Delgado-Lara, D.L.C.; Pacheco-Moisés, F.P.; Mireles-Ramírez, M.A.; Torres-Mendoza, B.M.G.; Moreno-Cih, R.I.; Velázquez-Brizuela, I.E. Cognitive disorder and dementia in type 2 diabetes mellitus. World J. Diabetes, 2022, 13(4), 319-337.
[http://dx.doi.org/10.4239/wjd.v13.i4.319] [PMID: 35582669]
[11]
Takeuchi, M.; Makita, Z. Alternative routes for the formation of immunochemically distinct advanced glycation end-products in vivo. Curr. Mol. Med., 2001, 1(3), 305-315.
[http://dx.doi.org/10.2174/1566524013363735] [PMID: 11899079]
[12]
Ooi, H.; Nasu, R.; Furukawa, A.; Takeuchi, M.; Koriyama, Y. Pyridoxamine and aminoguanidine attenuate the abnormal aggregation of β-tubulin and suppression of neurite outgrowth by glyceraldehyde-derived toxic advanced glycation end-products. Front. Pharmacol., 2022, 13, 921611.
[http://dx.doi.org/10.3389/fphar.2022.921611] [PMID: 35721214]
[13]
Takeuchi, M. Serum levels of toxic AGEs (TAGE) may be a promising novel biomarker for the onset/progression of lifestyle-related diseases. Diagnostics, 2016, 6(2), 23.
[http://dx.doi.org/10.3390/diagnostics6020023] [PMID: 27338481]
[14]
Takeuchi, M.; Bucala, R.; Suzuki, T.; Ohkubo, T.; Yamazaki, M.; Koike, T.; Kameda, Y.; Makita, Z. Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J. Neuropathol. Exp. Neurol., 2000, 59(12), 1094-1105.
[http://dx.doi.org/10.1093/jnen/59.12.1094] [PMID: 11138929]
[15]
Koriyama, Y.; Furukawa, A.; Muramatsu, M.; Takino, J.; Takeuchi, M. Glyceraldehyde caused Alzheimer’s disease-like alterations in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Sci. Rep., 2015, 5(1), 13313.
[http://dx.doi.org/10.1038/srep13313] [PMID: 26304819]
[16]
Choei, H.; Sasaki, N.; Takeuchi, M.; Yoshida, T.; Ukai, W.; Yamagishi, S.; Kikuchi, S.; Saito, T. Glyceraldehyde-derived advanced glycation end-products in Alzheimer?s disease. Acta Neuropathol., 2004, 108(3), 189-193.
[http://dx.doi.org/10.1007/s00401-004-0871-x] [PMID: 15221334]
[17]
Takeuchi, M.; Takino, J.; Sakasai-Sakai, A.; Takata, T.; Tsutsumi, M. Toxic AGE (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD. Nutrients, 2017, 9(6), 634.
[http://dx.doi.org/10.3390/nu9060634] [PMID: 28632197]
[18]
Hallfrisch, J. Metabolic effects of dietary fructose. FASEB J., 1990, 4(9), 2652-2660.
[http://dx.doi.org/10.1096/fasebj.4.9.2189777] [PMID: 2189777]
[19]
Nasu, R.; Furukawa, A.; Suzuki, K.; Takeuchi, M.; Koriyama, Y. The effect of glyceraldehyde-derived advanced glycation end-products on β-tubulin-inhibited neurite outgrowth in SH-SY5Y human neuroblastoma cells. Nutrients, 2020, 12(10), 2958.
[http://dx.doi.org/10.3390/nu12102958] [PMID: 32992566]
[20]
Ledesma, M.D.; Bonay, P.; Avila, J. Tau protein from Alzheimer’s disease patients is glycated at its tubulin-binding domain. J. Neurochem., 1995, 65(4), 1658-1664.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65041658.x] [PMID: 7561862]
[21]
Yao, H.; Uras, G.; Zhang, P.; Xu, S.; Yin, Y.; Liu, J.; Qin, S.; Li, X.; Allen, S.; Bai, R.; Gong, Q.; Zhang, H.; Zhu, Z.; Xu, J. Discovery of novel tacrine-pyrimidone hybrids as potent dual AChE/GSK-3 inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2021, 64(11), 7483-7506.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00160] [PMID: 34024109]
[22]
Magi, S.; Preziuso, A.; Piccirillo, S.; Giampieri, F.; Cianciosi, D.; Orciani, M.; Amoroso, S. The neuroprotective effect of L-carnitine against glyceraldehyde-induced metabolic impairment: Possible Implications in Alzheimer’s Disease. Cells, 2021, 10(8), 2109.
[http://dx.doi.org/10.3390/cells10082109] [PMID: 34440878]
[23]
Piccirillo, S.; Preziuso, A.; Amoroso, S.; Serfilippi, T.; Miceli, F.; Magi, S.; Lariccia, V. A new K+channel-independent mechanism is involved in the antioxidant effect of XE-991 in an in vitro model of glucose metabolism impairment: implications for Alzheimer’s disease. Cell Death Discov., 2022, 8(1), 391.
[http://dx.doi.org/10.1038/s41420-022-01187-y] [PMID: 36127342]
[24]
Uras, G.; Li, X.; Manca, A.; Pantaleo, A.; Bo, M.; Xu, J.; Allen, S.; Zhu, Z. Development of p-tau differentiated cell model of Alzheimer’s disease to screen novel acetylcholinesterase inhibitors. Int. J. Mol. Sci., 2022, 23(23), 14794.
[http://dx.doi.org/10.3390/ijms232314794] [PMID: 36499118]
[25]
Suárez-Calvet, M.; Karikari, T.K.; Ashton, N.J.; Lantero Rodríguez, J.; Milà-Alomà, M.; Gispert, J.D.; Salvadó, G.; Minguillon, C.; Fauria, K.; Shekari, M.; Grau-Rivera, O.; Arenaza-Urquijo, E.M.; Sala-Vila, A.; Sánchez-Benavides, G.; González-de-Echávarri, J.M.; Kollmorgen, G.; Stoops, E.; Vanmechelen, E.; Zetterberg, H.; Blennow, K.; Molinuevo, J.L.; Beteta, A.; Cacciaglia, R.; Cañas, A.; Deulofeu, C.; Cumplido, I.; Dominguez, R.; Emilio, M.; Falcon, C.; Fuentes, S.; Hernandez, L.; Huesa, G.; Huguet, J.; Marne, P.; Menchón, T.; Operto, G.; Polo, A.; Pradas, S.; Soteras, A.; Vilanova, M.; Vilor-Tejedor, N. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Aβ pathology are detected. EMBO Mol. Med., 2020, 12(12), e12921.
[http://dx.doi.org/10.15252/emmm.202012921] [PMID: 33169916]
[26]
Hirota, Y.; Sakakibara, Y.; Ibaraki, K.; Takei, K.; Iijima, K.M.; Sekiya, M. Distinct brain pathologies associated with Alzheimer’s disease biomarker-related phospho-tau 181 and phospho-tau 217 in App knock-in mouse models of amyloid-β amyloidosis. Brain Commun., 2022, 4(6), fcac286.
[http://dx.doi.org/10.1093/braincomms/fcac286] [PMID: 36440096]