The Interplay of Comorbidities in Chronic Heart Failure: Challenges and Solutions

Article ID: e090224226837 Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Chronic heart failure (HF) is frequently associated with various comorbidities. These comorbid conditions, such as anemia, diabetes mellitus, renal insufficiency, and sleep apnea, can significantly impact the prognosis of patients with HF.

Objective: This review aims to synthesize current evidence on the prevalence, impact, and management of comorbidities in patients with chronic HF.

Methods: A comprehensive review was conducted, with a rigorous selection process. Out of an initial pool of 59,030 articles identified across various research modalities, 134 articles were chosen for inclusion. The selection spanned various research methods, from randomized controlled trials to observational studies.

Results: Comorbidities are highly prevalent in patients with HF and contribute to increased hospitalization rates and mortality. Despite advances in therapies for HF with reduced ejection fraction, options for treating HF with preserved ejection fraction remain sparse. Existing treatment protocols often lack standardization, reflecting a limited understanding of the intricate relationships between HF and associated comorbidities.

Conclusion: There is a pressing need for a multidisciplinary, tailored approach to manage HF and its intricate comorbidities. This review underscores the importance of ongoing research efforts to devise targeted treatment strategies for HF patients with various comorbid conditions.

Graphical Abstract

[1]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2023 update: A report from the American heart association. Circulation 2023; 147(8): e93-e621.
[http://dx.doi.org/10.1161/CIR.0000000000001123] [PMID: 36695182]
[2]
Cardiovascular diseases. Bull Pan Am Health Organ 1984; 18(3): 302-5.
[PMID: 6509253]
[3]
Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc Res 2023; 118(17): 3272-87.
[http://dx.doi.org/10.1093/cvr/cvac013]
[4]
Schwinger RHG. Pathophysiology of heart failure. Cardiovasc Diagn Ther 2021; 11(1): 263-76.
[http://dx.doi.org/10.21037/cdt-20-302] [PMID: 33708498]
[5]
Sinnenberg L, Givertz MM. Acute heart failure. Trends Cardiovasc Med 2020; 30(2): 104-12.
[http://dx.doi.org/10.1016/j.tcm.2019.03.007] [PMID: 31006522]
[6]
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599-726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[7]
Sharma A, Zhao X, Hammill BG, et al. Trends in noncardiovascular comorbidities among patients hospitalized for heart failure: Insights from the get with the guidelines-heart failure registry. Circ Heart Fail 2018; 11(6): e004646.
[8]
Khan MS, Samman Tahhan A, Vaduganathan M, et al. Trends in prevalence of comorbidities in heart failure clinical trials. Eur J Heart Fail 2020; 22(6): 1032-42.
[http://dx.doi.org/10.1002/ejhf.1818] [PMID: 32293090]
[9]
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American college of cardiology/american heart association joint committee on clinical practice guidelines. J Am Coll Cardiol 2022; 79(17): e263-421.
[10]
Lam CSP, Arnott C, Beale AL, et al. Sex differences in heart failure. Eur Heart J 2019; 40(47): 3859-3868c.
[http://dx.doi.org/10.1093/eurheartj/ehz835] [PMID: 31800034]
[11]
Baethge C, Goldbeck-Wood S, Mertens S. SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev 2019; 4(1): 5.
[http://dx.doi.org/10.1186/s41073-019-0064-8] [PMID: 30962953]
[12]
Paolillo S, Scardovi AB, Campodonico J. Role of comorbidities in heart failure prognosis Part I: Anaemia, iron deficiency, diabetes, atrial fibrillation. Eur J Prev Cardiol 2020; 27(2_suppl): 27-34.
[http://dx.doi.org/10.1177/2047487320960288] [PMID: 33238738]
[13]
Savarese G, Jonsson Å, Hallberg AC, Dahlström U, Edner M, Lund LH. Prevalence of, associations with, and prognostic role of anemia in heart failure across the ejection fraction spectrum. Int J Cardiol 2020; 298: 59-65.
[http://dx.doi.org/10.1016/j.ijcard.2019.08.049] [PMID: 31521440]
[14]
Abebe TB, Gebreyohannes EA, Bhagavathula AS, Tefera YG, Abegaz TM. Anemia in severe heart failure patients: Does it predict prognosis? BMC Cardiovasc Disord 2017; 17(1): 248.
[http://dx.doi.org/10.1186/s12872-017-0680-5] [PMID: 28915848]
[15]
Chopra VK, Anker SD. Anaemia, iron deficiency and heart failure in 2020: Facts and numbers. ESC Heart Fail 2020; 7(5): 2007-11.
[http://dx.doi.org/10.1002/ehf2.12797] [PMID: 32602663]
[16]
Venkateswaran RV, Freeman C, Chatterjee N, et al. Anemia and its association with clinical outcome in heart failure patients undergoing cardiac resynchronization therapy. J Interv Card Electrophysiol 2015; 44(3): 297-304.
[http://dx.doi.org/10.1007/s10840-015-0062-9] [PMID: 26453528]
[17]
Ye S, Wang SJ, Wang GG, et al. Association between anemia and outcome in patients hospitalized for acute heart failure syndromes: findings from Beijing Acute Heart Failure Registry (Beijing AHF Registry). Intern Emerg Med 2021; 16(1): 183-92.
[http://dx.doi.org/10.1007/s11739-020-02343-x] [PMID: 32356137]
[18]
Seko Y, Kato T, Morimoto T, et al. Improved and new-onset anemia during follow-up in patients with acute decompensated heart failure. Medicine 2021; 100(32): e26892.
[http://dx.doi.org/10.1097/MD.0000000000026892] [PMID: 34397913]
[19]
Magrì D, De Martino F, Moscucci F, Agostoni P, Sciomer S. Anemia and iron deficiency in heart failure. Heart Fail Clin 2019; 15(3): 359-69.
[http://dx.doi.org/10.1016/j.hfc.2019.02.005] [PMID: 31079694]
[20]
Devarajan A, Karuppiah K, Venkatasalam R, et al. Heart failure in people with type 2 diabetes vs. those without diabetes: A retrospective observational study from South India. Diabetes Metab Syndr 2021; 15(1): 39-43.
[http://dx.doi.org/10.1016/j.dsx.2020.11.022] [PMID: 33307298]
[21]
Jackson AM, Rørth R, Liu J, et al. Diabetes and pre‐diabetes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 2022; 24(3): 497-509.
[http://dx.doi.org/10.1002/ejhf.2403] [PMID: 34918855]
[22]
Lejeune S, Roy C, Slimani A, et al. Diabetic phenotype and prognosis of patients with heart failure and preserved ejection fraction in a real life cohort. Cardiovasc Diabetol 2021; 20(1): 48.
[http://dx.doi.org/10.1186/s12933-021-01242-5] [PMID: 33608002]
[23]
Echouffo-Tcheugui JB, Ndumele CE, Zhang S, et al. Diabetes and progression of heart failure. J Am Coll Cardiol 2022; 79(23): 2285-93.
[http://dx.doi.org/10.1016/j.jacc.2022.03.378] [PMID: 35680178]
[24]
Malik A, Garland E, Drozd M, et al. Diabetes mellitus and the causes of hospitalisation in people with heart failure. Diab Vasc Dis Res 2022; 19(1)
[http://dx.doi.org/10.1177/14791641211073943] [PMID: 35236158]
[25]
Kong MG, Jang SY, Jang J, et al. Impact of diabetes mellitus on mortality in patients with acute heart failure: A prospective cohort study. Cardiovasc Diabetol 2020; 19(1): 49.
[http://dx.doi.org/10.1186/s12933-020-01026-3] [PMID: 32359358]
[26]
Park JJ. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes. Diabetes Metab J 2021; 45(2): 146-57.
[http://dx.doi.org/10.4093/dmj.2020.0282] [PMID: 33813813]
[27]
Stewart Coats AJ. Common co-morbidities in heart failure - diabetes, functional mitral regurgitation and sleep apnoea. IJHF 2019; 1(1): 25-41.
[http://dx.doi.org/10.36628/ijhf.2019.0004] [PMID: 36262740]
[28]
Beohar N, Ailawadi G, Kotinkaduwa LN, et al. Impact of baseline renal dysfunction on cardiac outcomes and end-stage renal disease in heart failure patients with mitral regurgitation: The COAPT trial. Eur Heart J 2022; 43(17): 1639-48.
[http://dx.doi.org/10.1093/eurheartj/ehac026] [PMID: 35134897]
[29]
Fitzpatrick JK, Parikh RV, Hamilton SA, et al. The association between changes in echocardiography and risk of heart failure hospitalizations and death in adults with chronic kidney disease. Sci Rep 2023; 13(1): 8863.
[http://dx.doi.org/10.1038/s41598-023-35440-w] [PMID: 37258540]
[30]
Otaki Y, Watanabe T, Konta T, et al. The impact of kidney dysfunction categorized by urinary to serum creatinine ratio on clinical outcomes in patients with heart failure. Heart Vessels 2020; 35(2): 187-96.
[http://dx.doi.org/10.1007/s00380-019-01472-4] [PMID: 31332507]
[31]
Kotecha D, Gill SK, Flather MD, et al. Impact of renal impairment on beta-blocker efficacy in patients with heart failure. J Am Coll Cardiol 2019; 74(23): 2893-904.
[http://dx.doi.org/10.1016/j.jacc.2019.09.059] [PMID: 31806133]
[32]
Tedeschi A, Agostoni P, Pezzuto B, et al. Role of comorbidities in heart failure prognosis Part 2: Chronic kidney disease, elevated serum uric acid. Eur J Prev Cardiol 2020; 27(2_suppl): 35-45.
[http://dx.doi.org/10.1177/2047487320957793] [PMID: 33238740]
[33]
Kosiorek A, Biegus J, Rozentryt P, Hurkacz M, Zymliński R. Cardiorenal syndrome: Decongestion in heart failure across wide spectrum of kidney pathophysiology. Adv Clin Exp Med 2022; 31(4): 445-55.
[http://dx.doi.org/10.17219/acem/144327] [PMID: 34995423]
[34]
Giamouzis G, Kalogeropoulos AP, Butler J, et al. Epidemiology and importance of renal dysfunction in heart failure patients. Curr Heart Fail Rep 2013; 10(4): 411-20.
[http://dx.doi.org/10.1007/s11897-013-0164-6] [PMID: 24097112]
[35]
Szlagor M, Dybiec J, Młynarska E, Rysz J, Franczyk B. Chronic kidney disease as a comorbidity in heart failure. Int J Mol Sci 2023; 24(3): 2988.
[http://dx.doi.org/10.3390/ijms24032988] [PMID: 36769308]
[36]
Buglioni A, Burnett JC Jr. Pathophysiology and the cardiorenal connection in heart failure. Circulating hormones:biomarkers or mediators. Clin Chim Acta 2015; 443: 3-8.
[http://dx.doi.org/10.1016/j.cca.2014.10.027] [PMID: 25445413]
[37]
Tan K, Sethi SK. Biomarkers in cardiorenal syndromes. Transl Res 2014; 164(2): 122-34.
[http://dx.doi.org/10.1016/j.trsl.2014.04.011] [PMID: 24831739]
[38]
Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat Rev Nephrol 2016; 12(10): 610-23.
[http://dx.doi.org/10.1038/nrneph.2016.113] [PMID: 27573728]
[39]
van Deursen VM, Urso R, Laroche C, et al. Co‐morbidities in patients with heart failure: An analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail 2014; 16(1): 103-11.
[http://dx.doi.org/10.1002/ejhf.30] [PMID: 24453099]
[40]
Canepa M, Temporelli PL, Rossi A, et al. Prevalence and prognostic impact of chronic obstructive pulmonary disease in patients with chronic heart failure: Data from the GISSI-HF trial. Cardiology 2017; 136(2): 128-37.
[http://dx.doi.org/10.1159/000448166] [PMID: 27618363]
[41]
Correale M, Paolillo S, Mercurio V, et al. Comorbidities in chronic heart failure: An update from Italian Society of Cardiology (SIC) Working Group on Heart Failure. Eur J Intern Med 2020; 71: 23-31.
[http://dx.doi.org/10.1016/j.ejim.2019.10.008] [PMID: 31708358]
[42]
Correale M, Paolillo S, Mercurio V, Ruocco G, Tocchetti CG, Palazzuoli A. Non-cardiovascular comorbidities in heart failure patients and their impact on prognosis. Kardiol Pol 2021; 79(5): 493-502.
[http://dx.doi.org/10.33963/KP.15934] [PMID: 34125921]
[43]
Xu S, Ye Z, Ma J, Yuan T. The impact of chronic obstructive pulmonary disease on hospitalization and mortality in patients with heart failure. Eur J Clin Invest 2021; 51(1): e13402.
[http://dx.doi.org/10.1111/eci.13402] [PMID: 32916000]
[44]
Horodinschi R-NN, Bratu OG, Dediu GN, et al. Heart failure and chronic obstructive pulmonary disease: A review. Acta Cardiol 2020; 75: 97-104.
[http://dx.doi.org/10.1080/00015385.2018.1559485]
[45]
Hawkins NM, Virani S, Ceconi C. Heart failure and chronic obstructive pulmonary disease: The challenges facing physicians and health services. Eur Heart J 2013; 34(36): 2795-807.
[http://dx.doi.org/10.1093/eurheartj/eht192] [PMID: 23832490]
[46]
de Miguel-Díez J, Chancafe Morgan J, Jiménez-García R. The association between COPD and heart failure risk: A review. Int J Chron Obstruct Pulmon Dis 2013; 8: 305-12.
[http://dx.doi.org/10.2147/COPD.S31236] [PMID: 23847414]
[47]
Costanzo MR, Khayat R, Ponikowski P, et al. Mechanisms and clinical consequences of untreated central sleep apnea in heart failure. J Am Coll Cardiol 2015; 65(1): 72-84.
[http://dx.doi.org/10.1016/j.jacc.2014.10.025] [PMID: 25572513]
[48]
Aune D, Sen A, Norat T, et al. Body mass index, abdominal fatness, and heart failure incidence and mortality. Circulation 2016; 133(7): 639-49.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016801] [PMID: 26746176]
[49]
Pandey A, Patel KV, Vaduganathan M, et al. Physical activity, fitness, and obesity in heart failure with preserved ejection fraction. JACC Heart Fail 2018; 6(12): 975-82.
[http://dx.doi.org/10.1016/j.jchf.2018.09.006] [PMID: 30497652]
[50]
Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 2017; 136(1): 6-19.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026807] [PMID: 28381470]
[51]
Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction. JACC Heart Fail 2018; 6(8): 633-9.
[http://dx.doi.org/10.1016/j.jchf.2018.01.009] [PMID: 29525327]
[52]
Neeland IJ, Gupta S, Ayers CR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging 2013; 6(5): 800-7.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000532] [PMID: 23929898]
[53]
Lavie CJ, Sharma A, Alpert MA, et al. Update on obesity and obesity paradox in heart failure. Prog Cardiovasc Dis 2016; 58(4): 393-400.
[http://dx.doi.org/10.1016/j.pcad.2015.12.003] [PMID: 26721180]
[54]
Oga EA, Eseyin OR. The obesity paradox and heart failure: A systematic review of a decade of evidence. J Obes 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/9040248] [PMID: 26904277]
[55]
Zhai AB, Haddad H. The impact of obesity on heart failure. Curr Opin Cardiol 2017; 32(2): 196-202.
[http://dx.doi.org/10.1097/HCO.0000000000000370] [PMID: 28092289]
[56]
Mahajan R, Stokes M, Elliott A, et al. Complex interaction of obesity, intentional weight loss and heart failure: A systematic review and meta-analysis. Heart 2020; 106(1): 58-68.
[http://dx.doi.org/10.1136/heartjnl-2019-314770] [PMID: 31530572]
[57]
Carbone S, Lavie CJ, Elagizi A, Arena R, Ventura HO. The impact of obesity in heart failure. Heart Fail Clin 2020; 16(1): 71-80.
[http://dx.doi.org/10.1016/j.hfc.2019.08.008] [PMID: 31735317]
[58]
Mantzouratou P, Malaxianaki E, Cerullo D, et al. Thyroid hormone and heart failure: Charting known pathways for cardiac repair/regeneration. Biomedicines 2023; 11(3): 975.
[http://dx.doi.org/10.3390/biomedicines11030975] [PMID: 36979954]
[59]
Wang B, Liu S, Li L, et al. Non-thyroidal illness syndrome in patients with cardiovascular diseases: A systematic review and meta-analysis. Int J Cardiol 2017; 226: 1-10.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.039] [PMID: 27776249]
[60]
Mastorci F, Sabatino L, Vassalle C, Pingitore A. Cardioprotection and thyroid hormones in the clinical setting of heart failure. Front Endocrinol 2020; 10: 927.
[http://dx.doi.org/10.3389/fendo.2019.00927] [PMID: 32047475]
[61]
Zhao X, Zhang R, Jiang H, et al. Combined use of low T3 syndrome and NT-proBNP as predictors for death in patients with acute decompensated heart failure. BMC Endocr Disord 2021; 21(1): 140.
[http://dx.doi.org/10.1186/s12902-021-00801-x] [PMID: 34215247]
[62]
Sato Y, Yoshihisa A, Kimishima Y, et al. Low T3 syndrome is associated with high mortality in hospitalized patients with heart failure. J Card Fail 2019; 25(3): 195-203.
[http://dx.doi.org/10.1016/j.cardfail.2019.01.007] [PMID: 30682427]
[63]
Amin A, Chitsazan M, Taghavi S, Ardeshiri M. Effects of triiodothyronine replacement therapy in patients with chronic stable heart failure and low‐triiodothyronine syndrome: A randomized, double blind, placebo‐controlled study. ESC Heart Fail 2015; 2(1): 5-11.
[http://dx.doi.org/10.1002/ehf2.12025] [PMID: 28834641]
[64]
Curotto Grasiosi J, Peressotti B, Machado RA, et al. [Improvement in functional capacity after levothyroxine treatment in patients with chronic heart failure and subclinical hypothyroidism]. Endocrinol Nutr 2013; 60(8): 427-32.
[http://dx.doi.org/10.1016/j.endonu.2013.01.013] [PMID: 23660007]
[65]
Altay H, Çavuşoğlu Y, Çelik A, et al. Management of hyperkalemia in heart failure. urk Kardiyol Dern Ars 2021; 49(S1): 1-32.
[http://dx.doi.org/10.5543/tkda.2021.S1] [PMID: 34738907]
[66]
Butler J, Anker SD, Lund LH, et al. Patiromer for the management of hyperkalemia in heart failure with reduced ejection fraction: the DIAMOND trial. 2022; 43: 4362-73.
[67]
Fonseca C, Brito D, Branco P, Frazão JM, Silva-Cardoso J, Bettencourt P. Hyperkalemia and management of renin-angiotensin-aldosterone system inhibitors in chronic heart failure with reduced ejection fraction: A systematic review. Rev Port Cardiol 2020; 39(9): 517-41.
[http://dx.doi.org/10.1016/j.repce.2020.03.010] [PMID: 32868174]
[68]
Maggioni AP. Maintaining the balance between benefits and risks: The example of hyperkalemia in patients with heart failure. Rev Port Cardiol 2020; 39(9): 543-4.
[http://dx.doi.org/10.1016/j.repce.2020.11.019] [PMID: 32847715]
[69]
Ampadu J, Morley JE. Heart failure and cognitive dysfunction. Int J Cardiol 2015; 178: 12-23.
[70]
Cannon JA, Moffitt P, Perez-Moreno AC, et al. Cognitive impairment and heart failure: Systematic review and meta-analysis. J Card Fail 2017; 23(6): 464-75.
[http://dx.doi.org/10.1016/j.cardfail.2017.04.007] [PMID: 28433667]
[71]
Ye S, Huynh Q, Potter EL. Cognitive dysfunction in heart failure: Pathophysiology and implications for patient management. Curr Heart Fail Rep 2022; 19(5): 303-15.
[http://dx.doi.org/10.1007/s11897-022-00564-z] [PMID: 35962923]
[72]
Slivnick J, Lampert BC. Hypertension and heart failure. Heart Fail Clin 2019; 15(4): 531-41.
[http://dx.doi.org/10.1016/j.hfc.2019.06.007] [PMID: 31472888]
[73]
Santos ABS, Gupta DK, Bello NA, et al. Prehypertension is associated with abnormalities of cardiac structure and function in the atherosclerosis risk in communities study. Am J Hypertens 2016; 29(5): 568-74.
[http://dx.doi.org/10.1093/ajh/hpv156] [PMID: 26350299]
[74]
Oh GC, Cho HJ. Blood pressure and heart failure. Clin Hypertens 2020; 26(1): 1.
[http://dx.doi.org/10.1186/s40885-019-0132-x] [PMID: 31908841]
[75]
Sorrentino MJ. The evolution from hypertension to heart failure. Heart Fail Clin 2019; 15(4): 447-53.
[http://dx.doi.org/10.1016/j.hfc.2019.06.005] [PMID: 31472880]
[76]
Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013; 62(4): 263-71.
[http://dx.doi.org/10.1016/j.jacc.2013.02.092] [PMID: 23684677]
[77]
Kumar HU, Nearing BD, Mittal S, et al. Autonomic regulation therapy in chronic heart failure with preserved/mildly reduced ejection fraction: ANTHEM-HFpEF study results. Int J Cardiol 2023; 381: 37-44.
[http://dx.doi.org/10.1016/j.ijcard.2023.03.030] [PMID: 36934987]
[78]
Nearing BD, Libbus I, Carlson GM, Amurthur B. KenKnight BH, Verrier RL. Chronic vagus nerve stimulation is associated with multi-year improvement in intrinsic heart rate recovery and left ventricular ejection fraction in ANTHEM-HF. Clin Auton Res 2021; 31(3): 453-62.
[http://dx.doi.org/10.1007/s10286-021-00780-y] [PMID: 33590355]
[79]
Roger VL. Epidemiology of heart failure. Circ Res 2013; 113(6): 646-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300268] [PMID: 23989710]
[80]
Voors AA. Novel recommendations for the treatment of patients with heart failure: 2023 focused update of the 2021 ESC heart failure guidelines. J Card Fail 2023; 29(12): 1667-71.
[http://dx.doi.org/10.1016/j.cardfail.2023.08.017] [PMID: 37666294]
[81]
Mascolo A, Sessa M, Scavone C, et al. New and old roles of the peripheral and brain renin-angiotensin-aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int J Cardiol 2017; 227: 734-42.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.069] [PMID: 27823897]
[82]
McMurray J, Packer M, Desai A, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371(11): 993-1004.
[83]
Tromp J, Ouwerkerk W, van Veldhuisen DJ, et al. A systematic review and network meta-analysis of pharmacological treatment of heart failure with reduced ejection fraction. JACC Heart Fail 2022; 10(2): 73-84.
[http://dx.doi.org/10.1016/j.jchf.2021.09.004] [PMID: 34895860]
[84]
McMurray JJV, Krum H, Abraham WT, et al. Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N Engl J Med 2016; 374: 1521-32.
[85]
Pagel P, Tawil J, Boettcher B, et al. Heart failure with preserved ejection fraction: A comprehensive review and update of diagnosis, pathophysiology, treatment, and perioperative implications. J Cardiothorac Vasc Anesth 2021; 35(6): 1839-59.
[86]
Wintrich J, Kindermann I, Ukena C, et al. Therapeutic approaches in heart failure with preserved ejection fraction: Past, present, and future. Clin Res Cardiol 2020; 109(9): 1079-98.
[http://dx.doi.org/10.1007/s00392-020-01633-w] [PMID: 32236720]
[87]
Beldhuis IE, Myhre PL, Bristow M, et al. Spironolactone in patients with heart failure, preserved ejection fraction, and worsening renal function. J Am Coll Cardiol 2021; 77(9): 1211-21.
[http://dx.doi.org/10.1016/j.jacc.2020.12.057] [PMID: 33663739]
[88]
Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019; 381(17): 1609-20.
[http://dx.doi.org/10.1056/NEJMoa1908655] [PMID: 31475794]
[90]
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385(16): 1451-61.
[http://dx.doi.org/10.1056/NEJMoa2107038] [PMID: 34449189]
[91]
Eid PS, Ibrahim DA, Zayan AH, et al. Comparative effects of furosemide and other diuretics in the treatment of heart failure: A systematic review and combined meta-analysis of randomized controlled trials. Heart Fail Rev 2021; 26: 127-36.
[92]
Margonato D, Mazzetti S, De Maria R, et al. Heart failure with mid-range or recovered ejection fraction: Differential determinants of transition. Card Fail Rev 2020; 6: e28.
[http://dx.doi.org/10.15420/cfr.2020.13] [PMID: 33133642]
[93]
Siddiqui SW, Ashok T, Patni N, Fatima M, Lamis A, Anne KK. Anemia and heart failure: A narrative review. Cureus 2022; 14(7): e27167.
[http://dx.doi.org/10.7759/cureus.27167] [PMID: 36017290]
[94]
Anand IS, Gupta P. Anemia and iron deficiency in heart failure. Circulation 2018; 138(1): 80-98.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.030099] [PMID: 29967232]
[95]
Przybylowski P, Wasilewski G, Golabek K, et al. Absolute and functional iron deficiency is a common finding in patients with heart failure and after heart transplantation. Transplant Proc 2016; 48: 173-6.
[96]
Jankowska EA, Tkaczyszyn M, Suchocki T, et al. Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: A meta-analysis of randomized controlled trials. Eur J Heart Fail 2016; 18(7): 786-95.
[97]
Lewis GD, Malhotra R, Hernandez AF, et al. Effect of oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency. JAMA 2017; 317(19): 1958-66.
[http://dx.doi.org/10.1001/jama.2017.5427] [PMID: 28510680]
[98]
Mei Z, Chen J, Luo S, et al. Comparative efficacy of intravenous and oral iron supplements for the treatment of iron deficiency in patients with heart failure: A network meta-analysis of randomized controlled trials. Pharmacol Res 2022; 182: 106345.
[99]
Pereira CA, Roscani MG, Zanati SG, Matsubara BB. Anemia, heart failure and clinical management. Arq Bras Cardiol 2013; 101(1): 87-92.
[http://dx.doi.org/10.5935/abc.20130126] [PMID: 23917508]
[100]
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020; 396: 819-29.
[http://dx.doi.org/10.1016/S0140-6736(20)31824-9]
[101]
Liang B, Gu N. Sodium-glucose co-transporter-2 inhibitors in the treatment of diabetes with heart failure. Cardiovasc Diabetol 2022; 21(1): 84.
[http://dx.doi.org/10.1186/s12933-022-01526-4] [PMID: 35624512]
[102]
Inzucchi SE, Claggett BL, Vaduganathan M, et al. Efficacy and safety of dapagliflozin in patients with heart failure with mildly reduced or preserved ejection fraction by baseline glycaemic status (DELIVER): A subgroup analysis from an international, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 2022; 10(12): 869-81.
[http://dx.doi.org/10.1016/S2213-8587(22)00308-4] [PMID: 36372069]
[103]
Nassif ME, Windsor SL, Borlaug BA, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat Med 2021; 27: 1954-60.
[104]
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383: 1413-24.
[105]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995-2008.
[106]
De Nicola L, Gabbai FB, Garofalo C, Conte G, Minutolo R. Nephroprotection by SGLT2 Inhibition: Back to the Future? J Clin Med 2020; 9(7): 2243.
[http://dx.doi.org/10.3390/jcm9072243] [PMID: 32679744]
[107]
Bailey CJ, Day C, Bellary S. Renal protection with SGLT2 inhibitors: Effects in acute and chronic kidney disease. Curr Diab Rep 2022; 22(1): 39-52.
[http://dx.doi.org/10.1007/s11892-021-01442-z] [PMID: 35113333]
[108]
Giugliano D, Longo M, Signoriello S, et al. The effect of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: A network meta-analysis of 23 CVOTs. Cardiovasc Diabetol 2022; 21: 42.
[109]
Rojas LBA, Gomes MB. Metformin: An old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 2013; 5: 6.
[http://dx.doi.org/10.1186/1758-5996-5-6]
[110]
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J. Metabolic effects of metformin in the failing heart. Int J Mol Sci 2018; 19(10): 2869.
[http://dx.doi.org/10.3390/ijms19102869] [PMID: 30248910]
[111]
Kułaczkowska ZM, Wróbel M, Rokicka D, Gąsior M, Strojek K. Metformin in patients with type 2 diabetes mellitus and heart failure: A review. Endokrynol Pol 2021; 72(2): 163-70.
[http://dx.doi.org/10.5603/EP.a2021.0033] [PMID: 33970481]
[112]
Kappel BAA, Marx N, Federici M. Oral hypoglycemic agents and the heart failure conundrum: Lessons from and for outcome trials. Nutr Metab Cardiovasc Dis 2015; 25: 697-705.
[113]
Inoue H, Tamaki Y, Kashihara Y, et al. Efficacy of DPP‐4 inhibitors, GLP‐1 analogues, and SGLT2 inhibitors as add‐ons to metformin monotherapy in T2DM patients: A model‐based meta‐analysis. Br J Clin Pharmacol 2019; 85(2): 393-402.
[http://dx.doi.org/10.1111/bcp.13807] [PMID: 30394576]
[114]
Lehrke M, Marx N. Diabetes mellitus and heart failure. Eur Cardiol 2017; 130: S40-50.
[115]
Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42(34): 3227-337.
[http://dx.doi.org/10.1093/eurheartj/ehab484] [PMID: 34458905]
[116]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016; 37(27): 2129-200.
[http://dx.doi.org/10.1093/eurheartj/ehw128] [PMID: 27206819]
[117]
Fukushima T, Yasuda K, Eguchi K, et al. A patient with heart failure and sleep-disordered breathing who presented with marked reverse remodeling by continuous positive airway pressure therapy. Intern Med 2017; 56: 2289-94.
[http://dx.doi.org/10.2169/internalmedicine.8525-16]
[118]
Voigt J, Emani S, Gupta S, Germany R, Khayat R. Meta-analysis comparing outcomes of therapies for patients with central sleep apnea and heart failure with reduced ejection fraction. Am J Cardiol 2020; 127: 73-83.
[http://dx.doi.org/10.1016/j.amjcard.2020.04.011] [PMID: 32430162]
[119]
Pataka A, Kotoulas SC, Gavrilis PR, Karkala A, Tzinas A, Stefanidou A. Adherence to CPAP treatment: Can mindfulness play a role? Life 2023; 13(2): 296.
[http://dx.doi.org/10.3390/life13020296] [PMID: 36836653]
[120]
Hall AB, Ziadi MC, Leech JA, et al. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: A randomized study. Circulation 2014; 130(11): 892-901.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005893] [PMID: 24993098]
[121]
Contal O, Poncin W, Vaudan S, et al. One-Year adherence to continuous positive airway pressure with telemonitoring in sleep apnea hypopnea syndrome: A randomized controlled trial. Front Med 2021; 8: 626361.
[http://dx.doi.org/10.3389/fmed.2021.626361] [PMID: 33959620]
[122]
Rotenberg BW, Murariu D, Pang KP. Trends in CPAP adherence over twenty years of data collection: A flattened curve. J Otolaryngol Head Neck Surg 2016; 45(1): 43.
[http://dx.doi.org/10.1186/s40463-016-0156-0] [PMID: 27542595]
[123]
Servantes DM, Javaheri S, Kravchychyn ACP, et al. Effects of exercise training and CPAP in patients with heart failure and OSA. Chest 2018; 154(4): 808-17.
[http://dx.doi.org/10.1016/j.chest.2018.05.011] [PMID: 30213463]
[124]
Caraballo C, Desai NR, Mulder H, et al. Clinical implications of the new york heart association classification. J Am Heart Assoc 2019; 8(23): e014240.
[http://dx.doi.org/10.1161/JAHA.119.014240] [PMID: 31771438]
[125]
Solomon SD, Claggett B, Packer M, et al. Efficacy of sacubitril/valsartan relative to a prior decompensation. JACC Heart Fail 2016; 4(10): 816-22.
[http://dx.doi.org/10.1016/j.jchf.2016.05.002] [PMID: 27395349]
[126]
Kurmani S, Squire I. Acute heart failure: Definition, classification and epidemiology. Curr Heart Fail Rep 2017; 14(5): 385-92.
[http://dx.doi.org/10.1007/s11897-017-0351-y] [PMID: 28785969]
[127]
Varse F, Janani L, Moradi Y, Solaymani-Dodaran M, Baradaran HR, Rimaz S. Challenges in the design, conduct, analysis, and reporting in randomized clinical trial studies: A systematic review. Med J Islam Repub Iran 2019; 33: 37.
[http://dx.doi.org/10.47176/mjiri.33.37] [PMID: 31456961]
[128]
Alemayehu C, Mitchell G, Nikles J. Barriers for conducting clinical trials in developing countries- a systematic review. Int J Equity Health 2018; 17(1): 37.
[http://dx.doi.org/10.1186/s12939-018-0748-6] [PMID: 29566721]
[129]
Gupta YK, Pradhan AK, Goyal A, Mohan P. Compensation for clinical trial-related injury and death in India: Challenges and the way forward. Drug Saf 2014; 37(12): 995-1002.
[http://dx.doi.org/10.1007/s40264-014-0230-3] [PMID: 25288194]
[130]
Page RL II, O’Bryant CL, Cheng D, et al. Drugs that may cause or exacerbate heart failure. Circulation 2016; 134(6): e32-69.
[http://dx.doi.org/10.1161/CIR.0000000000000426] [PMID: 27400984]
[131]
Beezer J, Al Hatrushi M, Husband A, et al. Polypharmacy definition and prevalence in heart failure: A systematic review. Heart Fail Rev 2022; 27: 465-92.
[132]
Vilela-Martin JF. Spotlight on valsartan-sacubitril fixed-dose combination for heart failure: The evidence to date. Drug Des Devel Ther 2016; 10: 1627-39.
[http://dx.doi.org/10.2147/DDDT.S84782] [PMID: 27274196]
[133]
Ayalasomayajula S, Schuehly U, Pal P, et al. Effect of the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan on the pharmacokinetics and pharmacodynamics of a single dose of furosemide. Br J Clin Pharmacol 2018; 84(5): 926-36.
[http://dx.doi.org/10.1111/bcp.13505] [PMID: 29318651]
[134]
Jia R, Ji Y, Sun D. Progress and prospects of Sacubitril/Valsartan: Based on heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 155: 113701.
[http://dx.doi.org/10.1016/j.biopha.2022.113701] [PMID: 36116249]
[135]
Mahtani K, Patel B, Wang B, Barron A. Activation of GLP-1 receptor signalling by sacubitril/valsartan: Implications for patients with poor glycaemic control. Int J Cardiol 2022; 367: 81-9.
[http://dx.doi.org/10.1016/j.ijcard.2022.08.015] [PMID: 35944765]
[136]
Ayalasomayajula S, Langenickel T, Pal P, Boggarapu S, Sunkara G. Clinical pharmacokinetics of sacubitril/valsartan (LCZ696): A novel angiotensin receptor-neprilysin inhibitor. Clin Pharmacokinet 2017; 56(12): 1461-78.
[http://dx.doi.org/10.1007/s40262-017-0543-3] [PMID: 28417439]
[137]
Amat M, Duralde E, Masutani R, Glassman R, Shen C, Graham KL. “Patient Lost to Follow-up”: Opportunities and challenges in delivering primary care in academic medical centers. J Gen Intern Med 2022; 37(11): 2678-83.
[http://dx.doi.org/10.1007/s11606-021-07216-3] [PMID: 35091918]
[138]
Johansson I, Dahlström U, Edner M, Näsman P, Rydén L, Norhammar A. Type 2 diabetes and heart failure: Characteristics and prognosis in preserved, mid-range and reduced ventricular function. Diab Vasc Dis Res 2018; 15(6): 494-503.
[http://dx.doi.org/10.1177/1479164118794619] [PMID: 30176743]
[139]
Linzer D. poLCA: An R package for polytomous variable latent class analysis. J Stat Softw 2011; 42(10): 1-29.
[140]
Gulea C, Zakeri R, Quint JK. Model-based comorbidity clusters in patients with heart failure: Association with clinical outcomes and healthcare utilization. BMC Med 2021; 19: 9.