Research Progress in the Detection of Aflatoxin B1 Based on Aptamers

Page: [242 - 254] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Aflatoxin B1 is highly toxic, mutagenic, teratogenic, and carcinogenic and is a class I carcinogen. Peanuts, cotton, and corn may be affected by AFB1 during cultivation, which can seriously jeopardize human health. Developing a simple, sensitive, and selective method for detecting AFB1 is imminent. Aptamers are obtained through in vitro screening of ligands by single-stranded oligonucleotides (DNA or RNA) through exponential enrichment (SELEX) technology. As emerging highly selective recognition molecules, they have the advantages of strong affinity, good stability, and strong specificity. Because it does not have the function of signal conversion, it cannot produce physicochemical signals that can be detected in the process of specific binding with target molecules, so it is necessary to convert the process of specific binding of aptamers to target molecules into a process of easily detectable physicochemical signal changes. According to different conversion methods, aptamer biosensors are divided into electrochemical aptamer sensors, fluorescent aptamer sensors, colorimetric aptamer sensors, surface Raman-enhanced aptamer sensors, and so on. Herein, the recent progress and application of aflatoxin B1 detection by nucleic acid aptamer biosensors based on the above signals are reviewed, and the future development prospects and challenges of this kind of biosensor are summarized.

Graphical Abstract

[1]
Wu, K.; Liu, M.; Wang, H.; Rajput, S.A.; Shan, Y.; Qi, D.; Wang, S. The mechanism underlying the extreme sensitivity of duck to aflatoxin B1. Oxid. Med. Cell. Longev., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/9996503]
[2]
Xue, Z.; Zhang, Y.; Yu, W.; Zhang, J.; Wang, J.; Wan, F.; Kim, Y.; Liu, Y.; Kou, X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal. Chim. Acta, 2019, 1069, 1-27.
[http://dx.doi.org/10.1016/j.aca.2019.04.032] [PMID: 31084735]
[3]
Yu, Z.; Qiu, C.; Huang, L.; Gao, Y.; Tang, D. Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin B1 in foodstuff. Anal. Chem., 2023, 95(8), 4212-4219.
[http://dx.doi.org/10.1021/acs.analchem.2c05617] [PMID: 36780374]
[4]
da Silva, J.V.B.; de Oliveira, C.A.F.; Ramalho, L.N.Z. Effects of prenatal exposure to aflatoxin B1: A review. Molecules, 2021, 26(23), 7312.
[http://dx.doi.org/10.3390/molecules26237312] [PMID: 34885894]
[5]
Daou, R.; Hoteit, M.; Bookari, K.; Joubrane, K.; Khabbaz, L.R.; Ismail, A.; Maroun, R.G.; Khoury, A. Public health risk associated with the co-occurrence of aflatoxin B1 and ochratoxin A in spices, herbs, and nuts in Lebanon. Front. Public Health, 2023, 10, 1072727.
[http://dx.doi.org/10.3389/fpubh.2022.1072727] [PMID: 36699892]
[6]
Yadav, N.; Yadav, S.S.; Chhillar, A.K.; Rana, J.S. An overview of nanomaterial based biosensors for detection of Aflatoxin B1 toxicity in foods. Food Chem. Toxicol., 2021, 152, 112201.
[http://dx.doi.org/10.1016/j.fct.2021.112201] [PMID: 33862122]
[7]
Niazi, S.; Khan, I.M.; Yu, Y.; Pasha, I.; Shoaib, M.; Mohsin, A.; Mushtaq, B.S.; Akhtar, W.; Wang, Z.A “turnon” aptasensor for simultaneous and time-resolved fluorometric determination of zearalenone, trichothecenes A and aflatoxin B1 using WS2 as a quencher. Mikrochim. Acta, 2019, 186(8), 575.
[http://dx.doi.org/10.1007/s00604-019-3570-y] [PMID: 31342182]
[8]
Wang, L.; Zhu, F.; Chen, M.; Zhu, Y.; Xiao, J.; Yang, H.; Chen, X. Rapid and visual detection of aflatoxin B1 in foodstuffs using aptamer/G-quadruplex DNAzyme probe with low background noise. Food Chem., 2019, 271, 581-587.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.007] [PMID: 30236719]
[9]
Liu, D.; Li, W.; Zhu, C.; Li, Y.; Shen, X.; Li, L.; Yan, X.; You, T. Recent progress on electrochemical biosensing of aflatoxins: A review. Trends Analyt. Chem., 2020, 133, 115966.
[http://dx.doi.org/10.1016/j.trac.2020.115966]
[10]
Tacconi, C.; Cucina, M.; Zadra, C.; Gigliotti, G.; Pezzolla, D. Plant nutrients recovery from aflatoxin B1 contaminated corn through cocomposting. J. Environ. Chem. Eng., 2019, 7(2), 103046.
[http://dx.doi.org/10.1016/j.jece.2019.103046]
[11]
Deng, J.; Jiang, H.; Chen, Q. Determination of aflatoxin B1 (AFB1) in maize based on a portable Raman spectroscopy system and multivariate analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 275, 121148.
[http://dx.doi.org/10.1016/j.saa.2022.121148] [PMID: 35306308]
[12]
Zuo, J.; Yan, T.; Tang, X.; Zhang, Q.; Li, P. Dual-modal immunosensor made with the multifunction nanobody for fluorescent/colorimetric sensitive detection of aflatoxin B1 in maize. ACS Appl. Mater. Interfaces, 2023, 15(2), 2771-2780.
[http://dx.doi.org/10.1021/acsami.2c20269] [PMID: 36598495]
[13]
Satarpai, T.; Siripinyanond, A.; Su, H.; Shiea, J. Rapid characterization of trace aflatoxin B 1 in groundnuts, wheat and maize by dispersive liquid-liquid microextraction followed by direct electrospray probe tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2017, 31(8), 728-736.
[http://dx.doi.org/10.1002/rcm.7837] [PMID: 28199065]
[14]
Tang, L.; Swezey, R.R.; Green, C.E.; Lee, M.S.; Bunin, D.I.; Parman, T. A tandem liquid chromatography and tandem mass spectrometry (LC/LC–MS/MS) technique to separate and quantify steroid isomers 11β-methyl-19-nortestosterone and testosterone. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1193, 123165.
[http://dx.doi.org/10.1016/j.jchromb.2022.123165] [PMID: 35158319]
[15]
Huertas-Pérez, J.F.; Arroyo-Manzanares, N.; Hitzler, D.; Castro-Guerrero, F.G.; Gámiz-Gracia, L.; García-Campaña, A.M. Simple determination of aflatoxins in rice by ultra-high performance liquid chromatography coupled to chemical post-column derivatization and fluorescence detection. Food Chem., 2018, 245, 189-195.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.041] [PMID: 29287360]
[16]
Zhang, W.; Wang, J.; Dou, J.; Li, T.; Liu, H.; Chang, X.; Qian, S.; Lv, L.; Wu, W.; Sun, C. A novel investigated method for decoupling adsorption and degradation effect on AFB1 based on isotope tracing and NMR analysis., Food Chem., 2023, 405(Pt B), 134978.
[http://dx.doi.org/10.1016/j.foodchem.2022.134978] [PMID: 36423559]
[17]
Mitema, A.; Feto, N.A.; Rafudeen, M.S. Development and validation of TOF/Q-TOF MS/MS, HPLC method and in vitro biostrategy for aflatoxin mitigation. Food Addit. Contam. Part A, 2020, 37(12), 2149-2164.
[http://dx.doi.org/10.1080/19440049.2020.1815861]
[18]
Mohd Din, A.R.J.; Shadan, N.H.; Rosli, M.A.; Musa, N.F.; Othman, N.Z. Potential of Burkholderia sp. IMCC1007 as a biodetoxification agent in mycotoxin biotransformation evaluated by mass spectrometry and phytotoxicity analysis. World J. Microbiol. Biotechnol., 2023, 39(4), 101.
[http://dx.doi.org/10.1007/s11274-023-03544-0] [PMID: 36792836]
[19]
Qu, L.L.; Jia, Q.; Liu, C.; Wang, W.; Duan, L.; Yang, G.; Han, C.Q.; Li, H. Thin layer chromatography combined with surfaceenhanced raman spectroscopy for rapid sensing aflatoxins. J. Chromatogr. A, 2018, 1579, 115-120.
[http://dx.doi.org/10.1016/j.chroma.2018.10.024] [PMID: 30366691]
[20]
Qi, G.; Xiaorong, H.; Yajuan, H.; Zhaowei, Z.; Peiwu, L.; Li, Y. Fe-N-C single-atom nanozyme-linked immunosorbent assay for quantitative detection of aflatoxin B1. J. Food Compos. Anal., 2023.
[http://dx.doi.org/10.1016/j.jfca.2023.105795]
[21]
Lu, D.; Wang, X.; Su, R.; Cheng, Y.; Wang, H.; Luo, L.; Xiao, Z. Preparation of an immunoaffinity column based on bispecific monoclonal antibody for aflatoxin b1 and ochratoxin a detection combined with ic-ELISA. Foods, 2022, 11(3), 335.
[http://dx.doi.org/10.3390/foods11030335] [PMID: 35159486]
[22]
Wang, X.; Sun, T.; Shen, W.; Liu, M.; Liu, W.; Zuo, H.; Zhang, Y.; Geng, L.; Wang, W.; Shao, C.; Bai, J. A lateral flow immunochromatographic assay based on nanobody-oriented coupling strategy for aflatoxin B1 detection. Sens. Actuators B Chem., 2023, 394, 134419.
[http://dx.doi.org/10.1016/j.snb.2023.134419]
[23]
Wang, Y.; Wang, X.; Wang, S.; Fotina, H.; Wang, Z. A novel lateral flow immunochromatographic assay for rapid and simultaneous detection of aflatoxin b1 and zearalenone in food and feed samples based on highly sensitive and specific monoclonal antibodies. Toxins, 2022, 14(9), 615.
[http://dx.doi.org/10.3390/toxins14090615] [PMID: 36136553]
[24]
Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. Trends Analyt. Chem., 2008, 27(2), 108-117.
[http://dx.doi.org/10.1016/j.trac.2007.12.004]
[25]
Lerdsri, J.; Chananchana, W.; Upan, J.; Sridara, T.; Jakmunee, J. Label-free colorimetric aptasensor for rapid detection of aflatoxin B1 by utilizing cationic perylene probe and localized surface plasmon resonance of gold nanoparticles. Sens. Actuators B Chem., 2020, 320, 128356.
[http://dx.doi.org/10.1016/j.snb.2020.128356]
[26]
Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors, 2012, 12(1), 612-631.
[http://dx.doi.org/10.3390/s120100612] [PMID: 22368488]
[27]
Catanante, G.; Rhouati, A.; Hayat, A.; Marty, J.L. An overview of recent electrochemical immunosensing strategies for mycotoxins detection. Electroanalysis, 2016, 28(8), 1750-1763.
[http://dx.doi.org/10.1002/elan.201600181]
[28]
Zhao, L.; Suo, Z.; He, B.; Huang, Y.; Liu, Y.; Wei, M.; Jin, H. A fluorescent aptasensor based on nitrogen-doped carbon supported palladium and exonuclease III-assisted signal amplification for sensitive detection of AFB1. Anal. Chim. Acta, 2022, 1226, 340272.
[http://dx.doi.org/10.1016/j.aca.2022.340272] [PMID: 36068066]
[29]
Katati, B.; Kovacs, S.; Njapau, H.; Kachapulula, P.W.; Zwaan, B.J.; van Diepeningen, A.D.; Schoustra, S.E. Aflatoxigenic aspergillus modulates aflatoxin-B1 levels through an antioxidative mechanism. J. Fungi, 2023, 9(6), 690.
[http://dx.doi.org/10.3390/jof9060690] [PMID: 37367626]
[30]
Kachapulula, P.W.; Akello, J.; Bandyopadhyay, R.; Cotty, P.J. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. Int. J. Food Microbiol., 2017, 261, 49-56.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.08.014] [PMID: 28915412]
[31]
Akello, J.; Ortega-Beltran, A.; Katati, B.; Atehnkeng, J.; Augusto, J.; Mwila, C.M.; Mahuku, G.; Chikoye, D.; Bandyopadhyay, R. Prevalence of aflatoxin- and fumonisin-producing fungi associated with cereal crops grown in zimbabwe and their associated risks in a climate change scenario. Foods, 2021, 10(2), 287.
[http://dx.doi.org/10.3390/foods10020287] [PMID: 33572636]
[32]
Rushing, B.R.; Selim, M.I.; Aflatoxin, B. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol., 2019, 124, 81-100.
[http://dx.doi.org/10.1016/j.fct.2018.11.047] [PMID: 30468841]
[33]
Silva, A.A.R.; Silva Júnior, J.J.; Cavalcanti, M.I.S.; Machado, D.C.; Medeiros, P.L.; Rodrigues, C.G. Alphatoxin nanopore detection of aflatoxin, ochratoxin and fumonisin in aqueous solution. Toxins, 2023, 15(3), 183.
[http://dx.doi.org/10.3390/toxins15030183] [PMID: 36977074]
[34]
Liu, S.; Jiang, S.; Yao, Z.; Liu, M. Aflatoxin detection technologies: recent advances and future prospects. Environ. Sci. Pollut. Res. Int., 2023, 30(33), 79627-79653.
[http://dx.doi.org/10.1007/s11356-023-28110-x] [PMID: 37322403]
[35]
Lavkor, I.; Ay, T.; Sobucovali, S.; Var, I.; Saghrouchni, H.; Salamatullah, A.M.; Mekonnen, A.B. Non-aflatoxigenic aspergillus flavus: A promising biological control agent against aflatoxin contamination of corn. ACS Omega, 2023, 8(19), 16779-16788.
[http://dx.doi.org/10.1021/acsomega.3c00303] [PMID: 37214674]
[36]
Jiang, M.; Fang, X.; Diao, H.; Lv, S.; Zhang, Z.; Zhang, X.; Chen, Z.; Luo, Z. Semi-automated and efficient parallel SELEX of aptamers for multiple targets. Anal. Methods, 2023, 15(16), 2039-2043.
[http://dx.doi.org/10.1039/D3AY00367A] [PMID: 37066673]
[37]
Zhang, Z.; Liu, J. An engineered one-site aptamer with higher sensitivity for label-free detection of adenosine on graphene oxide. Can. J. Chem., 2018, 96(11), 957-963.
[http://dx.doi.org/10.1139/cjc-2017-0601]
[38]
Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, C.M.; Yu, C. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron., 2016, 78, 23-30.
[http://dx.doi.org/10.1016/j.bios.2015.11.015] [PMID: 26584079]
[39]
Famulok, M.; Mayer, G. Aptamer modules as sensors and detectors. Acc. Chem. Res., 2011, 44(12), 1349-1358.
[http://dx.doi.org/10.1021/ar2000293] [PMID: 21819040]
[40]
He, X.; Guo, L.; He, J.; Xu, H.; Xie, J. Stepping library-based post-SELEX strategy approaching to the minimized aptamer in SPR. Anal. Chem., 2017, 89(12), 6559-6566.
[http://dx.doi.org/10.1021/acs.analchem.7b00700] [PMID: 28505431]
[41]
Wang, K.; Wang, M.; Ma, T.; Li, W.; Zhang, H. Review on the selection of aptamers and application in paper-based sensors. Biosensors, 2022, 13(1), 39.
[http://dx.doi.org/10.3390/bios13010039] [PMID: 36671874]
[42]
Hianik, T. Advances in electrochemical and acoustic aptamer-based biosensors and immunosensors in diagnostics of leukemia. Biosensors, 2021, 11(6), 177.
[http://dx.doi.org/10.3390/bios11060177] [PMID: 34073054]
[43]
Guo, Z.; Zhang, J.; Dong, H.; Sun, J.; Huang, J.; Li, S.; Ma, C.; Guo, Y.; Sun, X. Spatio-temporal distribution patterns and quantitative detection of aflatoxin B1 and total aflatoxin in peanut kernels explored by short-wave infrared hyperspectral imaging. Food Chem., 2023, 424, 136441.
[http://dx.doi.org/10.1016/j.foodchem.2023.136441] [PMID: 37244182]
[44]
Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnology, 2021, 19(1), 166.
[http://dx.doi.org/10.1186/s12951-021-00914-4] [PMID: 34074287]
[45]
Yüce, M.; Ullah, N.; Budak, H. Trends in aptamer selection methods and applications. Analyst, 2015, 140(16), 5379-5399.
[http://dx.doi.org/10.1039/C5AN00954E] [PMID: 26114391]
[46]
Fu, Q.; Tu, Y.; Cheng, L.; Zhang, L.; Qiu, X. A fully-enclosed prototype ‘pen’ for rapid detection of SARS-CoV-2 based on RTRPA with dipstick assay at point-of-care testing. Sens. Actuators B Chem., 2023, 383, 133531.
[http://dx.doi.org/10.1016/j.snb.2023.133531] [PMID: 36811084]
[47]
Chen, L.; Wen, F.; Li, M.; Guo, X.; Li, S.; Zheng, N.; Wang, J. A simple aptamer-based fluorescent assay for the detection of Aflatoxin B1 in infant rice cereal. Food Chem., 2017, 215, 377-382.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.148] [PMID: 27542489]
[48]
Jauset-Rubio, M.; Botero, M.L.; Skouridou, V.; Aktas, G.B.; Svobodova, M.; Bashammakh, A.S.; El-Shahawi, M.S.; Alyoubi, A.O.; O’Sullivan, C.K. One-Pot SELEX: Identification of specific aptamers against diverse steroid targets in one selection. ACS Omega, 2019, 4(23), 20188-20196.
[http://dx.doi.org/10.1021/acsomega.9b02412] [PMID: 31815219]
[49]
Wang, C.; Yu, H.; Zhao, Q. A simple structure-switch aptasensor using label-free aptamer for fluorescence detection of aflatoxin B1. Molecules, 2022, 27(13), 4257.
[http://dx.doi.org/10.3390/molecules27134257] [PMID: 35807501]
[50]
António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta, 2020, 214, 120868.
[http://dx.doi.org/10.1016/j.talanta.2020.120868] [PMID: 32278414]
[51]
Wang, C.; Li, Y.; Zhao, Q. A competitive electrochemical aptamerbased method for aflatoxin B1 detection with signal-off response. Anal. Methods, 2020, 12(5), 646-650.
[http://dx.doi.org/10.1039/C9AY02276G]
[52]
Li, J.; Gu, J.; Zhang, H.; Liu, R.; Zhang, W.; Mohammed-Elsabagh, M.; Xia, J.; Morrison, D.; Zakaria, S.; Chang, D.; Arrabi, A.; Li, Y. A highly specific DNA aptamer for RNase H2 from clostridium difficile. ACS Appl. Mater. Interfaces, 2021, 13(8), 9464-9471.
[http://dx.doi.org/10.1021/acsami.0c20277] [PMID: 33410654]
[53]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[54]
Yang, C.H.; Tsai, C.H. Aptamer against aflatoxin B1 obtained by SELEX and applied in detection. Biosensors, 2022, 12(10), 848.
[http://dx.doi.org/10.3390/bios12100848] [PMID: 36290985]
[55]
Liu, R.; Zhang, F.; Sang, Y.; Katouzian, I.; Jafari, S.M.; Wang, X.; Li, W.; Wang, J.; Mohammadi, Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends Food Sci. Technol., 2022, 123, 355-375.
[http://dx.doi.org/10.1016/j.tifs.2022.03.025]
[56]
Zhong, T.; Li, S.; Li, X.; JiYe, Y.; Mo, Y.; Chen, L.; Zhang, Z.; Wu, H.; Li, M.; Luo, Q. A label-free electrochemical aptasensor based on AuNPs-loaded zeolitic imidazolate framework-8 for sensitive determination of aflatoxin B1. Food Chem., 2022, 384, 132495.
[http://dx.doi.org/10.1016/j.foodchem.2022.132495] [PMID: 35193015]
[57]
Mo, R.; He, L.; Yan, X.; Su, T.; Zhou, C.; Wang, Z.; Hong, P.; Sun, S.; Li, C. A novel aflatoxin B1 biosensor based on a porous anodized alumina membrane modified with graphene oxide and an aflatoxin B1 aptamer. Electrochem. Commun., 2018, 95, 9-13.
[http://dx.doi.org/10.1016/j.elecom.2018.08.012]
[58]
Lu, L.; Yu, R.; Zhang, L. AFB1 colorimetric aptamer sensor for the detection of AFB1 in ten different kinds of miscellaneous beans based on gold nanoparticles and smartphone imaging. Food Chem., 2023, 421, 136205.
[http://dx.doi.org/10.1016/j.foodchem.2023.136205] [PMID: 37094407]
[59]
Dou, X.; Wu, G.; Ding, Z.; Xie, J. Construction of a nanoscale metal-organic framework aptasensor for fluorescence ratiometric sensing of AFB1 in real samples. Food Chem., 2023, 416, 135805.
[http://dx.doi.org/10.1016/j.foodchem.2023.135805] [PMID: 36878118]
[60]
Li, J.; Wang, W.; Zhang, H.; Lu, Z.; Wu, W.; Shu, M.; Han, H. Programmable DNA tweezer-actuated SERS probe for the sensitive detection of AFB1. Anal. Chem., 2020, 92(7), 4900-4907.
[http://dx.doi.org/10.1021/acs.analchem.9b04822] [PMID: 32148015]
[61]
Kong, Y.; Zhu, Y.; Song, J.; Liu, Q.; Song, L.; Fei, X.; Li, X. A novel multimode biosensor for sensitive detection of AFB1 in food based on Mxenes nano enzymes. Food Chem., 2023, 426, 136645.
[http://dx.doi.org/10.1016/j.foodchem.2023.136645] [PMID: 37379695]
[62]
Jo, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H.J.; Hong, J.; Park, J. Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sens. Actuators B Chem., 2020, 304, 127424.
[http://dx.doi.org/10.1016/j.snb.2019.127424]
[63]
Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 Spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900.
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[64]
Chatterjee, B.; Kalyani, N.; Anand, A.; Khan, E.; Das, S.; Bansal, V.; Kumar, A.; Sharma, T.K. GOLD SELEX: A novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity. Mikrochim. Acta, 2020, 187(11), 618.
[http://dx.doi.org/10.1007/s00604-020-04577-0] [PMID: 33074441]
[65]
Kubiczek, D.; Raber, H.; Bodenberger, N.; Oswald, T.; Sahan, M.; Mayer, D.; Wiese, S.; Stenger, S.; Weil, T.; Rosenau, F. The diversity of a polyclonal flucell-SELEX library outperforms individual aptamers as emerging diagnostic tools for the identification of carbapenem resistant pseudomonas aeruginosa. Chemistry, 2020, 26(64), 14536-14545.
[http://dx.doi.org/10.1002/chem.202000213] [PMID: 32515842]
[66]
Tang, Z.; Huang, J.; He, H.; Ma, C.; Wang, K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord. Chem. Rev., 2020, 415, 213317.
[http://dx.doi.org/10.1016/j.ccr.2020.213317]
[67]
Wei, L.; Lian, X.; Xue, Z.; Zihan, D.; Xingxing, X.; Xiaojun, C.; Yanying, W.; Chunya, L.; Dong, S. Fabrication of a highperformance photoelectrochemical aptamer sensor based on Er-MOF nanoballs functionalized with ionic liquid and gold nanoparticles for aflatoxin B1 detection. Sens. Actuators B Chem., 2023, 378, 133153.
[http://dx.doi.org/10.1016/j.snb.2022.133153]
[68]
Jing, Q.; Yue, L.; Haining, C.; Fuheng, Y.; Huiyuan, Y.; Kun, W.; Jie, W.; Lingliang, L.; Chengquan, W. Incorporation of ZnIn2S4 semiconductors with S-vacancy engineered MoS2 nanosheets to develop sensitive photoelectrochemical aptasensor for aflatoxin B1 detection. Sens. Actuators B Chem., 2023, 403, 135195.
[http://dx.doi.org/10.1016/j.snb.2023.135195]
[69]
Huang, Q.; Lin, X.; Chen, D.; Tong, Q-X. Carbon Dots/α-Fe2O3-Fe3O4 nanocomposite: Efficient synthesis and application as a novel electrochemical aptasensor for the ultrasensitive determination of aflatoxin B1. Food Chem., 2022, 373(P1-A), 131415.
[http://dx.doi.org/10.1016/j.foodchem.2021.131415] [PMID: 34710699]
[70]
Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Sarreshtehdar Emrani, A.; Zolfaghari, R.; Taghdisi, S.M. A new amplified π-shape electrochemical aptasensor for ultrasensitive detection of aflatoxin B1. Biosens. Bioelectron., 2017, 94, 374-379.
[http://dx.doi.org/10.1016/j.bios.2017.03.028] [PMID: 28319905]
[71]
Liu, B.; Peng, J.; Wu, Q.; Zhao, Y.; Shang, H.; Wang, S. A novel screening on the specific peptide by molecular simulation and development of the electrochemical immunosensor for aflatoxin B1 in grains. Food Chem., 2022, 372, 131322.
[http://dx.doi.org/10.1016/j.foodchem.2021.131322] [PMID: 34818740]
[72]
Liu, C.; Wu, T.; Zeng, W.; Liu, J.; Hu, B.; Wu, L. Dual-signal electrochemical aptasensor involving hybridization chain reaction amplification for aflatoxin B1 detection. Sens. Actuators B Chem., 2022, 371, 132494.
[http://dx.doi.org/10.1016/j.snb.2022.132494]
[73]
Chengxi, Z.; Xi, W.; Yiming, Y.; Lixing, C.; Dongmei, Y. Research progress on ratiometric electrochemical sensing of mycotoxins. J. Electroanal. Chem., 2023, 929, 117115.
[http://dx.doi.org/10.1016/j.jelechem.2022.117115]
[74]
Yang, H.; Zhao, W.; Deng, S.; Zhang, K.; Zhao, Z.; Deng, R.; He, Q.; Li, J. Intrinsic conformation-induced fluorescence resonance energy transfer aptasensor. ACS Appl. Bio Mater., 2020, 3(5), 2553-2559.
[http://dx.doi.org/10.1021/acsabm.9b00738] [PMID: 35025387]
[75]
Liu, R.; Li, W.; Cai, T.; Deng, Y.; Ding, Z.; Liu, Y.; Zhu, X.; Wang, X.; Liu, J.; Liang, B.; Zheng, T.; Li, J. TiO2 nanolayer-enhanced fluorescence for simultaneous multiplex mycotoxin detection by aptamer microarrays on a porous silicon surface. ACS Appl. Mater. Interfaces, 2018, 10(17), 14447-14453.
[http://dx.doi.org/10.1021/acsami.8b01431] [PMID: 29624041]
[76]
Wu, Z.; Sun, D.W.; Pu, H.; Wei, Q. A novel fluorescence biosensor based on CRISPR/Cas12a integrated MXenes for detecting Aflatoxin B1. Talanta, 2023, 252, 123773.
[http://dx.doi.org/10.1016/j.talanta.2022.123773] [PMID: 36081307]
[77]
Lee, M.; Shin, S.; Kim, S.; Park, N. Recent advances in biological applications of aptamer-based fluorescent biosensors. Molecules, 2023, 28(21), 7327.
[http://dx.doi.org/10.3390/molecules28217327] [PMID: 37959747]
[78]
Zhang, Y.; Cai, N.; Chan, V. Recent advances in silicon quantum dot-based fluorescent biosensors. Biosensors, 2023, 13(3), 311.
[http://dx.doi.org/10.3390/bios13030311] [PMID: 36979523]
[79]
Umapathi, R.; Ghoreishian, S.M.; Rani, G.M.; Cho, Y.; Huh, Y.S. Review—emerging trends in the development of electrochemical devices for the on-site detection of food contaminants. ECS Sensors Plus, 2022, 1(4)
[80]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on-site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[81]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[82]
Alhammadi, M.; Aliya, S.; Umapathi, R.; Oh, M.H.; Huh, Y.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine. Microchem. J., 2023, 195, 109427.
[http://dx.doi.org/10.1016/j.microc.2023.109427]
[83]
Wu, J.; Zeng, L.; Li, N.; Liu, C.; Chen, J. A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter. Food Chem., 2019, 298, 125034.
[http://dx.doi.org/10.1016/j.foodchem.2019.125034] [PMID: 31261013]
[84]
Xiong, D.; Cheng, J.; Ai, F.; Wang, X.; Xiao, J.; Zhu, F.; Zeng, K.; Wang, K.; Zhang, Z. Insight into the sensing behavior of DNA probes based on MOF–nucleic acid interaction for bioanalysis. Anal. Chem., 2023, 95(12), 5470-5478.
[http://dx.doi.org/10.1021/acs.analchem.3c00832] [PMID: 36921316]
[85]
Qin, N.; Liu, J.; Li, F.; Liu, J. Recent advances in aptasensors for rapid pesticide residues detection. Crit. Rev. Anal. Chem., 2023, 1-22.
[http://dx.doi.org/10.1080/10408347.2023.2257795] [PMID: 37708008]
[86]
Wang, J.; Chen, Q.; Jin, Y.; Zhang, X.; He, L.; Zhang, W.; Chen, Y. Surface enhanced Raman scattering-based lateral flow immunosensor for sensitive detection of aflatoxin M1 in urine. Anal. Chim. Acta, 2020, 1128, 184-192.
[http://dx.doi.org/10.1016/j.aca.2020.06.076] [PMID: 32825901]
[87]
Chen, P.; Li, C.; Ma, X.; Wang, Z.; Zhang, Y. A surface-enhanced Raman scattering aptasensor for ratiometric detection of aflatoxin B1 based on graphene oxide-Au@Ag core-shell nanoparticles complex. Food Control, 2022, 134, 108748.
[http://dx.doi.org/10.1016/j.foodcont.2021.108748]
[88]
Zhao, Y.; Yang, Y.; Luo, Y.; Yang, X.; Li, M.; Song, Q. Double detection of mycotoxins based on SERS Labels embedded Ag@Au core–shell nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(39), 21780-21786.
[http://dx.doi.org/10.1021/acsami.5b07804] [PMID: 26381109]
[89]
Jiang, G.; Li, Y.; Liu, J.; Liu, L.; Pi, F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit. Rev. Food Sci. Nutr., 2024, 64(3), 783-800.
[http://dx.doi.org/10.1080/10408398.2022.2108370] [PMID: 35943403]