Antibacterial Potential of Tetrahydrocarbazoles (THCZ): A Review

Article ID: e060224226733 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Antibiotic resistance has become a major public threat across the globe associated with human health. Some bacterial and fungal infections produce resistance, such as methicillinresistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE) and multidrug-resistant (MDR) species Acinetobacter baumannii etc. Tetrahydrocarbazoles (THCZ) are a sub-class of indole alkaloids profoundly present in natural products and biologically active compounds and have displayed potential biological activities in literature. THCZ exhibit potential antibacterial activities through major bacterial pathways like cell wall synthesis inhibition and DNA gyrase enzyme inhibition with DNA sliding clamp inhibitors and MreB inhibitors. These THCZ also showed significant in vitro antibacterial activities against bacterial-resistant species, such as MRSA, VRE and Acinetobacter baumannii (MDR) in literature. MTDL (Multi Target Direct ligand) approach has been significantly used for the design of THC motif-based antibacterial agents. In this review article, we collected literature on THCz as a potential antibacterial agent from 2014 to date. The review study of THC core-based derivatives found excellent in vitro antibacterial profiles and revealed that they can play a significant role in drug discovery and the development of new antibiotics against various infectious diseases.

[1]
Mustafa, Y.F. Synthesis, characterization, and biomedical assessment of novel bisimidazole–coumarin conjugates. Appl. Nanosci., 2023, 13(3), 1907-1918.
[http://dx.doi.org/10.1007/s13204-021-01872-x]
[2]
Mustafa, Y.F. Modern developments in the application and function of metal/metal oxide nanocomposite–based antibacterial agents. Bionanoscience, 2023, 13(2), 840-852.
[http://dx.doi.org/10.1007/s12668-023-01100-6]
[3]
Mustafa, YF Emerging trends and future opportunities for coumarin-heterocycle conjugates as antibacterial agents. Results Chem., 2023, 101151.
[http://dx.doi.org/10.1016/j.rechem.2023.101151]
[4]
Mustafa, Y.F.; Kasim, S.M.; Al-Dabbagh, B.M.; Al-Shakarchi, W. Synthesis, characterization and biological evaluation of new azo-coumarinic derivatives. Appl. Nanosci., 2021, 1-8.
[5]
Singh, H.; Sindhu, J.; Khurana, J.M.; Sharma, C.; Aneja, K.R. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity. Eur. J. Med. Chem., 2014, 77, 145-154.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.016] [PMID: 24631842]
[6]
Chakraborty, B.; Chakraborty, S.; Bhattacharyya, I.; Saha, C. In vitro activity of synthesized 6-Chloro-2-methyl-1H-carbazole- 1, 4(9H)-dione against methicillin-resistant staphylococcus aureus. IOSR J. Appl. Chem., 2014, 7(11), 61-66.
[http://dx.doi.org/10.9790/5736-071116166]
[7]
Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf., 2014, 5(6), 229-241.
[http://dx.doi.org/10.1177/2042098614554919] [PMID: 25436105]
[8]
World health organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics; WHO Press: Geneva, 2017, pp. 1-7.
[9]
Kumar, N.; Sharma, S.; Nirmal, P. A review of in vitro antimicrobial activities of carbazole and its derivative from 2014 to 2022. Antiinfect. Agents, 2023, 21(4), e070623217768.
[http://dx.doi.org/10.2174/2211352521666230607154145]
[10]
[11]
Bryan, E.J.; Sagong, H.Y.; Parhi, A.K.; Grier, M.C.; Roberge, J.Y.; LaVoie, E.J.; Pilch, D.S. TXH11106: A third-generation MreB inhibitor with enhanced activity against a broad range of Gramnegative bacterial pathogens. Antibiotics, 2022, 11(5), 693.
[http://dx.doi.org/10.3390/antibiotics11050693] [PMID: 35625337]
[12]
Medina, E.; Pieper, DH Tackling threats and future problems of multidrug-resistant bacteria. Curr Top Microbiol Immunol., 2016, 398, 3-33.
[http://dx.doi.org/10.1007/82_2016_492]
[13]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[14]
Antibiotic resistance threats in the United States, 2019; US Department of Health and Human Services, Centres for Disease Control and Prevention, 2019.
[15]
Zaib, S.; Ibrar, A.; Khan, I.; Rana, N.; Gomila, R.M.; McAdam, C.J.; Al-Askar, A.A.; Elkaeed, E.B.; Frontera, A. Insight into structural topology and supramolecular assembly of tetrahydrocarbazole-carbonitrile: On the importance of noncovalent interactions and urease inhibitory profile. J. Mol. Struct., 2023, 1285, 135522.
[http://dx.doi.org/10.1016/j.molstruc.2023.135522]
[16]
Kumar, N.; Kumar Singh, K.; Mehta Luthra, P. A review on anticancer potential of some pyranocarbazole alkaloids and its derivatives. Int. J. Adv. Res. (Indore), 2021, 9(6), 874-883.
[http://dx.doi.org/10.21474/IJAR01/13091]
[17]
Padmavathi, S.; Tajne, M.R. Design, synthesis, molecular docking studies and anti-microbial activity of novel 1,2,3,4-tetrahydrocarbazole derivatives. Int. Curr. Pharm. J., 2016, 5(9), 73-78.
[http://dx.doi.org/10.3329/icpj.v5i9.29231]
[18]
Zhang, F.F.; Gan, L.L.; Zhou, C.H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(6), 1881-1884.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.159] [PMID: 20176480]
[19]
Göçmentürk, M.; Ergün, Y.; Mougang-Soume, B.; Caylak Delibaş, N.; Hökelek, T. 2-N-[(2,3,4,9-Tetra-hydro-1H-carbazol-3-yl)meth-yl]methyl-sulfonamido-ethyl methane-sulfonate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2013, 70(Pt 1), o78-o79.
[PMID: 24527010]
[20]
Kumar, N.; Gupta, P. Anticancer tetrahydrocarbazoles: A wide journey from 2000 till date. Lett. Drug Des. Discov., 2024, 21(3), 421-439.
[http://dx.doi.org/10.2174/1570180820666221028163319]
[21]
Heravi, M.M.; Amiri, Z.; Kafshdarzadeh, K.; Zadsirjan, V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Advances, 2021, 11(53), 33540-33612.
[http://dx.doi.org/10.1039/D1RA05972F] [PMID: 35497516]
[22]
Chakroborty, S.; Panda, P. A comprehensive overview of the synthesis of tetrahydrocarbazoles and its biological properties. Mini Rev. Org. Chem., 2021, 18(6), 709-718.
[http://dx.doi.org/10.2174/1570193X17999200820163532]
[23]
Chakraborty, B.; Chakraborty, S.; Saha, C. Antibacterial activity of murrayaquinone A and 6-Methoxy-3,7-dimethyl-2,3-dihydro-1 H -carbazole-1,4(9 H)-dione. Int. J. Microbiol., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/540208] [PMID: 24963299]
[24]
Chaudhari, T.Y.; Tandon, V. Recent approaches to the synthesis of tetrahydrocarbazoles. Org. Biomol. Chem., 2021, 19(9), 1926-1939.
[http://dx.doi.org/10.1039/D0OB02274H] [PMID: 33570535]
[25]
Ghani, A.; Sadiq, Z.; Iqbal, S.; Yasmeen, A.; Shujaat, S.; Ali, I. Screening of anti-inflammatory and antioxidant potential of functionalized tetrahydrocarbazole linked 1,2-diazoles and their docking studies. Arab. J. Chem., 2022, 15(11), 104195.
[http://dx.doi.org/10.1016/j.arabjc.2022.104195]
[26]
El-Nassan, H.B. Synthesis and antitumor activity of tetrahydrocarbazole hybridized with dithioate derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(2), 308-315.
[http://dx.doi.org/10.3109/14756366.2014.922554] [PMID: 24899376]
[27]
Singh, M.; Sharma, P.; Arora, S. Development of 1,2,3,4‐tetrahydrocarbazole derivatives as dual binding cholinestarse inhibitors. Alzheimers Dement., 2021, 17(S9), e051020.
[http://dx.doi.org/10.1002/alz.051020]
[28]
Wang, L.L.; Du, Y.; Li, S.M.; Cheng, F.; Zhang, N.N.; Chen, R.; Cui, X.; Yang, S.G.; Fan, L.L.; Wang, J.T.; Guo, B.; Wu, H.S.; Zhang, J.Q.; Tang, L. Design, synthesis and evaluation of tetrahydrocarbazole derivatives as potential hypoglycemic agents. Bioorg. Chem., 2021, 115, 105172.
[http://dx.doi.org/10.1016/j.bioorg.2021.105172] [PMID: 34303898]
[29]
Sakinala, P.; Chikhale, R.; Tajne, M. Design, synthesis and pharmacological evaluation of some novel tetrahydrocarbazoles as potential COX-2 inhibitors. Lett. Drug Des. Discov., 2018, 15(4), 437-449.
[http://dx.doi.org/10.2174/1570180814666170602084037]
[30]
Sellamuthu, S.; Gutti, G.; Kumar, D.; Kumar Singh, S. Carbazole: A potent scaffold for antitubercular drugs. Mini Rev. Org. Chem., 2018, 15(6), 498-507.
[http://dx.doi.org/10.2174/1570193X15666180220141342]
[31]
Bonomo, M.G.; Caruso, A.; El-Kashef, H.; Salzano, G.; Sinicropi, M.S.; Saturnino, C. An update of carbazole treatment strategies for COVID-19 infection. Appl. Sci., 2023, 13(3), 1522.
[http://dx.doi.org/10.3390/app13031522]
[32]
Gupta, A.; Kalantar-Zadeh, K.; Reddy, S.T. Ramatroban as a novel immunotherapy for COVID-19. J. Mol. Genet. Med., 2020, 14(3)
[PMID: 32952595]
[33]
Chakraborty, A.; Saha, C.; Podder, G.; Chowdhury, B.K.; Bhattacharyya, P. Carbazole alkaloid with antimicrobial activity from clausena heptaphylla. Phytochemistry, 1995, 38(3), 787-789.
[http://dx.doi.org/10.1016/0031-9422(94)00666-H] [PMID: 7766168]
[34]
Sakano, K.I.; Ishimaru, K.; Nakamura, S. New antibiotics, carbazomycins A and B. I. Fermentation, extraction, purification and physico-chemical and biological properties. J. Antibiot., 1980, 33(7), 683-689.
[http://dx.doi.org/10.7164/antibiotics.33.683] [PMID: 7410212]
[35]
Tan, F.; Cheng, H.G. Catalytic asymmetric synthesis of tetrahydrocarbazoles. Chem. Commun., 2019, 55(44), 6151-6164.
[http://dx.doi.org/10.1039/C9CC02486G] [PMID: 31093637]
[36]
Coates, A.; Hu, Y.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov., 2002, 1(11), 895-910.
[http://dx.doi.org/10.1038/nrd940] [PMID: 12415249]
[37]
Bremner, J. Multiple action-based design approaches to antibacterials. In: Springer Nature; , 2021.
[http://dx.doi.org/10.1007/978-981-16-0999-2]
[38]
Ivanenkov, Y.A.; Zhavoronkov, A.; Yamidanov, R.S.; Osterman, I.A.; Sergiev, P.V.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Veselov, M.S.; Ayginin, A.A.; Kartsev, V.G.; Skvortsov, D.A.; Chemeris, A.V.; Baimiev, A.K.; Sofronova, A.A.; Malyshev, A.S.; Filkov, G.I.; Bezrukov, D.S.; Zagribelnyy, B.A.; Putin, E.O.; Puchinina, M.M.; Dontsova, O.A. Identification of novel antibacterials using machine learning techniques. Front. Pharmacol., 2019, 10, 913.
[http://dx.doi.org/10.3389/fphar.2019.00913] [PMID: 31507413]
[39]
Ho, T.T.; Tran, Q.T.N.; Chai, C.L.L. The polypharmacology of natural products. Future Med. Chem., 2018, 10(11), 1361-1368.
[http://dx.doi.org/10.4155/fmc-2017-0294] [PMID: 29673257]
[40]
Ayon, N.J. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery. Metabolites, 2023, 13(5), 625.
[http://dx.doi.org/10.3390/metabo13050625] [PMID: 37233666]
[41]
Su, L.; Li, J.; Zhou, Z.; Huang, D.; Zhang, Y.; Pei, H.; Guo, W.; Wu, H.; Wang, X.; Liu, M.; Yang, C.G.; Chen, Y. Design, synthesis and evaluation of hybrid of tetrahydrocarbazole with 2,4-diaminopyrimidine scaffold as antibacterial agents. Eur. J. Med. Chem., 2019, 162, 203-211.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.016] [PMID: 30447433]
[42]
Mahdi, M.H.; Dawood, A.H.; Shaheed, D.Q. Synthesis and study of antimicrobial activity of some tetrahydrocarbazole derivatives substituted with NSAID. Al Mustansiriyah J. Pharm. Sci., 2022, 22(2), 44-54.
[http://dx.doi.org/10.32947/ajps.v22i2.857]
[43]
Gehrmann, R.; Hertlein, T.; Hopke, E.; Ohlsen, K.; Lalk, M.; Hilgeroth, A. Novel small-molecule hybrid-antibacterial agents against S. aureus and MRSA strains. Molecules, 2021, 27(1), 61.
[http://dx.doi.org/10.3390/molecules27010061] [PMID: 35011293]
[44]
Ashok, D.; Thara, G.; Kumar, B.K.; Srinivas, G.; Ravinder, D.; Vishnu, T.; Sarasija, M.; Sushmitha, B. Microwave-assisted synthesis, molecular docking studies of 1,2,3-triazole-based carbazole derivatives as antimicrobial, antioxidant and anticancer agents. RSC Advances, 2022, 13(1), 25-40.
[http://dx.doi.org/10.1039/D2RA05960F] [PMID: 36545291]
[45]
Mongre, R.K.; Mishra, C.B.; Prakash, A.; Jung, S.; Lee, B.S.; Kumari, S.; Hong, J.T.; Lee, M.S. Novel carbazole-piperazine hybrid small molecule induces apoptosis by targeting BCL-2 and inhibits tumor progression in lung adenocarcinoma in vitro and xenograft mice model. Cancers, 2019, 11(9), 1245.
[http://dx.doi.org/10.3390/cancers11091245] [PMID: 31450709]
[46]
Nitin, Kumar; Vinod, Kumar; Yogita, Chowdhary A review on synthesis methods of tricyclic 1,2,3,4-tetrahydrocarbazoles. World J. Adv. Res. Rev., 2022, 13(1), 160-171.
[http://dx.doi.org/10.30574/wjarr.2022.13.1.0754]
[47]
Berlin, K.D. Synthesis of 1, 2, 3, 4-Tetrahydrocarbazoles with large group-aromatization to carbazoles. Proceedings of the Oklahoma Academy of Science, 1967, pp. 215-220.
[48]
Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2012, 112(6), 3193-3328.
[http://dx.doi.org/10.1021/cr200447s] [PMID: 22480243]
[49]
Seen, S.B.; Gong, Y.; Ashton, M. The application of the Fischer indole synthesis in medicinal chemistry. Adv. Heterocycl. Chem., 2023, 139, 1-85.
[http://dx.doi.org/10.1016/bs.aihch.2022.11.001]
[50]
Mitra, A.K. The journey of 1-Keto-1, 2, 3, 4-tetrahydrocarbazole based fluorophores: from inception to implementation. J. Fluoresc., 2022, 32(6), 2023-2052.
[http://dx.doi.org/10.1007/s10895-022-03004-2] [PMID: 35829843]
[51]
Yin, Z.; Whittell, L.R.; Wang, Y.; Jergic, S.; Liu, M.; Harry, E.J.; Dixon, N.E.; Beck, J.L.; Kelso, M.J.; Oakley, A.J. Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach. J. Med. Chem., 2014, 57(6), 2799-2806.
[http://dx.doi.org/10.1021/jm500122r] [PMID: 24592885]
[52]
Altieri, A.S.; Kelman, Z. DNA sliding clamps as therapeutic targets. Front. Mol. Biosci., 2018, 5, 87.
[http://dx.doi.org/10.3389/fmolb.2018.00087] [PMID: 30406112]
[53]
Kelman, Z.; O’Donnell, M. Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res., 1995, 23(18), 3613-3620.
[http://dx.doi.org/10.1093/nar/23.18.3613] [PMID: 7478986]
[54]
Kuriyan, J.; O’Donnell, M. Sliding clamps of DNA polymerases. J. Mol. Biol., 1993, 234(4), 915-925.
[http://dx.doi.org/10.1006/jmbi.1993.1644] [PMID: 7903401]
[55]
Mohamed, N.A.; El-Serwy, W.S.; Abd El-Karim, S.S.; Awad, G.E.A.; Elseginy, S.A. Synthesis, antimicrobial evaluation, and molecular docking studies of new tetrahydrocarbazole derivatives. Res. Chem. Intermed., 2016, 42(2), 1363-1386.
[http://dx.doi.org/10.1007/s11164-015-2090-6]
[56]
Ivanenkov, Y.A.; Osterman, I.A.; Komarova, E.S.; Bogdanov, A.A.; Sergiev, P.V.; Dontsova, O.A.; Sofronova, A.A.; Terentiev, V.A.; Filkov, G.I.; Yamidanov, R.S.; Majouga, A.G.; Bezrukov, D.S.; Deyneka, E.V.; Skvortsov, D.A. Tetrahydrocarbazoles as novel class of DNA biosynthesis inhibitors in bacteria. Antiinfect. Agents, 2020, 18(2), 121-127.
[http://dx.doi.org/10.2174/2211352517666181218155259]
[57]
Cirz, R.T.; Chin, J.K.; Andes, D.R.; de Crécy-Lagard, V.; Craig, W.A.; Romesberg, F.E. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol., 2005, 3(6), e176.
[http://dx.doi.org/10.1371/journal.pbio.0030176] [PMID: 15869329]
[58]
Podlesek, Z.; Bertok, D.Ž. The Escherichia coli SOS response: Much more than DNA damage repair. In: Escherichia coli; IntechOpen, 2021.
[59]
Selvam, G.; Murugesan, M.S.; Uthaikumar, S. Investigation of Dibromo and N-bromoacetyl Derivatives of [b] carbazole-synthesis and antibacterial evaluation. Int J New Chem., 2019, 6(2), 66-75.
[60]
Surendiran, T.; Deepa, R. Syntheses and antimicrobial studies of novel N-((2, 4-Dihydro-3-substituted phenylthiazolo-thiatriazin-1-Yl))-1, 2, 3, 4-tetrahydrocarbazoles. Malaya J. Mat., 2020, (2), 1526-1530.
[61]
Reithuber, E.; Wixe, T.; Ludwig, K.C.; Müller, A.; Uvell, H.; Grein, F.; Lindgren, A.E.G.; Muschiol, S.; Nannapaneni, P.; Eriksson, A.; Schneider, T.; Normark, S.; Henriques-Normark, B.; Almqvist, F.; Mellroth, P. THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proc. Natl. Acad. Sci. USA, 2021, 118(47), e2108244118.
[http://dx.doi.org/10.1073/pnas.2108244118] [PMID: 34785593]
[62]
Abd Al-Mohson, Z.M.; Al-Majidi, S.M.; Mathkor, T.H. Synthesis of novel pyrazole derivatives containing tetrahydrocarbazole, antimicrobail evaluation and molecular properties. Eurasian Chem. Commun., 2021, (3), 425-434.
[63]
A Alam, M. Antibacterial pyrazoles: Tackling resistant bacteria. Future Med. Chem., 2022, 14(5), 343-362.
[http://dx.doi.org/10.4155/fmc-2021-0275] [PMID: 35050719]
[64]
Murugesan, M.S.; Selvam, G. Synthesis and antibacterial activities of novel 1-bromo-2-(6-bromo-1, 2, 3, 4-tetrahydro-9H-carbazol-1-yl) ethanone and 1-bromo-2-(5-bromo-1, 2, 3-trihydrocyclopenta [b] indole-1-yl) ethanone. Int J New Chem, 2021, 8(2), 142-148.
[65]
Lepesheva, GI Waterman, MR Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim Biophys Acta., 1770, 1770(3), 467-477.
[66]
Mahdi, M.H.; Dawood, A.H.; Shaheed, D.Q. Substituted tetrahydrocarbazole based on indomethacin and diclofenac with heterocyclic compound, synthesis, spectral and antimicrobial studies. J. Med. Chem. Sci., 2022, 5(6), 933-942.
[http://dx.doi.org/10.26655/JMCHEMSCI.2022.6.7]
[67]
Chan, E.W.L.; Yee, Z.Y.; Raja, I.; Yap, J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist., 2017, 10, 70-74.
[http://dx.doi.org/10.1016/j.jgar.2017.03.012] [PMID: 28673701]
[68]
Leão, C.; Borges, A.; Simões, M. Nsaids as a drug repurposing strategy for biofilm control. Antibiotics, 2020, 9(9), 591.
[http://dx.doi.org/10.3390/antibiotics9090591] [PMID: 32927675]
[69]
Figge, R.M.; Divakaruni, A.V.; Gober, J.W. MreB, the cell shape‐determining bacterial actin homologue, co‐ordinates cell wall morphogenesis in Caulobacter crescentus. Mol. Microbiol., 2004, 51(5), 1321-1332.
[http://dx.doi.org/10.1111/j.1365-2958.2003.03936.x] [PMID: 14982627]
[70]
van den Ent, F.; Amos, L.A.; Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature, 2001, 413(6851), 39-44.
[http://dx.doi.org/10.1038/35092500] [PMID: 11544518]
[71]
Iwai, N.; Nagai, K.; Wachi, M. Novel S-benzylisothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shape-determining protein(s) other than penicillin-binding protein 2. Biosci. Biotechnol. Biochem., 2002, 66(12), 2658-2662.
[http://dx.doi.org/10.1271/bbb.66.2658] [PMID: 12596863]
[72]
Robertson, G.T.; Doyle, T.B.; Du, Q.; Duncan, L.; Mdluli, K.E.; Lynch, A.S. A Novel indole compound that inhibits Pseudomonas aeruginosa growth by targeting MreB is a substrate for MexAB-OprM. J. Bacteriol., 2007, 189(19), 6870-6881.
[http://dx.doi.org/10.1128/JB.00805-07] [PMID: 17644596]
[73]
Sagong, H.Y.; Rosado-Lugo, J.D.; Bryan, E.J.; Ferrer-González, E.; Wang, Y.; Cao, Y.; Parhi, A.K.; Pilch, D.S.; LaVoie, E.J. Novel MreB inhibitors with antibacterial activity against Gram (-) bacteria. Med. Chem. Res., 2022, 31(10), 1679-1704.
[http://dx.doi.org/10.1007/s00044-022-02967-y] [PMID: 37077288]