CREB: A Promising Therapeutic Target for Treating Psychiatric Disorders

Page: [2384 - 2401] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.

[1]
Barlattani, T.D.A. Autism spectrum disorders and psychiatric comorbidities: A narrative review. J. Psychopathol., 2023, 29(1-2)
[2]
Hossain, M.M.; Khan, N.; Sultana, A.; Ma, P.; McKyer, E.L.J.; Ahmed, H.U.; Purohit, N. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res., 2020, 287, 112922.
[http://dx.doi.org/10.1016/j.psychres.2020.112922] [PMID: 32203749]
[3]
Fang, Y.; Mao, R. Depressive disorders: Mechanisms, measurement and menagement. Adv. Exp. Med. Biol., 2019, 1180, 179-191.
[4]
Barlattani, T.; D’Amelio, C.; Capelli, F.; Mantenuto, S.; Rossi, R.; Socci, V.; Stratta, P.; Di Stefano, R.; Rossi, A.; Pacitti, F. Suicide and COVID-19: A rapid scoping review. Ann. Gen. Psychiatry, 2023, 22(1), 10.
[http://dx.doi.org/10.1186/s12991-023-00441-6] [PMID: 36932453]
[5]
Betcher, H.K.; Wisner, K.L. Psychotropic treatment during pregnancy: Research synthesis and clinical care principles. J. Womens Health , 2020, 29(3), 310-318.
[http://dx.doi.org/10.1089/jwh.2019.7781] [PMID: 31800350]
[6]
Miyamoto, S.; Miyake, N.; Jarskog, L.F.; Fleischhacker, W.W.; Lieberman, J.A. Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol. Psychiatry, 2012, 17(12), 1206-1227.
[http://dx.doi.org/10.1038/mp.2012.47] [PMID: 22584864]
[7]
Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry, 2005, 10(1), 79-104.
[http://dx.doi.org/10.1038/sj.mp.4001556] [PMID: 15289815]
[8]
Carlsson, A.; Lindqvist, M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. , 1963, 20(2), 140-144.
[http://dx.doi.org/10.1111/j.1600-0773.1963.tb01730.x] [PMID: 14060771]
[9]
van Rossum, J.M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther., 1966, 160(2), 492-494.
[PMID: 5954044]
[10]
Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov., 2016, 15(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2015.5] [PMID: 26542451]
[11]
Kesselheim, A.S.; Hwang, T.J.; Franklin, J.M. Two decades of new drug development for central nervous system disorders. Nat. Rev. Drug Discov., 2015, 14(12), 815-816.
[http://dx.doi.org/10.1038/nrd4793] [PMID: 26585536]
[12]
Kaar, S.J.; Natesan, S.; McCutcheon, R.; Howes, O.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology, 2020, 172, 107704.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107704] [PMID: 31299229]
[13]
Jiang, Y.; Wang, X.; Li, X.; Liu, A.; Fan, Q.; Yang, L.; Feng, B.; Zhang, K.; Lu, L.; Qi, J.; Yang, F.; Song, D.; Wu, Y.; Zhao, M.; Liu, S. Tanshinone IIA improves contextual fear‐ and anxiety‐like behaviors in mice via the CREB/BDNF/TRKB signaling pathway. Phytother. Res., 2022, 36(10), 3932-3948.
[http://dx.doi.org/10.1002/ptr.7540] [PMID: 35801985]
[14]
Keshavarzi, S.; Kermanshahi, S.; Karami, L.; Motaghinejad, M.; Motevalian, M.; Sadr, S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology, 2019, 72, 74-84.
[http://dx.doi.org/10.1016/j.neuro.2019.02.004] [PMID: 30742852]
[15]
Sharma, P.; Kumar, A.; Singh, D. Dietary flavonoids interaction with CREB-BDNF pathway: An unconventional approach for comprehensive management of epilepsy. Curr. Neuropharmacol., 2019, 17(12), 1158-1175.
[http://dx.doi.org/10.2174/1570159X17666190809165549] [PMID: 31400269]
[16]
Pandey, G.N.; Dwivedi, Y.; Ren, X.; Rizavi, H.S.; Roberts, R.C.; Conley, R.R. Cyclic AMP response element-binding protein in post-mortem brain of teenage suicide victims: Specific decrease in the prefrontal cortex but not the hippocampus. Int. J. Neuropsychopharmacol., 2007, 10(5), 621-629.
[http://dx.doi.org/10.1017/S1461145706007231] [PMID: 16978443]
[17]
Aguiar, A.S., Jr; Castro, A.A.; Moreira, E.L.; Glaser, V.; Santos, A.R.S.; Tasca, C.I.; Latini, A.; Prediger, R.D.S. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: Involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech. Ageing Dev., 2011, 132(11-12), 560-567.
[http://dx.doi.org/10.1016/j.mad.2011.09.005] [PMID: 21983475]
[18]
Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Ferraro, A.K.; Vitto, M.F.; Cesconetto, P.; Souza, C.T.; Quevedo, J. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav. Brain Res., 2011, 221(1), 166-171.
[http://dx.doi.org/10.1016/j.bbr.2011.02.024] [PMID: 21397634]
[19]
Liu, J.; Liu, B.; Yuan, P.; Cheng, L.; Sun, H.; Gui, J.; Pan, Y.; Huang, D.; Chen, H.; Jiang, L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol. Environ. Saf., 2021, 214, 112005.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112005] [PMID: 33640725]
[20]
Tan, P.; Xue, T.; Wang, Y.; Hu, Z.; Su, J.; Yang, R.; Ji, J.; Ye, M.; Chen, Z.; Huang, C.; Lu, X. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice. Neuropharmacology, 2022, 209, 108990.
[http://dx.doi.org/10.1016/j.neuropharm.2022.108990] [PMID: 35183538]
[21]
Jiang, N.; Wang, H.; Lv, J.; Wang, Q.; Lu, C.; Li, Y.; Liu, X. Dammarane sapogenins attenuates stress‐induced anxiety‐like behaviors by upregulating ERK/CREB/BDNF pathways. Phytother. Res., 2020, 34(10), 2721-2729.
[http://dx.doi.org/10.1002/ptr.6713] [PMID: 32431006]
[22]
Jagannath, A.; Foster, R.G. CREB signalling in bipolar disease (commentary on Gaspar et al.): commentary on Gaspar et al. 2014. Eur. J. Neurosci., 2014, 40(1), 2205.
[http://dx.doi.org/10.1111/ejn.12649] [PMID: 25040051]
[23]
Broderick, D.F. Neuroimaging in neuropsychiatry.Psychiatr. Clin. North Am., , 2005, 28(3), 549-566, 64..
[http://dx.doi.org/10.1016/j.psc.2005.05.007] [PMID: 16122566]
[24]
Zhang, Y.; Long, Y.; Yu, S.; Li, D.; Yang, M.; Guan, Y.; Zhang, D.; Wan, J.; Liu, S.; Shi, A.; Li, N.; Peng, W. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacol. Res., 2021, 164, 105376.
[http://dx.doi.org/10.1016/j.phrs.2020.105376] [PMID: 33316383]
[25]
Penninx, B.W.J.H.; Pine, D.S.; Holmes, E.A.; Reif, A. Benzodiazepines for the long-term treatment of anxiety disorders? – Authors’ reply. Lancet, 2021, 398(10295), 120.
[http://dx.doi.org/10.1016/S0140-6736(21)00931-4] [PMID: 34246346]
[26]
Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev., 2021, 83, 101943.
[http://dx.doi.org/10.1016/j.cpr.2020.101943] [PMID: 33271426]
[27]
Stein, D.J.; Costa, D.L.C.; Lochner, C.; Miguel, E.C.; Reddy, Y.C.J.; Shavitt, R.G.; van den Heuvel, O.A.; Simpson, H.B. Obsessive–compulsive disorder. Nat. Rev. Dis. Primers, 2019, 5(1), 52.
[http://dx.doi.org/10.1038/s41572-019-0102-3] [PMID: 31371720]
[28]
Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current concepts and treatments of schizophrenia. Molecules, 2018, 23(8), 2087.
[http://dx.doi.org/10.3390/molecules23082087] [PMID: 30127324]
[29]
McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; Vieta, E.; Vinberg, M.; Young, A.H.; Mansur, R.B. Bipolar disorders. Lancet, 2020, 396(10265), 1841-1856.
[http://dx.doi.org/10.1016/S0140-6736(20)31544-0] [PMID: 33278937]
[30]
Xu, W.; Kasper, L.H.; Lerach, S.; Jeevan, T.; Brindle, P.K. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. EMBO J., 2007, 26(12), 2890-2903.
[http://dx.doi.org/10.1038/sj.emboj.7601734] [PMID: 17525731]
[31]
Ichiki, T. Role of cAMP response element binding protein in cardiovascular remodeling: good, bad, or both? Arterioscler. Thromb. Vasc. Biol., 2006, 26(3), 449-455.
[http://dx.doi.org/10.1161/01.ATV.0000196747.79349.d1] [PMID: 16293792]
[32]
Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci., 2018, 11, 255.
[http://dx.doi.org/10.3389/fnmol.2018.00255] [PMID: 30214393]
[33]
Wang, G.; Zhu, Z.; Xu, D.; Sun, L. Advances in understanding CREB signaling-mediated regulation of the pathogenesis and progression of epilepsy. Clin. Neurol. Neurosurg., 2020, 196, 106018.
[http://dx.doi.org/10.1016/j.clineuro.2020.106018] [PMID: 32574967]
[34]
Steven, A.; Seliger, B. Control of CREB expression in tumors: From molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget, 2016, 7(23), 35454-35465.
[http://dx.doi.org/10.18632/oncotarget.7721] [PMID: 26934558]
[35]
Irwin, M.R.; Carrillo, C.; Sadeghi, N.; Bjurstrom, M.F.; Breen, E.C.; Olmstead, R. Prevention of incident and recurrent major depression in older adults with insomnia. JAMA Psychiatry, 2022, 79(1), 33-41.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.3422] [PMID: 34817561]
[36]
National Center for Health. Health, United States, 2016: With Chartbook on Long-term Trends in Health; National Center for Health Statistics (US): Hyattsville (MD), , 2017.
[37]
StatPearls; StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies , 2023.
[38]
Figueroa-Hall, L.K.; Paulus, M.P.; Savitz, J. Toll-like receptor signaling in depression. Psychoneuroendocrinology, 2020, 121, 104843.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104843] [PMID: 32911436]
[39]
Cuijpers, P.; van Straten, A.; Andersson, G.; van Oppen, P. Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies. J. Consult. Clin. Psychol., 2008, 76(6), 909-922.
[http://dx.doi.org/10.1037/a0013075] [PMID: 19045960]
[40]
Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and emerging treatments for major depression. Lancet, 2023, 401(10371), 141-153.
[http://dx.doi.org/10.1016/S0140-6736(22)02080-3] [PMID: 36535295]
[41]
Yao, W.; Cao, Q.; Luo, S.; He, L.; Yang, C.; Chen, J.; Qi, Q.; Hashimoto, K.; Zhang, J. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol. Psychiatry, 2022, 27(3), 1618-1629.
[http://dx.doi.org/10.1038/s41380-021-01377-7] [PMID: 34819637]
[42]
Shi, L.S.; Ji, C.H.; Liu, Y.; Gu, J.H.; Tang, W.Q.; Zhang, W.; Guan, W. Ginsenoside Rh2 administration produces crucial antidepressant‐like effects in a CUMS‐induced mice model of depression. Brain Behav., 2022, 12(8), e2705.
[http://dx.doi.org/10.1002/brb3.2705] [PMID: 35848938]
[43]
Manners, M.T.; Brynildsen, J.K.; Schechter, M.; Liu, X.; Eacret, D.; Blendy, J.A. CREB deletion increases resilience to stress and downregulates inflammatory gene expression in the hippocampus. Brain Behav. Immun., 2019, 81, 388-398.
[http://dx.doi.org/10.1016/j.bbi.2019.06.035] [PMID: 31255680]
[44]
Mo, F.; Tang, Y.; Du, P.; Shen, Z.; Yang, J.; Cai, M.; Zhang, Y.; Li, H.; Shen, H. GPR39 protects against corticosterone-induced neuronal injury in hippocampal cells through the CREB-BDNF signaling pathway. J. Affect. Disord., 2020, 272, 474-484.
[http://dx.doi.org/10.1016/j.jad.2020.03.137] [PMID: 32553391]
[45]
Zhang, T.; Wang, Y.; Yao, W.; Chen, Y.; Zhang, D.; Gao, Y.; Jin, S.; Li, L.; Yang, S.; Wu, Y. Metformin antagonizes nickel-refining fumes-induced cell pyroptosis via Nrf2/GOLPH3 pathway in vitro and in vivo. Ecotoxicol. Environ. Saf., 2022, 247, 114233.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114233] [PMID: 36334342]
[46]
Ströhle, A.; Gensichen, J.; Domschke, K. The diagnosis and treatment of anxiety disorders. Dtsch. Arztebl. Int., 2018, 155(37), 611-620.
[http://dx.doi.org/10.3238/arztebl.2018.0611] [PMID: 30282583]
[47]
Narasimhamurthy, R.K.; Andrade, D.; Mumbrekar, K.D. Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity. Mol. Cell. Biochem., 2022, 477(11), 2581-2593.
[http://dx.doi.org/10.1007/s11010-022-04472-7] [PMID: 35596844]
[48]
Wang, X.; Guan, S.; Liu, A.; Yue, J.; Hu, L.; Zhang, K.; Yang, L.; Lu, L.; Tian, Z.; Zhao, M.; Liu, S. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol. Brain, 2019, 12(1), 36.
[http://dx.doi.org/10.1186/s13041-019-0453-4] [PMID: 30961625]
[49]
Yang, J.; Li, S.; Lv, H.; Wang, W.; Zhang, J.; Chu, L.; Zhang, Y. CREB1 and BDNF gene polymorphisms are associated with early treatment response to escitalopram in panic disorder. J. Affect. Disord., 2021, 278, 536-541.
[http://dx.doi.org/10.1016/j.jad.2020.09.076] [PMID: 33017682]
[50]
Lally, J.; Maloudi, S.; Krivoy, A.; Murphy, K.C. Simple schizophrenia. J. Nerv. Ment. Dis., 2019, 207(9), 721-725.
[http://dx.doi.org/10.1097/NMD.0000000000000936] [PMID: 31082962]
[51]
Prata, D.P.; Costa-Neves, B.; Cosme, G.; Vassos, E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J. Psychiatr. Res., 2019, 114, 178-207.
[http://dx.doi.org/10.1016/j.jpsychires.2019.04.007] [PMID: 31096178]
[52]
Millan, M.J.; Andrieux, A.; Bartzokis, G.; Cadenhead, K.; Dazzan, P.; Fusar-Poli, P.; Gallinat, J.; Giedd, J.; Grayson, D.R.; Heinrichs, M.; Kahn, R.; Krebs, M.O.; Leboyer, M.; Lewis, D.; Marin, O.; Marin, P.; Meyer-Lindenberg, A.; McGorry, P.; McGuire, P.; Owen, M.J.; Patterson, P.; Sawa, A.; Spedding, M.; Uhlhaas, P.; Vaccarino, F.; Wahlestedt, C.; Weinberger, D. Altering the course of schizophrenia: Progress and perspectives. Nat. Rev. Drug Discov., 2016, 15(7), 485-515.
[http://dx.doi.org/10.1038/nrd.2016.28] [PMID: 26939910]
[53]
Maric, N.P.; Jovicic, M.J.; Mihaljevic, M.; Miljevic, C. Improving current treatments for schizophrenia. Drug Dev. Res., 2016, 77(7), 357-367.
[http://dx.doi.org/10.1002/ddr.21337] [PMID: 27633376]
[54]
Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for Alzheimer’s disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293.
[http://dx.doi.org/10.2174/1567205018666210218152253] [PMID: 33602089]
[55]
D’Amico, A.G.; Scuderi, S.; Leggio, G.M.; Castorina, A.; Drago, F.; D’Agata, V. Increased hippocampal CREB phosphorylation in dopamine D3 receptor knockout mice following passive avoidance conditioning. Neurochem. Res., 2013, 38(12), 2516-2523.
[http://dx.doi.org/10.1007/s11064-013-1164-3] [PMID: 24100927]
[56]
Abiero, A.; Botanas, C.J.; Custodio, R.J.; Sayson, L.V.; Kim, M.; Lee, H.J.; Kim, H.J.; Lee, K.W.; Jeong, Y.; Seo, J.W.; Ryu, I.S.; Lee, Y.S.; Cheong, J.H. 4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels. Psychopharmacology , 2020, 237(3), 757-772.
[http://dx.doi.org/10.1007/s00213-019-05412-y] [PMID: 31828394]
[57]
Li, S.; Lu, C.; Kang, L.; Li, Q.; Chen, H.; Zhang, H.; Tang, Z.; Lin, Y.; Bai, M.; Xiong, P. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. BMC Psychiatry, 2023, 23(1), 225.
[http://dx.doi.org/10.1186/s12888-023-04718-8] [PMID: 37013544]
[58]
Guo, C.; Liu, Y.; Fang, M.; Li, Y.; Li, W.; Mahaman, Y.A.R.; Zeng, K.; Xia, Y.; Ke, D.; Liu, R.; Wang, J.Z.; Shen, H.; Shu, X.; Wang, X. ω-3PUFAs improve cognitive impairments through Ser133 phosphorylation of CREB upregulating BDNF/TrkB signal in schizophrenia. Neurotherapeutics, 2020, 17(3), 1271-1286.
[http://dx.doi.org/10.1007/s13311-020-00859-w] [PMID: 32367475]
[59]
Einoch, R.; Weinreb, O.; Mandiuk, N.; Youdim, M.B.H.; Bilker, W.; Silver, H. The involvement of BDNF-CREB signaling pathways in the pharmacological mechanism of combined SSRI- antipsychotic treatment in schizophrenia. Eur. Neuropsychopharmacol., 2017, 27(5), 470-483.
[http://dx.doi.org/10.1016/j.euroneuro.2017.03.005] [PMID: 28410959]
[60]
Schuyler, M.; Geller, D.A. Childhood obsessive-compulsive disorder. Psychiatr. Clin. North Am., 2023, 46(1), 89-106.
[http://dx.doi.org/10.1016/j.psc.2022.10.002] [PMID: 36740357]
[61]
Stein, D.J. Obsessive-compulsive disorder. Lancet, 2002, 360(9330), 397-405.
[http://dx.doi.org/10.1016/S0140-6736(02)09620-4] [PMID: 12241794]
[62]
Grünblatt, E.; Marinova, Z.; Roth, A.; Gardini, E.; Ball, J.; Geissler, J.; Wojdacz, T.K.; Romanos, M.; Walitza, S. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder. J. Psychiatr. Res., 2018, 96, 209-217.
[http://dx.doi.org/10.1016/j.jpsychires.2017.10.010] [PMID: 29102815]
[63]
Fluitman, S.B.A.H.A.; Denys, D.A.J.P.; Heijnen, C.J.; Westenberg, H.G.M. Disgust affects TNF-α, IL-6 and noradrenalin levels in patients with obsessive–compulsive disorder. Psychoneuroendocrinology, 2010, 35(6), 906-911.
[http://dx.doi.org/10.1016/j.psyneuen.2009.12.005] [PMID: 20044210]
[64]
Hazari, N.; Narayanaswamy, J.C.; Arumugham, S.S. Predictors of response to serotonin reuptake inhibitors in obsessive-compulsive disorder. Expert Rev. Neurother., 2016, 16(10), 1175-1191.
[http://dx.doi.org/10.1080/14737175.2016.1199960] [PMID: 27282021]
[65]
Goodman, W.K.; Storch, E.A.; Sheth, S.A. Harmonizing the neurobiology and treatment of obsessive-compulsive disorder. Am. J. Psychiatry, 2021, 178(1), 17-29.
[http://dx.doi.org/10.1176/appi.ajp.2020.20111601] [PMID: 33384007]
[66]
Grados, M.; Atkins, E.; Kovacikova, G.I.; McVicar, E. A selective review of glutamate pharmacological therapy in obsessive–compulsive and related disorders. Psychol. Res. Behav. Manag., 2015, 8, 115-131.
[http://dx.doi.org/10.2147/PRBM.S58601] [PMID: 25995654]
[67]
Pittenger, C.; Bloch, M.H. Pharmacological treatment of obsessive-compulsive disorder. Psychiatr. Clin. North Am., 2014, 37(3), 375-391.
[http://dx.doi.org/10.1016/j.psc.2014.05.006] [PMID: 25150568]
[68]
Walton, M.R.; Dragunow, M. Is CREB a key to neuronal survival? Trends Neurosci., 2000, 23(2), 48-53.
[http://dx.doi.org/10.1016/S0166-2236(99)01500-3] [PMID: 10652539]
[69]
Arora, T.; Bhowmik, M.; Khanam, R.; Vohora, D. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and creb pathway. Behav. Brain Res., 2013, 247, 146-152.
[http://dx.doi.org/10.1016/j.bbr.2013.02.038] [PMID: 23473877]
[70]
Rohbani, K.; Sabzevari, S.; Sadat-Shirazi, M.S.; Nouri Zadeh-Tehrani, S.; Ashabi, G.; Khalifeh, S.; Ale-Ebrahim, M.; Zarrindast, M.R. Parental morphine exposure affects repetitive grooming actions and marble burying behavior in the offspring: Potential relevance for obsessive-compulsive like behavior. Eur. J. Pharmacol., 2019, 865, 172757.
[http://dx.doi.org/10.1016/j.ejphar.2019.172757] [PMID: 31693870]
[71]
Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet, 2016, 387(10027), 1561-1572.
[http://dx.doi.org/10.1016/S0140-6736(15)00241-X] [PMID: 26388529]
[72]
Rybakowski, J. Etiopathogenesis of bipolar affective disorder – the state of the art for 2021. Psychiatr. Pol., 2021, 55(3), 481-496.
[http://dx.doi.org/10.12740/PP/132961] [PMID: 34460876]
[73]
Kato, T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin. Neurosci., 2019, 73(9), 526-540.
[http://dx.doi.org/10.1111/pcn.12852] [PMID: 31021488]
[74]
Haggarty, S.J.; Karmacharya, R.; Perlis, R.H. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules. Mol. Psychiatry, 2021, 26(1), 168-185.
[http://dx.doi.org/10.1038/s41380-020-0831-4] [PMID: 32636474]
[75]
Dubovsky, S.L.; Ghosh, B.M.; Serotte, J.C.; Cranwell, V. Psychotic depression: Diagnosis, differential diagnosis, and treatment. Psychother. Psychosom., 2021, 90(3), 160-177.
[http://dx.doi.org/10.1159/000511348] [PMID: 33166960]
[76]
Kerner, B.; Rao, A.R.; Christensen, B.; Dandekar, S.; Yourshaw, M.; Nelson, S.F. Rare genomic variants link bipolar disorder with anxiety disorders to creb-regulated intracellular signaling pathways. Front. Psychiatry, 2013, 4, 154.
[http://dx.doi.org/10.3389/fpsyt.2013.00154] [PMID: 24348429]
[77]
Ozaki, N.; Chuang, D.M. Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. J. Neurochem., 1997, 69(6), 2336-2344.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69062336.x] [PMID: 9375664]
[78]
Chen, B.; Wang, J.F.; Hill, B.C.; Young, L.T. Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos. Brain Res. Mol. Brain Res., 1999, 70(1), 45-53.
[http://dx.doi.org/10.1016/S0169-328X(99)00125-4] [PMID: 10381542]
[79]
Tang, Q.; Ke, H.; Wu, C.; Zeng, J.; Li, Z.; Liu, Y.; Feng, S.; Xue, Q.; Xu, X. Aqueous extract from You-Gui-Yin ameliorates cognitive impairment of chronic renal failure mice through targeting hippocampal CaMKIIα/CREB/BDNF and EPO/EPOR pathways. J. Ethnopharmacol., 2019, 239, 111925.
[http://dx.doi.org/10.1016/j.jep.2019.111925] [PMID: 31055001]
[80]
Li, D.; Liao, Q.; Tao, Y.; Ni, S.; Wang, C.; Xu, D.; Zhou, D.; Li, X.; Jin, X.; Chen, X.; Cui, W.; Zhang, J. Downregulation of CRTC1 is involved in CUMS-induced depression-like behavior in the hippocampus and its RNA sequencing analysis. Mol. Neurobiol., 2022, 59(7), 4405-4418.
[http://dx.doi.org/10.1007/s12035-022-02787-6] [PMID: 35556215]
[81]
Alda, M.; Shao, L.; Wang, J.F.; de Lara, C.L.; Jaitovich-Groisman, I.; Lebel, V.; Sun, X.; Duffy, A.; Grof, P.; Rouleau, G.A.; Turecki, G.; Young, L.T. Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: An endophenotype of lithium-responsive bipolar disorder? Bipolar Disord., 2013, 15(8), 824-831.
[http://dx.doi.org/10.1111/bdi.12131] [PMID: 24238631]
[82]
Odagaki, Y.; García-Sevilla, J.A.; Huguelet, P.; La Harpe, R.; Koyama, T.; Guimón, J. Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims. Brain Res., 2001, 898(2), 224-231.
[http://dx.doi.org/10.1016/S0006-8993(01)02188-6] [PMID: 11306008]
[83]
Gaspar, L.; van de Werken, M.; Johansson, A.S.; Moriggi, E.; Owe-Larsson, B.; Kocks, J.W.H.; Lundkvist, G.B.; Gordijn, M.C.M.; Brown, S.A. Human cellular differences in CAMP ‐ CREB signaling correlate with light‐dependent melatonin suppression and bipolar disorder. Eur. J. Neurosci., 2014, 40(1), 2206-2215.
[http://dx.doi.org/10.1111/ejn.12602] [PMID: 24898566]
[84]
Ren, X.; Rizavi, H.S.; Khan, M.A.; Bhaumik, R.; Dwivedi, Y.; Pandey, G.N. Alteration of cyclic-AMP response element binding protein in the postmortem brain of subjects with bipolar disorder and schizophrenia. J. Affect. Disord., 2014, 152-154, 326-333.
[http://dx.doi.org/10.1016/j.jad.2013.09.033] [PMID: 24148789]
[85]
Morozova, A.; Zorkina, Y.; Abramova, O.; Pavlova, O.; Pavlov, K.; Soloveva, K.; Volkova, M.; Alekseeva, P.; Andryshchenko, A.; Kostyuk, G.; Gurina, O.; Chekhonin, V. Neurobiological highlights of cognitive impairment in psychiatric disorders. Int. J. Mol. Sci., 2022, 23(3), 1217.
[http://dx.doi.org/10.3390/ijms23031217] [PMID: 35163141]
[86]
Zheng, W.; Wang, H.; Zeng, Z.; Lin, J.; Little, P.J.; Srivastava, L.K.; Quirion, R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res., 2012, 1470, 145-158.
[http://dx.doi.org/10.1016/j.brainres.2012.06.032] [PMID: 22771711]
[87]
Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell, 2022, 185(1), 62-76.
[http://dx.doi.org/10.1016/j.cell.2021.12.003] [PMID: 34963057]
[88]
Sun, Y.; Zhang, H.; Wu, Z.; Yu, X.; Yin, Y.; Qian, S.; Wang, Z.; Huang, J.; Wang, W.; Liu, T.; Xue, W.; Chen, G. Quercitrin rapidly alleviated depression-like behaviors in lipopolysaccharide-treated mice: The involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF signaling restoration in the hippocampus. ACS Chem. Neurosci., 2021, 12(18), 3387-3396.
[http://dx.doi.org/10.1021/acschemneuro.1c00371] [PMID: 34469122]
[89]
Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P.E. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med., 2008, 45(3), 295-305.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.008] [PMID: 18457678]
[90]
Lian, W.; Zhou, W.; Zhang, B.; Jia, H.; Xu, L.; Liu, A.; Du, G. DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway. Acta Pharmacol. Sin., 2021, 42(7), 1055-1068.
[http://dx.doi.org/10.1038/s41401-020-00506-2] [PMID: 32868905]
[91]
Colasanto, M.; Madigan, S.; Korczak, D.J. Depression and inflammation among children and adolescents: A meta-analysis. J. Affect. Disord., 2020, 277, 940-948.
[http://dx.doi.org/10.1016/j.jad.2020.09.025] [PMID: 33065836]
[92]
Jia, Z.; Yang, J.; Cao, Z.; Zhao, J.; Zhang, J.; Lu, Y.; Chu, L.; Zhang, S.; Chen, Y.; Pei, L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav. Brain Res., 2021, 414, 113463.
[http://dx.doi.org/10.1016/j.bbr.2021.113463] [PMID: 34280458]
[93]
Zhao, X.; Kong, D.; Zhou, Q.; Wei, G.; Song, J.; Liang, Y.; Du, G. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed. Pharmacother., 2021, 140, 111556.
[http://dx.doi.org/10.1016/j.biopha.2021.111556] [PMID: 34087694]
[94]
Wang, A.; Mi, L.; Zhang, Z.; Hu, M.; Zhao, Z.; Liu, B.; Li, Y.; Zheng, S. Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behav. Brain Res., 2021, 403, 113138.
[http://dx.doi.org/10.1016/j.bbr.2021.113138] [PMID: 33493495]
[95]
Fang, W.; Zhang, J.; Hong, L.; Huang, W.; Dai, X.; Ye, Q.; Chen, X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J. Affect. Disord., 2020, 260, 302-313.
[http://dx.doi.org/10.1016/j.jad.2019.09.013] [PMID: 31521867]
[96]
Xie, L.L.; Rui, C.; Li, Z.Z.; Li, S.S.; Fan, Y.J.; Qi, M.M. Melatonin mitigates traumatic brain injury-induced depression-like behaviors through HO-1/CREB signal in rats. Neurosci. Lett., 2022, 784, 136754.
[http://dx.doi.org/10.1016/j.neulet.2022.136754] [PMID: 35753614]
[97]
Liu, Z.; Yang, J.; Fang, Q.; Shao, H.; Yang, D.; Sun, J.; Gao, L. MiRNA‐199a‐5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron. Brain Behav., 2021, 11(8), e02107.
[http://dx.doi.org/10.1002/brb3.2107] [PMID: 34333859]
[98]
Qiao, X.; Gai, H.; Su, R.; Deji, C.; Cui, J.; Lai, J.; Zhu, Y. PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J. Affect. Disord., 2018, 235, 96-104.
[http://dx.doi.org/10.1016/j.jad.2018.04.039] [PMID: 29655081]
[99]
Abdo Qaid, E.Y.; Abdullah, Z.; Zakaria, R.; Long, I. Minocycline attenuates lipopolysaccharide-induced locomotor deficit and anxiety-like behavior and related expression of the BDNF/CREB protein in the rat medial prefrontal cortex (mPFC). Int. J. Mol. Sci., 2022, 23(21), 13474.
[http://dx.doi.org/10.3390/ijms232113474] [PMID: 36362262]
[100]
Geng, X.; Wu, H.; Li, Z.; Li, C.; Chen, D.; Zong, J.; Liu, Z.; Wei, S.; Peng, W. Jie-yu-he-huan capsule ameliorates anxiety-like behaviours in rats exposed to chronic restraint stress via the cAMP/PKA/CREB/BDNF signalling pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-19.
[http://dx.doi.org/10.1155/2021/1703981] [PMID: 34646421]
[101]
Borgonetti, V.; Les, F.; López, V.; Galeotti, N. Attenuation of anxiety-like behavior by Helichrysum stoechas (L.) moench methanolic extract through up-regulation of ERK signaling pathways in noradrenergic neurons. Pharmaceuticals, 2020, 13(12), 472.
[http://dx.doi.org/10.3390/ph13120472] [PMID: 33348565]
[102]
Li, M.; Peng, Y.; An, Y.; Li, G.; Lan, Y. LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia. Brain Behav., 2022, 12(2), e2466.
[http://dx.doi.org/10.1002/brb3.2466] [PMID: 35025141]
[103]
Kutlu, M.D.; Kose, S.; Akillioglu, K. GLP-1 agonist Liraglutide prevents MK 801-induced schizophrenia like behaviors and BDNF, CREB, p-CREB, Trk-B expressions in the hippocampus and prefrontal cortex in Balb/c mice. Behav. Brain Res., 2023, 445, 114386.
[http://dx.doi.org/10.1016/j.bbr.2023.114386] [PMID: 36948022]
[104]
Balu, D.T.; Coyle, J.T. Altered CREB binding to activity-dependent genes in serine racemase deficient mice, a mouse model of schizophrenia. ACS Chem. Neurosci., 2018, 9(9), 2205-2209.
[http://dx.doi.org/10.1021/acschemneuro.7b00404] [PMID: 29172439]
[105]
Guo, C.; Li, W.; Liu, Y.; Mahaman, Y.A.R.; Zhang, B.; Wang, J.; Liu, R.; Li, H.; Wang, X.; Gao, X. Inactivation of ERK1/2-CREB pathway is implicated in MK801-induced cognitive impairment. Curr. Med. Sci., 2023, 43(1), 13-21.
[http://dx.doi.org/10.1007/s11596-022-2690-5] [PMID: 36867359]
[106]
Rodríguez-Seoane, C.; Ramos, A.; Korth, C.; Requena, J.R. DISC 1 regulates expression of the neurotrophin VGF through the PI 3K/AKT/CREB pathway. J. Neurochem., 2015, 135(3), 598-605.
[http://dx.doi.org/10.1111/jnc.13258] [PMID: 26212236]
[107]
Tardito, D.; Tiraboschi, E.; Kasahara, J.; Racagni, G.; Popoli, M. Reduced CREB phosphorylation after chronic lithium treatment is associated with down-regulation of CaM kinase IV in rat hippocampus. Int. J. Neuropsychopharmacol., 2007, 10(4), 491-496.
[http://dx.doi.org/10.1017/S1461145706007140] [PMID: 16923323]
[108]
Valvassori, S.S.; Dal-Pont, G.C.; Varela, R.B.; Resende, W.R.; Gava, F.F.; Mina, F.G.; Budni, J.; Quevedo, J. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder. J. Affect. Disord., 2021, 282, 1195-1202.
[http://dx.doi.org/10.1016/j.jad.2020.12.190] [PMID: 33601696]
[109]
Heinrich, A.; der Heyde, A.S.; Böer, U.; Phu, D.T.; Tzvetkov, M.; Oetjen, E. Lithium enhances CRTC oligomer formation and the interaction between the CREB coactivators CRTC and CBP — Implications for CREB-dependent gene transcription. Cell. Signal., 2013, 25(1), 113-125.
[http://dx.doi.org/10.1016/j.cellsig.2012.09.016] [PMID: 23000340]